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ABSTRACT Viruses infecting marine prokaryotes have a large impact on the diversity
and dynamics of their hosts. Model systems suggest that viral infection is frequency de-
pendent and constrained by the virus-host encounter rate. However, it is unclear whether
frequency-dependent infection is pervasive among the abundant prokaryotic populations
with different temporal dynamics. To address this question, we performed a comparison
of prokaryotic and viral communities using 16S rRNA amplicon and virome sequencing
based on samples collected monthly for 2 years at a Japanese coastal site, Osaka Bay.
Concurrent seasonal shifts observed in prokaryotic and viral community dynamics indi-
cated that the abundance of viruses correlated with that of their predicted host phyla (or
classes). Cooccurrence network analysis between abundant prokaryotes and viruses
revealed 6,423 cooccurring pairs, suggesting a tight coupling of host and viral abundan-
ces and their “one-to-many” correspondence. Although stable dominant species, such as
SAR11, showed few cooccurring viruses, a fast succession of their viruses suggests that
viruses infecting these populations changed continuously. Our results suggest that fre-
quency-dependent viral infection prevails in coastal marine prokaryotes regardless of
host taxa and temporal dynamics.

IMPORTANCE There is little room for doubt that viral infection is prevalent among
abundant marine prokaryotes regardless of their taxa or growth strategy. However,
comprehensive evaluations of viral infections in natural prokaryotic communities are
still technically difficult. In this study, we examined viral infection in abundant pro-
karyotes by monitoring the monthly dynamics of prokaryotic and viral communities
at a eutrophic coastal site, Osaka Bay. We compared the community dynamics of
viruses with those of their putative hosts based on genome-based in silico host pre-
diction. We observed frequent cooccurrence among the predicted virus-host pairs,
suggesting that viral infection is prevalent in abundant prokaryotes regardless of
their taxa or temporal dynamics. This likely indicates that frequent lysis of the abun-
dant prokaryotes via viral infection has a considerable contribution to the biogeo-
chemical cycling and maintenance of prokaryotic community diversity.

KEYWORDS frequency-dependent selection, K/r strategy, marine prokaryotes, marine
viruses, virome

Marine prokaryotes are ubiquitous in the ocean and play key roles in global biogeo-
chemical processes (1). Most of the observed species (.35,000 species-level opera-

tional taxonomic units [OTUs] based on 97% 16S rRNA sequence identity) fall into several
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major taxa (phyla or classes for Proteobacteria), such as Alphaproteobacteria (e.g., SAR11),
Bacteroidetes (e.g., Flavobacteriaceae), and Cyanobacteria (e.g., Synechococcus and
Prochlorococcus) (2, 3). Although individual species have distinct ecological niches, they
are often classified into one of two growth strategists based on their potential growth
rate and temporal dynamics: (i) K-strategists (slow growing and persistently dominant;
e.g., SAR11) and (ii) r-strategists (fast growing and opportunistic; e.g., Flavobacteriaceae)
(4). However, recent high-frequency sampling schemes (e.g., daily) uncovered that spe-
cies not recognized as r-strategists exhibit drastic fluctuations (e.g., Marine Group II
[MGII] Euryarchaeota) (5, 6). Further, finely resolved populations (genotypes or strains)
within a species-level OTU often show distinct temporal dynamics (7–11), indicating that
species described as K-strategists can show frequent fluctuation.

Viruses infecting prokaryotes are abundantly present in the ocean and are estimated to
lyse 20 to 40% of the prokaryotic cells each day (4, 12, 13). Viruses are thought to infect
their specific hosts (often restricted to strains within a species) in a frequency-dependent
manner, in which the encounter rate between the viruses and their hosts is a determinant
for the infection rate (14, 15). Thus, viruses infect host populations that become abundant,
and frequencies of host and viruses oscillate over time, leading to maintenance of the diver-
sity of the host community (16, 17). Moreover, mathematical models have demonstrated
that a prokaryotic species with a higher growth rate can be more susceptible to viral infec-
tion (17). This trend allows K-strategists to reach a higher abundance than r-strategists
because of their higher resistance against viral infection by cryptic escape through reduced
cell size and/or specialized defense mechanisms (4, 18). However, the discovery of SAR11
viruses questions this prediction (19). Given the dominance of SAR11 viruses in the ocean
(19–21), there is little room for doubt that K-strategists are also targeted by viruses.
Therefore, comprehensive surveys to examine the prevalence of viral infections in abundant
prokaryotes with different growth strategies are still required.

Previous monthly observations of microbial communities revealed that seasonal
oceanographic features have a strong influence on the prokaryotic community (22,
23). Seasonal variability of the viral community has also been reported using PCR-
based analysis (24, 25) and viral metagenomics (viromics) (26–28). Although viruses are
obligate parasites, viral seasonality was often discussed independently from the sea-
sonality of their hosts except for a few well-cultivated prokaryote-virus pairs (e.g.,
Synechococcus/Prochlorococcus and their viruses) (25, 29). Otherwise, the interactions
are described solely based on the dynamics of individual viruses and prokaryotes
because of the difficulty in connecting uncultured viruses and their hosts (13, 30).

In this study, we aimed to solve the fundamental question of whether viral infection
is prevalent among abundant prokaryotic populations or the way viruses infect differs
depending on the taxa and/or growth strategies of their hosts. For this purpose, we
monitored prokaryotic and viral communities at Osaka Bay, a eutrophic coastal site
with input of nutrients from rivers that is affected by an oligotrophic warm current
Kuroshio (31), for 2 years at a monthly time interval. In the sampling site, monitoring of
microbial communities (32) and characterization of full-length double-stranded DNA
(dsDNA) viral genomes assembled from virome sequences (33) and their diurnal tran-
scriptomic dynamics (34, 35) have been reported. However, cooccurrence dynamics
alone have been suggested to be a poor predictor of interactions in the context of viral
infection of microbial hosts (36).To overcome the limitations of correlation-based infer-
ence of virus-host pairs, we compare the community dynamics of viruses with those of
their putative hosts using genome-based in silico host prediction analysis (29, 30). The
prevalence of viral infection is discussed with cooccurrence dynamics among the
potential virus-host pairs, which fulfilled the genome-based prediction.

