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The S = 1=2 triangular-lattice Heisenberg antiferromagnet with distortion is investigated by the numerical-
diagonalization method. The examined distortion type is

ffiffiffi
3

p � ffiffiffi
3

p
. We study the case when the distortion connects

the undistorted triangular lattice and the dice lattice. For the intermediate phase reported previously in this system, we
obtain results of the boundaries of the intermediate phase for a larger system than those in the previous report and
examine the system size dependence of the boundaries in detail. We also report the specific heat of this system, which
shows a marked peak structure related to the appearance of the intermediate state.

1. Introduction

Frustration has been attracting increasing attention because
it often becomes a source of nontrivial phenomena in various
physical systems. Among them, frustrated magnets are
extensively studied from various viewpoints. The triangu-
lar-lattice antiferromagnet is a typical example of such
frustrated systems. Particularly, Anderson’s suggestion1) that
the S ¼ 1=2 triangular-lattice Heisenberg antiferromagnet is a
possible candidate for the realization of a spin-liquid ground
state owing to frustrations accelerated investigations of this
system from not only theoretical approaches2–15) but also
experimental ones.16,17) Although the kagome-lattice anti-
ferromagnet is another typical example,18–38) it is widely
considered that the understanding of the triangular-lattice
antiferromagnet is deeper than that of the kagome-lattice
antiferromagnet. Many researchers believe that the symme-
try-breaking state with the so-called 120-degree structure is
realized in the ground state of the S ¼ 1=2 triangular-lattice
Heisenberg antiferromagnet. However, a recent study based
on a large-scale numerical calculation has suggested the
absence of such symmetry breaking;39) the issue concerning
the ground state is still controversial up to now.

When the triangular-lattice antiferromagnet is experimen-
tally realized, effects due to distortions in the perfect structure
of the triangular lattice should be examined. The reason for
this is that some distortions often occur in the experimentally
planned structure. A one-dimensional distortion in the
triangular lattice has been investigated.40–42) Since distortions
are not necessarily uniform, random distortions in interaction
bonds are also studied.43,44) Even within cases of a uniform
distortion, however, the types of distortion are not limited to
the one-dimensional distortion.

A recent study has shown that there is an intermediate
phase of spontaneously magnetized states with its magnitude
varying continuously in the triangular-lattice antiferromagnet
with the

ffiffiffi
3

p � ffiffiffi
3

p
-type distortion.45) The distortion links two

cases: one is the triangular lattice and the other is the dice
lattice. In the former case, the ground state does not show a
spontaneous magnetization regardless of whether the ground
state reveals symmetry breaking. In the latter case, on the
other hand, the ground state of the dice-lattice antiferromag-

net is the so-called up–up–down (UUD) state showing the
spontaneous magnetization with its magnitude being one
third of the saturation magnetization. The UUD state is a
ferrimagnetic state, which can be explained by the Marshall–
Lieb–Mattis theorem.46,47) The phase of intermediate states
appears between the phase of the vanishing spontaneous
magnetization and the phase of the spontaneous magnetiza-
tion, which is one third of the saturation magnetization.

The purpose of this study is to present novel information
on the transitions at the boundary between the vanishing
spontaneous magnetization phase and the intermediate phase
and at the boundary between the intermediate phase and the
UUD ferrimagnetic phase from two aspects. One is the
position of the boundaries at zero temperature. We addition-
ally present the results of a system larger than those treated
in Ref. 45. The results confirm the existence of the
intermediate phase with a nonzero width. The other is the
temperature dependence of the specific heat of this system.
From the behavior of the specific heat, one can find the
relationship between the structure in the specific heat and the
appearance of the phase transitions. As a study concerning
the temperature dependences of physical quantities, Bonner
and Fisher’s work48) is widely known, in which the one-
dimensional chain model of the S ¼ 1=2 Heisenberg
antiferromagnet was investigated by numerical diagonaliza-
tions. Although other different numerical algorithms have
been developed after Ref. 48, available methods are still
limited for frustrated systems in spatial dimensions larger
than one. Under this situation, our understanding of the
temperature dependences of physical quantities of two-
dimensional frustrated systems is insufficient even now. In
this paper, we report such results for the triangular-lattice
antiferromagnet with the

ffiffiffi
3

p � ffiffiffi
3

p
-type distortion.

This paper is organized as follows. In the next section,
the model that we study here is introduced. The method
is also explained. The third section is devoted to the
presentation and discussion of our results. We first report
the system size dependence of the boundaries including
results for a larger size. Next, we present the results of the
specific heat. The characteristic peak structure is discussed.
In the final section, we present the conclusion drawn from
this study.
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2. Model Hamiltonian and Method

The Hamiltonian studied in this paper is given by

H ¼
X

i2B; j2B0
J1Si � Sj

þ
X

i2A; j2B
J2Si � Sj þ

X

i2A; j2B0
J2Si � Sj: ð1Þ

Here, Si denotes the S ¼ 1=2 spin operator at site i. In this
paper, we consider the case of isotropic interaction in spin
space. Site i is assumed to be the vertices of the triangular
lattice, which is illustrated in Fig. 1. The number of spin sites
is represented by Ns. The vertices are divided into three
sublattices A, B, and B0. Each site i in the A sublattice is
connected by six interaction bonds J2 represented by thick
lines. Each site i in the B or B0 sublattice is connected by
three interaction bonds J2 and three interaction bonds J1,
represented by thin lines. The ratio of J2=J1 is denoted by r.
All interactions are considered to be antiferromagnetic,
namely, J1 > 0 and J2 > 0. Energies are measured in J1
units. We hereafter set J1 ¼ 1. Here, we examine the case
of J2 � J1. Note that, for J1 ¼ J2, namely, r ¼ 1, the present
lattice is identical to the triangular lattice. It is well known
that the ground state of the triangular-lattice antiferromagnet
does not reveal nonzero spontaneous magnetizations. On the
other hand, for J1 ! 0, namely, r ! 1, the network of the
vertices becomes the dice lattice.

The finite-size clusters treated in this study are depicted in
Fig. 2. We examine the cases of Ns ¼ 9, 12, 21, 27, 36, and
39 under the periodic boundary condition. Note here that the
case of Ns ¼ 39 is additionally tackled in the present paper.
In all the cases, Ns=3 is an integer; therefore, the number of
spin sites in a sublattice is the same regardless of sublattices.
The clusters are rhombic and have an inner angle �=3; this
shape allows us to capture two dimensionality well.

We use two algorithms among numerical-diagonalization
methods. The numerical-diagonalization calculations are
unbiased against any approximations. One can therefore
obtain reliable information on the system. By the method
based on the Lanczos algorithm, we calculate the lowest
energy of H in the subspace characterized by

P
j S

z
j ¼ M.

The lowest energy within the subspace for M is denoted
by E0ðNs;MÞ, where M takes an integer or a half odd integer
up to the saturation value Msat (¼ Ns=2). We define Mspo

as the largest M among the lowest-energy states, because

Mspo corresponds to the spontaneous magnetization at zero
temperature. Note, first, that in cases of odd Ns, the smallest
Mspo cannot vanish; the result of Mspo ¼ 1=2 in the ground
state indicates that the system does not reveal spontaneous
magnetization. We also use the normalized magnetization
m ¼ Mspo=Msat. Some of the Lanczos diagonalizations were
carried out using an MPI-parallelized code, which was
originally developed in the study of Haldane gaps.49) The
usefulness of our program was confirmed in large-scale
parallelized calculations.42,50–52) On the other hand, by the
method based on the Householder algorithm, we calculate all
the energy levels of H, which are denoted by EiðNs;MÞ,
where i is the label of energy levels in the subspace of M for
the Ns-site system. From the obtained EiðNs; MÞ, one can
evaluate the thermal average of the energy at nonzero
temperature.