RESULTS AND DISCUSSION
Overview of prokaryotic and viral communities in Osaka Bay. We collected

more than 1 year of time series (total of 18 months) seawater samples during the day-
time (3 h before or after high tide) of each month. We obtained 2.8 million paired-end
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reads (24,168 to 846,565 reads per sample) from the 16S rRNA gene V3-V4 region
amplicon sequencing libraries, and these sequences were clustered into 35,191 OTUs
(1,462 to 18,268 OTUs per month, median of 3,274) with a sequence identity threshold of
99% (species-level populations are presented in Table S1 in the supplemental material). The
prokaryotic community was dominated by Alphaproteobacteria (41%), Gammaproteobacteria
(21%), Bacteroidetes (19%), and Cyanobacteria (7%) at the phylum level (class level for
Proteobacteria).

To explore viral community composition, we obtained 60 million paired-end reads of
viromes (929,884 to 8,124,354 sequences per sample), which were generated from the
virus-size fraction of 17 samples that were concomitantly collected with the prokaryotic-
size fractions (Table S1). After decontamination of prokaryotic sequences and dereplica-
tion, 5,226 virus-like large contigs (.10 kb), including 202 circularly assembled viral
genomes, were obtained (Table S1). Here, we call the 5,226 contigs assembled in this
study monthly time series Osaka Bay viral (mts-OBV) contigs. We refer to these contigs
(or genomes) operationally as species-level viral populations, according to the previous
proposal in viral ecology (37). The majority (;75%) of mts-OBV contigs showed high
genomic similarity (genomic similarity score (SG) of.0.15; see reference 38 for the defini-
tion of SG) with one of the previously reported viral complete genomes (33) or the 202
circular genomes assembled in this study. Based on the SG, these mts-OBV contigs were
classified into 314 genus-level taxonomic groups (Table S1).

On average, 40% of virome reads (29 to 53% per sample) were mapped on the mts-
OBV contigs and previously reported viral genomes (33). According to the fragments per
kilobase per million (FPKM) values calculated from the read counts, mts-OBV contigs
(assembled in this study) occupied, on average, 96% of the relative abundance of ana-
lyzed viral genomes, suggesting mts-OBVs well represent the viral community observed
in the samples. Other relatively abundant genomes included genomes assembled in a
previous study at Osaka Bay (e.g., OBV_N00129 and OBV_N00081) (33) and Pelagibacter
virus HTVC010P (19). Further, we confirmed whether the mts-OBV contigs can cover the
trend of the whole viral community by the following procedure according to the previous
study (34). The abundances of mts-OBV and other smaller contigs (1 to 10 kb) assembled
in this study were compared based on the abundances of all detected terminase large
subunit genes (terL). mts-OBV contigs covered a wide range of abundance, suggesting
that they can capture the trend of the whole viral community. In addition, all mts-OBV
contigs ranked at the top (.30%) of the community in at least one sample (Fig. S1), indi-
cating that most abundant viruses were captured within mts-OBVs. Thus, in the following
sections, only the 5,226 mts-OBV contigs (including 202 complete genomes) and 4,240
previously reported complete viral genomes (33) were considered viral community
assessment for read mapping.

Alpha-diversity (Shannon index) of the viral community was higher than that of the
prokaryotic community (Fig. S2A and B). Both richness and evenness were also higher
in the viral community than in the prokaryotic community (Fig. S2C to F). It should be
noted that prokaryotic diversity was evaluated via single marker gene analysis (i.e., 16S
rRNA), but viral diversity was evaluated via whole-genome sequencing. Thus, the meth-
odological difference could have caused the relatively higher diversity of the viral com-
munity, such as double counting of partial contigs derived from a viral genome.
Another possible explanation for the higher viral diversity is that a prokaryotic species
can be infected by more than one viral species at each time point (discussed below).

Seasonal dynamics of prokaryotic and viral communities. We investigated sea-
sonal dynamics of prokaryotic and viral communities using the Bray-Curtis similarity
index between all pairwise combinations of samples (136 pairs, 1- to 17-month inter-
vals), following the previous time series observations in different locations (22, 25, 26,
39, 40). Both prokaryotic and viral communities showed clear seasonal patterns, with a
peak average similarity at an interval of about 12 months, representing the same sea-
sons, and the bottom of average similarity at an interval of 6 months, representing op-
posite seasons (Fig. 1). Similar seasonal peaks have been observed in previous studies,
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such as the San-Pedro Ocean Time (SPOT) series conducted in San Pedro Channel (22,
25, 26, 39–41). However, the lower community similarity observed between opposite
seasons in both prokaryotic and viral communities at Osaka Bay than observed at
SPOT using a similar methodology (26, 41) suggests more pronounced seasonality at
Osaka Bay. Prokaryotic community dynamics were concordant with seasonal environ-
mental variables, such as water temperature and inorganic nutrients, which increased
in summer (June to September) presumably because of the increasing river inflow dur-
ing the rainy season (Table 1; Table S1). The community variation is generally larger
(low similarity) between the autumn and spring samples than between the summer
and winter samples in both communities (Fig. S3). The similarity between samples was
systematically lower for the viral community than for the prokaryotic community
(Fig. 1, discussed below). The viral community composition was significantly correlated
with the prokaryotic community composition as well as the seasonal environmental
variables (Mantel, r = 0.504, P, 0.01; Table 1).

Given that most viruses can only propagate in their specific host and thereby the viral
community composition is shaped by the prokaryotic community composition, the

FIG 1 Seasonality of the prokaryotes and viruses at Osaka Bay (OB) during observation. The Bray-
Curtis community similarity index was calculated among all of the possible sample pairs from
normalized abundances of prokaryotic OTUs and OBV contigs and was plotted as a function of the
number of months separating their sampling.