3. Results and Discussion

3.1 Boundaries of the intermediate phase
First, let us explain how to determine phase boundaries,

which will be defined later, for each Ns from numerical-
diagonalization data. Before determining rc1 and rc2, we have
to find Mspo for given Ns and r. Figure 3 depicts the M-
dependence of the lowest-energy levels for given Ns and M.
For r ¼ 1 in the case of Ns ¼ 36, no degeneracy appears,
which indicates that the spontaneous magnetization vanishes.
For r ¼ 1 in the case of Ns ¼ 27, on the other hand, the levels
forM ¼ �1=2 are degenerate, namely,Mspo ¼ 1=2; however,
M ¼ �1=2 for odd Ns also means that the spontaneous
magnetization vanishes. The situations for r ¼ 1:5 and 2 are
different from that for r ¼ 1. Nontrivial degeneracy clearly
appears regardless of whether Ns is even or odd. Such
degeneracy gives Mspo for each Ns and r (see arrows in
Fig. 3).

A
B
B’

Fig. 1. (Color online) Triangular lattice with a distortion of the
ffiffiffi
3

p � ffiffiffi
3

p
type. The thin and thick solid lines denote the bonds of interaction, J1 and J2,
respectively. Its unit cell is illustrated by the red broken line. The vertices of
the lattice are divided into three sublattices A, B, and B0.

(a) (b)

(c) (d)

(e) (f)

Fig. 2. (Color online) Shapes of finite-size clusters. The rhombuses of red
broken lines in Panels (a)–(f ) denote the clusters for Ns ¼ 9, 12, 21, 27, 36,
and 39, respectively.
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Next, let us observe the r dependence of m (¼ Mspo=Msat)
obtained from the above analysis of E0ðNs;MÞ. Results for
various Ns values are depicted in Fig. 4. Numerical data up
to Ns ¼ 36 were reported in Ref. 45; data for Ns ¼ 39 are
additionally presented. Not only for Ns up to 36 but also for
Ns ¼ 39 are the states of all possible Mspo realized between
the smallest Mspo and ð1=3ÞMsat. From the r dependence of m
for a given Ns, one finds rc1 and rc2. The boundary rc1 is
defined at r where Mspo increases from the smallest Mspo,
namely, Mspo ¼ 0 for an even Ns and Mspo ¼ 1=2 for an odd
Ns, to a larger Mspo. One also finds rc2 where Mspo increases
to ð1=3ÞMsat from the smaller Mspo.

Next, let us, examine the system size dependences of rc1
and rc2. Figure 5 depicts our numerical results for the
dependence; data for Ns ¼ 39 are added from Ref. 45.
Results for rc2 show a very small size dependence, which
strongly suggests rc2 � 1:9 as the extrapolated value to the
thermodynamic limit. On the other hand, the dependence of
rc1 is not so simple. Up to Ns ¼ 36, rc1 decreases; however,
rc1 for Ns ¼ 39 is larger than rc1 for Ns ¼ 36. Note that rc1
determinations are slightly different between even and odd Ns

values. For an even Ns, rc1 is obtained at the point from
Mspo ¼ 0 to Mspo ¼ 1; for an odd Ns, on the other hand, rc1 is
obtained at the point from Mspo ¼ 1=2 to Mspo ¼ 3=2. If one
sees four data points for an odd Ns, namely, Ns ¼ 9, 21, 27,
and 39, the N�1

s dependence of rc1 seems quite linear. This

linear dependence suggests rc1 � 1:1 as the extrapolated
value to the thermodynamic limit. On the other hand, it is
unclear whether the results for an even Ns show a linear
dependence because there are only two data points. Even if
we assume the linear dependence for the two data points, the
extrapolated value is not much different from rc1 � 1:1
obtained from odd Ns. This small difference does not
contradict the expectation that the values extrapolated from
the two series of even and odd Ns values are supposed to
converge to a unique value. Therefore, the present analysis
suggests that there are two phase boundaries, rc1 and rc2, and
that the intermediate phase certainly exists in the thermody-
namic limit.