TABLE 1 Rho values of partial Mantel tests for prokaryotic and viral communities and environmental parameters

Prokaryotesa Viruses
Environmental
combined

Nutrient
combined Temp NH4 NO2 NO3 PO4 Salinity

Prokaryotes
Viruses 0.504c

Environmental
combined

0.308c 0.227b

Nutrient
combined

0.344c 0.288c 0.871c

Temp 0.505c 0.137 0.37c 0.284c

NH4 20.097 20.109 0.328c 0.458c 0.01
NO2 0.037 20.015 0.379c 0.53c 0.007 0.404c

NO3 0.239b 0.3c 0.206b 0.34c 20.044 20.113 20.06
PO4 0.511c 0.443c 0.487c 0.56c 0.154 0.035 0.108 0.218b

Salinity 20.159 20.037 0.502c 0.191 20.028 0.078 0.01 20.16 0.115
SiO2 0.138 0.078 0.565c 0.329c 0.447c 0.028 20.037 20.063 0.042 0.459c

aThe value in each box is the Rho value.
bP, 0.05.
cP, 0.01.
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abundance of each virus might reflect the abundance of its host. To test this hypothesis,
compositions of prokaryotic and viral communities were compared using the informa-
tion of predicted viral hosts (mostly host phylum- or class-level composition). Putative
host groups of viruses were predicted using four commonly used genome-based in silico
prediction methods (similarity with known viruses, CRISPR-spacer match, tRNA match,
and genome homology). First, based on the similarity with cultured viruses, putative host
groups of 951 mts-OBV contigs (22 genomic OTUs [gOTUs]) were predicted (Synechococcus/
Prochlorococcus, 182 contigs; SAR11, 501 contigs; SAR116, 214 contigs; Roseobacter, 31 con-
tigs; others, 23 contigs; Table S1). Similarly, putative host groups of 504 mts-OBV contigs (39
genera) were predicted based on the genome-wide sequence similarities with uncultured
viral genomes according to the previous studies (Bacteroidetes, 468 contigs; MGII, 36 contigs
[33, 42]; Table S1). For the other 1,460 mts-OBV contigs (Alphaproteobacteria, 35 gOTUs, 621
contigs; Bacteroidetes, 80 contigs; Gammaproteobacteria, 236 contigs; Deltaproteobacteria,
326 contigs; others, 53 contigs; Table S1), putative host groups were predicted via the
sequence similarity (i.e., CRISPR-spacer matching, tRNA matching, and genome homology)
between viral (mts-OBVs with .200,000 previously reported marine viral genomes [26,
33, 38, 43, 44]) and prokaryotic genomic data sets (.8,000 marine prokaryotic metage-
nome-assembled genomes in previous studies [45–49] and the genomes in the NCBI
RefSeq database). Altogether, we assigned potential host groups for 2,844 mts-OBV con-
tigs (Alphaproteobacteria, 1,375 contigs; Bacteroidetes, 548 contigs; Deltaproteobacteria,
326 contigs; Gammaproteobacteria, 250 contigs; Cyanobacteria, 190 contigs; Table S1).

Major phyla (or classes for Proteobacteria) in the prokaryotic community did not
change drastically, but the relative abundance of several phyla (classes) exhibited sea-
sonal dynamics (Fig. 2). The seasonal dynamics of the predicted hosts resembled the
seasonal dynamics of prokaryotes (Fig. 2). For example, Cyanobacteria (79% of reads
were assigned to OTU_8, Synechococcus) dominated in summer (up to 9.6% and 22.6%
of the community in June 2015 and July 2016, respectively) (Fig. 2), and Synechococcus
virus abundance also increased in summer (up to 5.3% and 12.1% of the community in
August 2015 and August 2016, respectively) (Fig. 2). Similarly, the relative abundance
of Bacteroidetes increased from winter to spring (up to 33.7% of the community in May
2016) (Fig. 2), and Bacteroidetes virus abundance also increased during spring (up to
30.2% of the community in May 2016) (Fig. 2). Relative abundances of both SAR11
(from 5% to 47% of the community) (Fig. 2) and SAR11 viruses (from 9% to 22% of the
community) (Fig. 2) showed changes over time, but they were always abundant
throughout the observed period. Therefore, the viral community appears to generally
follow the dynamics of their host.

However, viral abundance did not always match with their putative host abundance
(Fig. S4). For example, the proportion of putative Gammaproteobacteria viruses was lower
than that of Gammaproteobacteria, and the proportion of putative Deltaproteobacteria
viruses was much higher than that of Deltaproteobacteria (Fig. 2). The lack of a tight corre-
lation between viral and host abundance may not be surprising. Host prediction based
on genome analysis in this study was mostly at the phylum or class level except for con-
tigs showing similarity with cultured viruses, such as Synechococcus/Prochlorococcus cya-
noviruses, while typical prokaryotic viruses could only infect specific host species or
strains. Further, although our analysis annotated putative hosts at nearly 60% of the viral
community, remaining populations without host prediction may lead to the underestima-
tion of viruses infecting some taxa. The differences in burst sizes among viruses, which
have been estimated to range from 6 to 300 in the marine environment (50), can also
influence the estimation of viral abundance. Alternatively, as previously observed and dis-
cussed in Hevroni et al. (28), differences in viral infection cycles (e.g., consistently low pro-
duction of virions [51]) or short time delay of peaks of virus and host abundance (52)
might cause the mismatch between host abundance and extracellular viral abundance.
Next, to investigate whether viral abundance increased according to specific host abun-
dance, we statistically examined associations (i.e., cooccurrence) between the viruses and
amplicon sequence variants (ASVs) extracted from the abundant 73 prokaryotic OTUs.
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Cooccurrence network analysis between the abundant prokaryotes and
viruses. To examine the dynamics of closely related (nearly strain-level) variants within
each OTU, 114 ASVs (1;4 ASVs per OTU) (Fig. S5) were extracted from the abundant
74 OTUs via minimum entropy decomposition (MED), according to previous studies (7,
10, 11). Although the majority of ASVs derived from the same abundant OTU showed
similar dynamics, several ASVs showed distinct seasonal patterns (e.g., ASVs from
SAR86 OTU2 and NS4 marine group Flavobacteria OTU14) (Fig. S5). These ASVs likely
reflect ecologically meaningful seasonal subpopulations in an OTU that dominates
throughput the sampling period. Then, pairwise correlations (cooccurrence network)
between the 114 prokaryotic ASVs and the viral species that were predicted to infect
the prokaryotic ASVs via host prediction (e.g., 37 Bacteroidetes ASVs and 548 mts-OBV
contigs predicted as Bacteroidetes virus) were determined via Spearman’s correlations.
In total, 6,423 significant correlations between 104 prokaryotic ASVs and 1,366 viral
species were detected (Fig. 3; Fig. S6A). The majority (88.6%) of prokaryotic ASVs corre-
lated with at least one viral species. In contrast, only 34% and 31% of prokaryotic ASVs
positively and negatively correlated with environmental variables, respectively (Spearman
correlations, r . 0.6, P , 0.01, q , 0.05) (Table S2). The number of cooccurring viral spe-
cies ranged from 0 (13 ASVs) to 359 (ASV6-1, classified into Planktomarina), and the me-
dian value was 16. We verified that the correlation is not only because the pattern of viral
and host dynamics was similar but also because the virus ranked high in the viral commu-
nity when the putative host was abundant. We therefore compared the relative rank
among the viral community and the host prokaryotic abundance in the detected 6,423

FIG 2 Comparison of prokaryotic and viral taxonomic community composition based on host prediction. (A) Relative abundance of
phylogenetic groups of prokaryotic communities. Quality-controlled reads were clustered into OTUs with a sequence identity of 99%
using VSEARCH (73). These OTUs were classified at the phylum level (class level for Proteobacteria) using SINA (75). (B) Relative
abundance of viruses based on their putative hosts assigned by host prediction. Normalized abundances of viral contigs were
calculated from fragments per kilobase per million (FPKM) values and were converted to relative abundance.
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putative virus-host pairs. First, four cyanobacterial ASVs and cooccurring 130 cyanovirus
species were examined. Because substantial numbers of Synechococcus/Prochlorococcus-
virus pairs have been reported in culture-based studies (53–56), host prediction for cyano-
viruses is likely to be reliable. These cyanoviral species were more dominant in the viral
community when their cooccurring ASVs exceeded the predicted minimum host cell den-
sity for effective propagation of prokaryotic viruses (103 cells/mL [57] or 104 cells/mL [58])
(Fig. 4; Fig. S6B and C). Thus, cyanobacterial viral species were not abundant or were often
undetectable when their putative hosts were less abundant, but they became dominant

FIG 3 A broad overview of detected positive correlations between prokaryotic ASVs and viral populations that
potentially infect each prokaryotic taxa based on host prediction analysis. (A) Bacteroidota and their viruses. (B)
Alphaproteobacteria and their viruses. (C) Gammaproteobacteria and their viruses. (D) Cyanobacteria and their
viruses. (E to G) Other major groups, such as SAR324 (E), Actinobacteria (F), and Marine Group II (G), and their
viruses. Prokaryotic nodes are circles, and viral nodes are V shapes. Node color indicates prokaryotic taxa. Solid
lines are positive correlations.
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when putative host abundance increased. This viral increase with host abundance was
also observed in 98 other prokaryotic ASVs and their cooccurring viral species (Fig. 4;
Fig. S6B and C). This result clearly indicates that frequency-dependent viral infection is
prevalent in abundant prokaryotes at least between the detected virus-host pairs.

Characterization of the virus-host interaction by host taxa. The community of
viruses showed a higher alpha-diversity than the community of prokaryotes (Fig. S2),
and the cooccurrence analysis indicated one-to-many associations between the host
and virus populations (median of 16 viral species per prokaryotic ASV). This suggests
that one abundant prokaryotic ASV can interact with multiple viral species. Note that
the numbers of cooccurring viral species were overestimated because each contig
could be a partial genome fragment derived from the same viral genome (average
completeness of mts-OBV contigs was 39%) (Table S1). However, the contigs classified
into different genera (average of 8 gOTUs) often cooccurred with an ASV. Next, we
characterized the “one-to-many” virus-host interaction network (i.e., how many viruses
cooccurred with each ASV) with respect to their host taxa and host temporal dynamics.

The number of cooccurring viral species for prokaryotic ASVs was generally depend-
ent on the predicted number of associated viruses determined via host prediction
(Fig. S6D). For example, Bacteroidetes viruses (548 viruses) were the second most fre-
quently observed viruses, and an average of 71.5 viruses cooccurred with Bacteroidetes
ASVs (1 to 208 viruses per ASV, between 37 Bacteroidetes ASVs and 339 Bacteroidetes
viruses). The number of cooccurring viruses could be overestimated because of the
double count of cooccurring viruses between two cooccurring ASVs. If ASV-A and ASV-
B cooccurred, the viruses cooccurring with ASV-A can also be included in the viruses
cooccurring with ASV-B and vice versa. In fact, up to 16 ASV-ASV cooccurring pairs
were detected for Bacteroidetes. In contrast, the taxa with less frequently detected

FIG 4 Increase of viral abundance according to host cell density between cooccurring host-virus pairs. The normalized relative rank of each virus in the
community (0 to 1) was plotted when their putative host relative abundance exceeded 1% (�104 cells/mL, yellow) and 0.1% (�103 cells/mL, green) and
below 0.1% (blue). Box plots are constructed with the upper and lower lines corresponding to the 25th and 75th percentiles; outliers are displayed as
points.
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viruses (e.g., MGII, 38 viruses) had a smaller number of cooccurring populations (0 to 3
viruses per ASV) (Fig. S6D). Thus, the number of cooccurring viral species might be
underestimated in these taxa because of host prediction limitations. In addition, it
should be noted that there are two assumptions for our virus-host cooccurrence analysis:
(i) viral host range is narrow as is common in isolated strains (59), and (ii) infectious viri-
ons do not persist a long time with low external virion inflow. The latter assumption is
following the diel cycling and locality of viral production (34, 60, 61). Thus, it should be
noted that exceptions for these assumptions, such as broad-host-range viruses (62), may
cause misinterpretation from the cooccurrence analysis. Further studies are required for
the quantification of viruses with such exceptional characteristics in the environment.