The decrease in r from infinity corresponds to an
examination concerning a destabilization of the UUD
ferrimagnetic state on the side of the dice lattice. It is well
known that the UUD state also appears in the Heisenberg
antiferromagnet on the so-called Lieb lattice. Destabilizations
of the UUD state in the Lieb-lattice antiferromagnet were
studied in various systems.53–59) However, there are both the
presence and absence of intermediate states with nontrivial
spontaneous magnetizations. The origin of this difference
between the presence and absence is unclear at present. The
question of what is the origin should be clarified. The

(a)

(b)

Fig. 3. M dependence of the lowest-energy levels for Ns ¼ 27 and 36 in
panels (a) and (b), respectively. The results for r ¼ 1, 1.5, and 2 are denoted
by squares, diamonds, and circles, respectively. The arrows indicate the
maximum of M among degenerate ground states in each case of r ¼ 1:5 and
2. For r ¼ 1, the energy for the smallest jMj, namely, M ¼ 1=2 for Ns ¼ 27

and M ¼ 0 for Ns ¼ 36, is lower than those for larger jMj for each Ns.

Fig. 4. (Color online) r dependences of the spontaneous magnetization for
various system sizes. The violet diamonds, yellow reversed triangles, green
triangles, dark blue squares, red circles, and light blue closed circles denote
results for Ns ¼ 9, 12, 21, 27, 36, and 39, respectively.

Fig. 5. Size dependences of the phase boundaries rc1 and rc2. The crosses
and circles denote the results for rc1 and rc2, respectively.
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examination of the UUD state in the dice-lattice case has just
been started; studying the behaviors of the systems with
various types of competing interactions is a future issue.

In the present study, we examine the case of r � 1. It is
considered that the

ffiffiffi
3

p � ffiffiffi
3

p
-type distortion in the triangular-

lattice antiferromagnet is experimentally realized.60,61) How-
ever, Refs. 60 and 61 showed that the ratios corresponding to
these materials are smaller than unity. The ratios are outside
of the region studied in the present work. The behavior of
a system in the region of r � 1 was investigated theoret-
ically,62) which clarified the appearance of other states with
nonzero spontaneous magnetization. Reference 62 showed
that when r is decreased from r ¼ 1, the spontaneous
magnetization grows gradually from Mspo ¼ 1 to Mspo ¼
ð1=3ÞMsat � 1; states of possible Mspo are certainly realized.
The growth for r � 1 is common with that for r � 1.
However, the spontaneous magnetization does not reach
Mspo ¼ ð1=3ÞMsat; instead, the spontaneous magnetization
disappears suddenly. The disappearance for r � 1 is different
from the behavior for r � 1; the reason for the disappearance
is still unresolved. The relationship between the experimental
observation and the theoretical finding should be examined in
the future.

3.2 Specific heat
We examine the specific heat of the system. We evaluate it

as

C ¼ @hEi
@T

: ð2Þ

Here, T is the temperature and hEi is the thermal average of
the energy obtained by

hEi ¼

X

i;M

EiðNs; MÞ exp½�EiðNs;MÞ=ðkTÞ	
X

i;M

expð�EiðNs;MÞ=ðkTÞÞ ; ð3Þ

where k is the Boltzmann constant. Here, we calculate the
specific heat of the system only for Ns ¼ 12 because
available computer resources are insufficient for a larger Ns.
Recall that, in Fig. 5, the boundaries for Ns ¼ 12 are
rc1 � 1:612 and rc2 � 1:906.

Now, let us observe the temperature dependence of the
specific heat. Figure 6 depicts the results of the specific heat
for r ¼ 1{1:6. For r ¼ 1 corresponding to the undistorted
triangular-lattice antiferromagnet, the specific heat shows a
large peak at kT=J1 � 0:28 together with a faint shoulder at
kT=J1 � 0:9. Particularly, the large peak is a characteristic
behavior of the undistorted triangular-lattice antiferromagnet.
The behavior of the peak and shoulder has already been
observed in Ref. 63, which presented the result obtained
using the finite-temperature Lanzcos method. When theffiffiffi
3

p � ffiffiffi
3

p
-type distortion is switched on, this characteristic

peak becomes smaller, and the shoulder for r ¼ 1 around
kT=J1 � 0:9 becomes a broad peak. For r � 1:4, the broad
peak becomes larger than the peak around kT=J1 � 0:3.
Furthermore, another shoulder appears around kT=J1 � 0:1.
For a larger r, the broad peak gradually moves to a higher
temperature. On the other hand, one finds that the new
shoulder for r � 1:4 becomes a small but significant peak for
r � 1:5, which is rather close to rc1 for Ns ¼ 12.