To confirm the validity of the cooccurrence analysis using the putative virus-host
pairs derived from our genome-based host prediction, we compared the number of
cooccurring pairs between them and nonhost pairs. In prokaryotic taxa that found
many viruses (e.g., Bacteroidetes and Alphaproteobacteria), more frequent cooccur-
rences were observed between putative host taxa and their viruses than nonhost-like
pairs (Fig. S6E to G). This result suggests that the genome-based host prediction
assisted the connection of more plausible pairs. Further, to examine the robustness of
our cooccurrence analysis, we converted the relative abundance to the absolute abun-
dance for the samples with cell and virus-like particle (VLP) counts. In this analysis, at
least 97 virus-host pairs were confirmed in absolute abundance levels (fig. S6H and I).

Characterization of the virus-host interaction by host temporal dynamics. Of
note, SAR11 had relatively few cooccurring viral species even though there were more than
500 putative SAR11 viral species (Fig. S6D). SAR11 is often regarded as a K-strategist, which
is believed to be resistant to viral infection (4), and the growth strategy may influence the
cooccurrence dynamics with viruses. Next, we examined the number of cooccurring viruses
among prokaryotic ASVs classified in the same taxa depending on the temporal dynamics
to solve this issue.

It is difficult to determine the growth strategy of each prokaryotic ASV because maxi-
mum growth rate (r) and carry capacity (K) cannot be directly inferred from their monthly
temporal dynamics (63). Thus, instead of assigning strategies to each ASV, we classified the
ASVs into two groups according to their temporal dynamics (temporarily abundant or per-
sistently abundant). The temporal dynamics of each prokaryotic ASV was assessed by the
indexes that we introduced (see Materials and Methods). According to these, 13 ASVs were
the most persistently dominant (i.e., K-like index of .12 and r-like index of ,0.1). Among
the 13 ASVs, 7 were classified as SAR11 (Fig. S7). Twenty-two of 57 ASVs belonging to the
taxa previously predicted as r-strategists (i.e., Flavobacteriaceae, Rhodobacteraceae, Vibrio,
and Marine Group II) were classified as temporarily abundant ASVs (K-like index of ,3 and
r-like index of .0.5; total of 33 ASVs) (Fig. S7). Generally, temporarily abundant ASVs, such
as members of Bacteroidetes, showed many cooccurring viral species (Fig. S7). In contrast,
persistently dominant ASVs of Synechococcus and SAR11 showed relatively few cooccurring
viral species (Fig. S7). The most abundant ASV of Synechococcus (ASV8-1, making up 76.7%
of all cyanobacterial reads) and SAR11 (ASV1-1, occupying 7 to 64% of all SAR11 reads of
each month) showed 7 and 16 cooccurring viruses, respectively, even though 183 cyanovi-
ruses and 500 SAR11 viruses were detected during the observation (Fig. S7).

The cyanoviruses and SAR11 viruses were as abundant as their putative host taxa (e.g.,
both cyanoviruses and cyanobacteria were dominant during the summer) (Fig. 2). The
few cooccurrences of virus and host seem to be not reasonable. However, if a temporal
shift of virus-host pairs occurred, cooccurrence analysis may fail to detect virus-host asso-
ciations. Therefore, we compared the dynamics of the two dominant prokaryotic ASVs
and viral species that did not cooccur with their predicted hosts. Representative sequen-
ces of ASV8-1 matched with the members of Synechococcus subcluster 5.1a with 100%
identity. Among the 53 cyanoviral species that did not cooccur with any cyanobacterial
ASV, 41 species were classified into two gOTUs (G14 [T7-like cyanosiphovirus] and G386
[T4-like cyanomyovirus]), which are known to infect subcluster 5.1a (e.g., Synechococcus
sp. WH 8103, clade II), suggesting a plausible interaction between ASV8-1 and these
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viruses. ASV8-1 especially dominated during the summer (maximum of 8% and 21% of
the prokaryotic community in June 2015 and July 2016, respectively) (Fig. 5A). Of these
53 viral species, the abundances of which also increased in summer, 4 were abundant
only in 2015 (from 5 to greater than 170 times more abundant in 2015 than in 2016), and
another 38 species were more abundant in 2016 (from 5 to greater than 300 times more
abundant in 2016 than in 2015) (Fig. 5A). Similarly, ASV1-1 of SAR11 was always abundant
(Fig. 5B), and SAR11 viruses occupied a major fraction of the viral community. However,
abundant members of SAR11 viruses (309 contigs) were replaced in a relatively short
time (a few months) (Fig. 5B). These results suggest that the host-virus interaction might
have been underestimated in the cooccurrence analysis, and persistently dominant ASVs
can also interact with multiple viruses based on their cell density. Considering a recent
observation of infection dynamics of a lysogenic SAR11 virus, which did not show
decreased host abundance even as virus abundance increased (51), the continuous domi-
nance of the host with infection likely occurs versus assuming rare hosts produce a large
amount of viruses. Although we cannot directly connect each ASV and its growth strat-
egy, the prevalence of interactions between viruses and prokaryotes showing different
temporal dynamics suggests that abundant prokaryotes are potentially infected by
viruses according to their cell density regardless of their growth strategy.

Finally, we investigated whether the observed viruses, including those not statistically
detected as cooccurring viruses with hosts (e.g., 53 cyanoviruses and 309 SAR11 viruses
in Fig. 5), were also produced via increased contact frequency with hosts. To infer the
contact frequency, we focused on single-nucleotide polymorphisms (SNPs) in viral

FIG 5 Dynamics of the most dominant prokaryotic population (ASV1-1 and ASV8-1) and viruses that were predicted to infect these host taxa by host
prediction analysis but did not cooccur with any ASV. (A) Dynamics of ASV8-1 that was classified into Synechococcus and 53 cyanoviruses that did not
cooccur with cyanobacterial ASVs. The area chart represents the relative abundance of ASV8-1, and the lines represent viral contigs over time. The panels
were separated by viral annual pattern (2015 type, 2016 type, and both years type; if the virus was more than five times more abundant in one year than
in another year, the virus was defined as a year-specific virus). Colors represent the gOTU (genus) of the virus. (B) Dynamics of ASV1-1 that was classified
into the SAR11 clade and 309 putative SAR11 viruses that did not cooccur with any SAR11 ASVs. The area chart represents the relative abundance of ASV1-
1, and the lines represent viral contigs over time. The panels were separated based on the classified gOTUs of each virus.
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genomes. SNPs of closely related viral populations were previously observed in abun-
dant viral populations, such as freshwater cyanoviruses (64) and marine viruses in other
coastal areas (26). Because recent studies suggested that the majority of viruses
observed in the virome were produced via diel and local viral-host interactions (28, 34,
38, 61), it likely indicates that multiple infection events may lead to the generation of
mutations through DNA replication. We thus hypothesized frequent reproduction and
mutations for abundant viruses with an increased contact frequency with their hosts.
Therefore, SNPs from mts-OBV contigs with more than 10� coverage depth (2,356 con-
tigs) were calculated. We observed increasing intrapopulation genetic diversity (SNPs
quantified by average genomic entropy) as a function of overall viral population abun-
dance regardless of their host taxa (Fig. S8). This suggests that the increase in contact
frequency occurred not only in viruses showing clear cooccurrence with hosts (e.g.,
Bacteroidetes viruses) but also in viruses that showed no statistical detection of cooccur-
rence with hosts (e.g., SAR11 viruses). This result corroborates the notion that contact
rate is the key parameter for viral reproduction regardless of whether they show a long-
term cooccurrence pattern with their hosts.

Ecological interpretation inferred from virus-host dynamics. There are at least
three possible mechanisms that could lead to shifts of the dominant viral species in the
same host groups (Fig. 5). First, more closely related prokaryotic populations that cannot
be differentiated by the 16S rRNA gene polymorphism could cooccur with viruses.
Previous studies focusing on the polymorphism of internal transcribed spacer (ITS)
sequences (ITS-ASV) in SAR11 and Cyanobacteria reported that ITS-ASV dynamics corre-
late more with viral dynamics (as inferred from T4-like viral marker genes) than 16S-ASV
dynamics of these taxa (7, 29). Therefore, dynamics of more highly resolved populations
(e.g., ITS-ASVs or whole-genome-sequence-based populations) might have synchronized
with observed viral dynamics. Second, the temporal acquisition of host resistance or viral
counterresistance, as often observed in culture model systems (65), may cause a shift of
the dominant viral species. Third, the shifts of viruses can be interpreted as a result of the
founder effect following host fluctuation via genetic drift (66). Seasonal fluctuation of the
host population causes a bottleneck effect, and, therefore, the founder effect following
the bottleneck effect enables the abundances of several viral species to equally increase.
This was suggested as a mechanism of an incomplete selective sweep in the freshwater
Cyanobacteria populations having different CRISPR-spacer genotypes (67). This scenario is
more plausible between ASV8-1 and their viruses because ASV8-1 experienced clear sea-
sonal fluctuation (Fig. 5A).

Altogether, we revealed that frequency-dependent infection occurrs in abundant pro-
karyotic populations according to cell density via “one-to-many” host-virus correspondences
regardless of the host temporal dynamics. Although more direct evaluation of growth
capacity is required for validation, this suggests “one-to-many” frequency-dependent infec-
tion can occur regardless of host growth strategy. Such “one-to-many” cooccurrences seem
to support the validity of the previous study, which used cooccurrences between viruses for
the host prediction method (68). One-to-many host-virus correspondences may suggest
that a prokaryotic species can be attacked by multiple viruses with different infection strat-
egies (e.g., different cell surface targets). This can cause difficulties in establishing complete
resistance toward multiple coexisting viruses and sustaining continuous virus-host interac-
tion in the environment. The inability to evolve complete resistance to many viral species in
complex virus-host systems in the environment can contribute to the prevalence of fre-
quency-dependent selection in abundant marine prokaryotes.

The comparison of monthly dynamics between prokaryotic and viral communities
indicated concurrent seasonal shifts at the whole-community level. Concurrent seasonal
shifts were also broadly observed between the corresponding virus and host pairs at the
phylum or class level based on the host prediction analysis. We further statistically con-
firmed their cooccurrence via network analysis among abundant prokaryotic populations
and their viruses regardless of the host taxa or temporal dynamics. These results likely
suggest that abundant prokaryotes are broadly exposed to frequent viral infection
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regardless of their taxa and growth strategy and indicate that lysis of the abundant pro-
karyotes via viral infection has a considerable impact on biogeochemical cycling and
maintenance of prokaryotic community diversity. Further, these abundant prokaryotic
populations should reflect actively growing members of the community because they
became dominant even though they suffered frequent loss by viral lysis.

MATERIALS ANDMETHODS
Sampling and processing. Seawater samples (4 l) were collected at a 5-m depth at the entrance of

Osaka Bay (34°199280N, 135°79150E), Japan, between March 2015 and November 2016 at monthly intervals.
Because the tide level and diel cycle can influence community composition, the sampling time was unified
at 3 h before or after high tide in the daytime. Considering the climate of the sampling area, the seasons
were defined as follows: March to May = spring, June to August = summer, September to November =
autumn, and December to February = winter. Additionally, from June to July was considered the rainy sea-
son. Seawater was filtered through a 142-mm-diameter (3.0-mm-pore-size) polycarbonate membrane
(Millipore, Billerica, MA) and then sequentially through 0.22-mm-pore-size Sterivex filtration units
(SVGV010RS, EMD Millipore). After filtration, filtration units were directly stored at –80°C for subsequent
DNA extraction. The filtrates were stored at 4°C before treatments. Water temperature and salinity were
monitored using fixed water intake systems of the Research Institute of Environment, Agriculture, and
Fisheries, Osaka prefecture. Nutrient concentrations (NO3-N, NO2-N, NH4-N, PO4-P, and SiO2-Si) were meas-
ured by continuous flow analysis (BL TEC K.K., Japan). Prokaryotic cell and virus-like particles were enumer-
ated using SYBR green and SYBR gold epifluorescence microscopy (69, 70).

rRNA gene amplicon sequencing analysis. For prokaryotic community analysis, DNA was extracted
from the stored filtration units, as previously described (34, 71). Total 16S rRNA genes were amplified using a
primer set based on the V3-V4 hypervariable region of prokaryotic 16S rRNA genes (72) with added overhang
adapter sequences at each 59 end according to the sample preparation guide (https://support.illumina.com/
content/dam/illumina-support/documents/documentation/chemistry_documentation/16s/16s-metagenomic
-library-prep-guide-15044223-b.pdf). Amplicons were sequenced using a MiSeq sequencing system and
MiSeq V3 (2� 300 bp) reagent kits (Illumina, San Diego, CA).