To clarify the relationship between the low-temperature
peak behavior and the zero-temperature phase transition at
r ¼ rc1, let us observe the specific heat in a low-temperature
region in detail; Fig. 7(a) depicts the results for r ¼ 1:40,
1.45, 1.50, 1.55, and 1.60. One can observe that the low-
temperature peak moves from high temperature to low
temperature as r is increased. For r ¼ 1:60, the low-
temperature peak and the higher-temperature broad structure
become markedly separated from each other. The marked
separation enables us to examine the weight of the low-
temperature peak from the viewpoint of the entropy given
by SðTÞ ¼ R

T
0
ðC=TÞdT. Note here that the entropy of this

system is supposed to satisfy limT!1½SðTÞ=Nsk	 ¼ ln 2. Our
numerical results show SðT ¼ 0:05J1=kÞ= ln 2 � 0:17. This
quantity suggests that the low-temperature peak has a
significant weight coming from a macroscopic number of
states. In Fig. 7(b) in which results for r ¼ 1:625, 1.630,
1.635, 1.640, and 1.645 are presented, on the other hand, the
low-temperature peak moves from a low temperature to a
high temperature as r is increased. To capture the behavior of
this low-temperature peak in more detail, the r dependence of
the temperature of the peak denoted by Tpeak is examined;
results are depicted in Fig. 8. The peak temperature in the
region of r smaller than rc1 certainly approaches rc1 at zero
temperature. The peak temperature in the region of r larger
than rc1 also approaches rc1 at zero temperature. This
strongly suggests that the behavior of the peak is related
to the phase transition at r ¼ rc1 at zero temperature. This
means that the intermediate state between rc1 and rc2 has its
origin in the peak characterizing the undistorted triangular-
lattice antiferromagnet. The seed of the intermediate state is
part of the states producing the peak around kT=J1 � 0:28 for
r ¼ 1. As the distortion becomes larger, the seed separates
from other states. With further increase in distortion, the seed
forms a low-temperature peak that approaches zero temper-
ature. When the peak meets zero temperature, the phase
transition finally occurs and the intermediate state appears
between rc1 and rc2 as the ground state of the system. If these
observed behaviors are assumed to survive in the thermody-

Fig. 6. (Color online) Temperature dependences of the specific heat for
Ns ¼ 12 of the S ¼ 1=2 Heisenberg antiferromagnet on the triangular lattice
with the

ffiffiffi
3

p � ffiffiffi
3

p
-type distortion. The specific heat is given for r ¼ 1, 1.1,

1.2, 1.3, 1.4, 1.5, and 1.6 by the black, red, dark blue, green, yellow, violet,
and light blue lines, respectively. The inset depicts the same curves for r ¼ 1,
1.3, and 1.6 by the same colors in a wide temperature range.
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namic limit, the system around r ¼ rc1 shows that a
macroscopic number of excited states degenerate with the
ground state; the degeneracy produces a significant residual
entropy. Our results strongly suggest the relationship

between the residual entropy and the occurrence of the phase
transition at r ¼ rc1.

We are, then, faced with a question of what happens
around r ¼ rc2. The behavior of the low-temperature peak is
presented in Figs. 9(a) and 9(b) in the region of r smaller and
larger than rc2, respectively. The low-temperature peak also
appears around r ¼ rc2. The movement of this peak around
r ¼ rc2 is similar to that around r ¼ rc1. The change in the
temperature of the peak is clearly depicted in Fig. 10. One
finds that the temperature of the peak approaches rc2 at zero
temperature. This behavior also suggests that the behavior of
the low-temperature peak is related to the phase transition at
r ¼ rc2 at zero temperature.