Paired-end 16S rRNA gene amplicon sequences were merged using VSEARCH with the “-M 1000”
option (73). Merged reads containing ambiguous nucleotides (i.e., “N”) were discarded. The remaining
merged reads were clustered using VSEARCH to form operational taxonomic units (OTUs) at a 99%
sequence identity threshold. Singleton OTUs were discarded. The representative sequences of the
remaining OTUs were searched against the SILVA rRNA gene database (release 138) (74) to taxonomi-
cally annotate OTUs using SINA (75) at a 99% sequence identity threshold. To define abundant OTUs, we
considered the reported minimum host cell density for effective viral infection (�104 cells/mL) (58).
Following typical coastal marine prokaryotic cell density (�106 cells/mL) (76), we assumed prokaryotic
cell density uniformity as 106 cells/mL during the whole sampling period, and the cutoff value for abun-
dant OTUs was set as 1% relative abundance (106 � 0.01 [1%] =104 cells/mL).

To identify statistically relevant variants within abundant OTUs, we applied minimum entropy
decomposition (MED) (11) as previously reported. All the sequences from each 99% OTU were aligned
using MAFFT v7.123b (-retree 1 -maxiterate 0 -nofft -parttree) (77). Alignments of sequences containing
positions with an entropy of .0.25 were decomposed, and decomposition continued until all positions
had an entropy of ,0.25. The minimum number of the most abundant sequence within each amplicon
sequence variant (ASV) needed to exceed 50, and ASVs that did not exceed 1% of the parent OTU com-
position were discarded (7).

Virome sequencing, assembly, classification, and calculation of relative abundance. The filtrate
containing viruses was concentrated via FeCl3 precipitation (78) and purified using DNase and a CsCl den-
sity centrifugation step (79). The DNA was then extracted as previously described (80). We failed to obtain
enough DNA for virome sequencing for one sample (February 2016), so the sample was removed from the
analysis. Libraries were prepared using a Nextera XT DNA sample preparation kit (Illumina, San Diego, CA),
according to the manufacturer’s protocol, using 0.25 ng of viral DNA. Samples were sequenced using a
MiSeq sequencing system and MiSeq V3 (2 � 300 bp) reagent kits (Illumina, San Diego, CA).

Viromes were individually assembled using SPAdes 3.9.1 with default k-mer lengths (81). Additionally, we
used scaffolds of these assemblies (here referred to as contigs for simplicity). Only the virus-like contigs were
extracted using VirSorter (categories 1, 2, and 3) (82). Circular contigs were determined as previously described
(33). Contig sequences were clustered at 95% global average nucleotide identity with cd-hit-est (options -c
0.95 -G 1 -n 10 -mask NX; 549 redundant contigs were discarded) (83). A total of 5,226 monthly time series
Osaka Bay viral (mts-OBV) contigs (.10 kb, 62 to 926 contigs/sample, including 202 circular contigs) were
obtained. Genome completeness and quality of mts-OBV contigs were evaluated using checkV (v0.7.0) (84).

In addition, this assembly generated 181,131 short contigs (i.e., from 1 kb to 10 kb). Because the reli-
ability of virus prediction tools decreases in shorter contigs, the abundance of these contigs was
assessed based on the relative abundance of terminase large subunit genes (terL), as previously
described (34). In total, 4,666 genes were detected as putative terL genes (i.e., genes with the best hits
to PF03354.14, PF04466.12, PF03237.14, and PF05876.11). Fragments per kilobase per million (FPKM) val-
ues for putative terL genes were calculated using in-house ruby scripts (https://github.com/yosuken/
CountMappedReads2).

The mts-OBV contigs with complete viral genomic sequence set collected in a previous study (33)
were used for viral abundance estimation based on the read mapping. The complete viral genomic
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sequence belonged to one of the following two categories: (i) 1,811 environmental viral genomes (EVGs;
all are circularly assembled genomes, 45 were assembled in Osaka Bay in a previous study [33]) derived
from marine virome studies and (ii) 2,429 reference viral genomes (RVGs) of cultured dsDNA viruses,
which were collected previously (33). Genus-level genomic OTUs (gOTUs) were previously assigned for
complete genomes based on the genomic similarity score (SG) using ViPTree (85). For the mts-OBV con-
tigs, if a sequence showed a high similarity to one of the complete genomes (with an SG of .0.15), the
sequence was assigned to the gOTU of the most similar genome, as previously described (33, 34).
Quality-controlled virome reads were obtained through quality control steps as previously described
(33). These reads were mapped against the viral genomic sequence set using Bowtie2 software with the
“–score-min L,0,-0.3” parameter (86). FPKM values were calculated using in-house ruby scripts, and rela-
tive abundances of each virus among the analyzed viruses were measured.

Viral host prediction. First, we assigned putative host groups based on genomic similarity with the
viral genomic sequence set collected in a previous study (33). Among the 487 genera (gOTUs) of 2,429 cul-
tured prokaryotic viral genomes in the previous classification, there were only two gOTUs that included
viruses infecting two different host phyla (33). The exceptional gOTUs are G617 and G1038. G617 includes
viruses that infect Firmicutes and Deinococcus-Thermus. Most of the members of G1038 infect
Enterobacteriales in Proteobacteria, but a virus (Staphylococcus phage SA1) infects Staphylococcus aureus in
Firmicutes. Thus, members in the same gOTU likely infect similar host groups, at least at a relatively broad
taxonomic level as predicted in this study (phylum or class level in Proteobacteria). If mts-OBV contigs were
classified into the same gOTU as the viruses with a known (via cultivation) or predicted (by genomic con-
tent [33]) host group, the host group was assigned to the contigs. We also compared similarity between
mts-OBV contigs, the viral genomes deposited in Virus-Host DB (https://www.genome.jp/virushostdb/; as
of October 2018), and recently reported isolates (87, 88).