In the present paper, we cannot calculate the specific heat
for Ns larger than Ns ¼ 12. Therefore, the system size
dependence of the peak behavior is not examined at present.
Specific values such as rc1 � 1:612 and rc2 � 1:906 are just
for Ns ¼ 12. Further investigation of the specific heat for
a larger Ns should be carried out in the future. A method
applicable to the present system is the Hams–de Raedt
algorithm,64) which was applied to the resolution of the issue
of the specific heat of the Ns ¼ 36 kagome-lattice anti-
ferromagnet.38) Results for larger systems could make us
capture the behavior of this system more quantitatively
including the system size dependence. The investigation

Fig. 8. r dependence of the temperature of the small peak around r ¼ rc1 in
the Ns ¼ 12 specific heat of the S ¼ 1=2 Heisenberg antiferromagnet on the
triangular lattice with the

ffiffiffi
3

p � ffiffiffi
3

p
-type distortion. The open circles (squares)

denote results for r smaller (larger) than rc1. The horizontal lines at zero
temperature represent the ground-state behavior. The solid and broken lines
indicate the vanishing spontaneous magnetization phase and intermediate
phase, respectively. The closed diamond denotes r ¼ rc1 for Ns ¼ 12.

(a)

(b)

Fig. 9. (Color online) Zoom-in views around r ¼ rc2 for temperature
dependences of the specific heat for Ns ¼ 12 of the S ¼ 1=2 Heisenberg
antiferromagnet on the triangular lattice with the

ffiffiffi
3

p � ffiffiffi
3

p
-type distortion.

Panel (a) depicts the side of r smaller than rc2. The specific heat is given for
r ¼ 1:78, 1.80, 1.82, 1.84, 1.86, and 1.88 by the black, red, dark blue, green,
yellow, and violet lines, respectively. Panel (b) depicts the side of r larger
than rc2. The specific heat is given for r ¼ 1:918, 1.920, 1.922, 1.924, 1.926,
and 1.928 by the black, red, dark blue, green, yellow, and violet lines,
respectively.

(a)

(b)

Fig. 7. (Color online) Zoom-in views around r ¼ rc1 for temperature
dependences of the specific heat for Ns ¼ 12 of the S ¼ 1=2 Heisenberg
antiferromagnet on the triangular lattice with the

ffiffiffi
3

p � ffiffiffi
3

p
-type distortion.

Panel (a) depicts the side of r smaller than rc1. The specific heat is given for
r ¼ 1:40, 1.45, 1.50, 1.55, and 1.60 by the black, red, dark blue, green, and
yellow lines, respectively. Panel (b) depicts the side of r larger than rc1. The
specific heat is given for r ¼ 1:625, 1.630, 1.635, 1.640, and 1.645 by the
black, red, dark blue, green, and yellow lines, respectively.
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would deepen our understanding concerning the behavior of
the specific heat.

A similar multipeak behavior in the temperature de-
pendence of the specific heat was reported in other
systems.65–67) From this similarity, these systems may
possibly become a clue for a deeper understanding of the
present system. In these systems, the behavior appears
regardless of whether the interaction is of the Heisenberg
type or of the Ising type. On the other hand, the common
lattice structure in these systems is the diamond shape in each
system. The diamond shape is the origin of the fact that the
ground state is rigorously obtained. Beyond such a highly
ideal situation, the present case suggests that there exists a
multipeak behavior in a more realistic system and that a
significant change is provided by varying a distortion. In
addition, a considerable difference between these diamond
systems and the present system is whether the spontaneous
magnetization in the ground state is absent or present. Further
comparison should be examined in the future.

4. Conclusions

We have investigated the spin-1=2 Heisenberg antiferro-
magnet on the triangular lattice with

ffiffiffi
3

p � ffiffiffi
3

p
-type distortion

by the numerical-diagonalization method. We have obtained
results for a system larger than those in a previous study and
examined the system size dependences of the boundaries rc1
and rc2 of the intermediate-state phase. The existence of the
intermediate phase becomes evident. We have also studied
the temperature dependence of the specific heat and found the
appearance of a new low-temperature peak, which is related
to the transition at rc1. An important finding is that the origin
of the intermediate state exists as an excited state of the
undistorted triangular-lattice antiferromagnet and that the
intermediate state plays a role as part of the elements forming
the peak for r ¼ 1. Our findings concerning the present
system are a kind of distortion effect in a two-dimensional
frustrated system. Such examinations of other frustrated
systems with various distortions would contribute much to
our understanding of the frustration effect in quantum spin
systems.
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