For the viruses without assigned host groups via genomic similarity, we performed in silico host pre-
diction based on the nucleotide sequence similarity between viruses and prokaryotes as follows accord-
ing to previous studies (42, 89, 90). First, a total of 220,103 viral genomes/contigs derived from marine
viromes were collected and used for the analysis (26, 33, 38, 43, 44) (Table S1 in the supplemental mate-
rial). For the putative host genomes, we collected a total of 8,016 metagenome-assembled genomes
(MAGs)/single amplified genomes (SAGs) from marine metagenomic or single-cell genomic studies
(45–49). From Pachiadaki et al., we used only 1,040 high-quality SAG assemblies with $80% completion
(49). To remove the contamination of virus-like contigs from the MAGs/SAGs, 14,967 contigs classified as
viral-like sequences using VirSorter (categories 1, 2, and 3) (82) were discarded (Table S1). Details of each
prediction method were reviewed previously (91).

(i) CRISPR-spacer matching. CRISPR-spacer sequences were predicted using the CRISPR
Recognition Tool (92), and a total of 13,305 sequences were extracted from the analyzed 8,016 MAGs/
SAGs. Detected spacer sequences and spacer sequences deposited in CIRSPRdb (93) were queried
against viral genomes using the BLASTn-short function (94), where at least 95% identity over the whole
spacer length and only 1 to 2 SNPs at the 59 end of the sequence were allowed.

(ii) tRNA matching. tRNAs were recovered from the 8,016 MAGs/SAGs and viral genomes using
ARAGORN with the “-t” option (95). A total of 213,939 and 31,439 tRNAs were recovered from MAGs/
SAGs and viral genomes, respectively. The recovered prokaryotic and viral tRNAs with 111,385 tRNAs de-
posited in GtRNAdb (96) were compared using BLASTn (94), and only a perfect match (100% length and
100% sequence identity) was considered indicative of putative host-virus pairs.

(iii) Nucleotide sequence homology of prokaryotic and viral genomes. Viral genomes/contigs
were queried against prokaryotic MAGs/SAGs and prokaryotic genomes in NCBI RefSeq (as of December
2019) using BLASTn (94). Only the best hits above 80% identity across the alignment with a length of
$1,500 bp were considered indicative of host-virus pairs. For the prediction based on MAG/SAG contigs,
we performed taxonomic validation of the matching contigs in MAGs/SAGs as previously described (42).

No inconsistent host prediction for each viral contig was observed between these three different
methods. Viruses belonging to the same gOTU were assigned consistent host groups (33), with three
exceptional gOTUs (G404 including putative alphaproteobacterial viruses and putative deltaproteobac-
terial viruses, G405 including putative Bacteroidetes viruses and putative Marinimicrobia viruses, and
G495 including putative alphaproteobacterial viruses and putative Bacteroidetes viruses), which included
viruses predicted to infect multiple host lineages. For the contigs assigned to the three gOTUs, genomic
similarity scores among the same gOTU members were calculated, and the potential host of each contig
was assigned based on the most similar genomes/contigs, which was annotated via host prediction.

Statistical analyses. Before statistical analyses, 16S rRNA amplicon reads were rarefied using the
“vegan” package in R (20,803 reads per sample based on minimum sample size) (97). To examine within-
sample alpha-diversity (Shannon diversity, evenness, and richness) and beta-diversity (Bray-Curtis simi-
larity: 1 2 Bray-Curtis dissimilarity for all possible pairwise combinations among all of sampling points),
we used the vegan package in R (98). Mantel tests were performed using R and the vegan package (98)
only on fully overlapping sets of data. Pairwise correlations between the estimated abundance of pro-
karyotic ASVs and viral contigs (with putative host information and exceeding FPKM values of .10 at
least a month, 2,735 contigs) on fully overlapping sets of data were then determined via Spearman cor-
relation (r.0.6, P , 0.01, q , 0.05), as implemented in the local similarity analysis program. (99, 100).
Only the pairs supported by host prediction (e.g., Bacteroidetes and Bacteroidetes viruses) were consid-
ered cooccurring virus-host pairs. In the sanity check of the analysis (Figure S6E-G), pairs that were not
supported by the host prediction were included. However, even though virus_A cooccurred with ASV_X,
which was not supported by host prediction, virus_A cooccurred with another ASV_Y, which was sup-
ported by host prediction, and ASV_X and ASV_Y cooccurred; the pair between virus_A and ASV_X were
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removed as a false positive. In absolute abundance-based analysis, the count data of prokaryotic cells
and virus-like particles for the first 7 months were used because of the sample loss of other months. The
absolute abundances of each ASV and virus were calculated as the multiplication of cell/virus-like parti-
cle counts and relative abundance. Network visualizations of correlation matrices were generated using
igraph and ggnetwork (101, 102).

Classification of temporal dynamics of ASVs. We established indexes for the classification of tem-
poral dynamics of each ASV by their monthly dynamics. For the analogy of the r (intrinsic rate of natural
increase) of each ASV, the maximum increase of the normalized relative rank (0 to 1) per month of each
ASV was applied. Similarly, for the analogy of K (carrying capacity) for each ASV, the length of the contin-
uously abundant month (.0.1% relative abundance, 1 to 18 months) of each ASV was applied.
Although these indices are not the same as the original definitions of r and K, we refer to these two indi-
ces as an r-like index and a K-like index, respectively, for simplicity.

Detection of SNPs. Reads were mapped to viral contigs using Bowtie2 with a “–score-min L,0,-0.3”
(86), and the resulting alignment files were converted to BAM format and sorted using SAMtools (103).
The average genome entropy of the contigs, which exceeded more than 10� coverage each month,
was computed using DiversiTools (http://josephhughes.github.io/DiversiTools/).

Data availability. Sequences obtained from the observations were deposited at the DNA Data Bank
of Japan (DDBJ) under project number PRJDB10879. Raw sequence reads can be found under accession
numbers DRX260081 to DRX260115, and assemblies of viromes can be found under BioSample ID
SAMD00279559.
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