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Abstract— A number of control circuits can be well analyzed 

in a Fourier transfer function, but they have problems in being 

analyzed in an analytical inverse Laplace response as they 

contain distributed poles and zeroes, coming from a time delay or 

other effects. An example is the control of converters with filter 

circuits. In this paper, a control is shown in a PV converter with 

a very small DC link capacitor which is normally difficult to 

stabilize due to the presence of resonance effects of filters. It is 

observed that a second order high pass filter feedback stabilizes 

well parasitic resonances, even if their frequency is not very low 

compared to the switching frequency. A numeric inverse Laplace 

can be implemented in almost any mathematical program. This 

paper shows how parameters can be obtained from a step 

response using the numerical inverse Laplace and be used in 

Matlab simulation. It shows the complementarity between two 

methods.  

Keywords—Numerical Inverse Laplace Transform; Step 

response; PV converters. 

I.  INTRODUCTION 

Different methods exist to analyze the stability or step 
responses in converters [5],[8] and [9]. It may be by classical 
methods or by simulation. Classical methods are limited if 
distributed poles and zeroes are present [10], in the case of 
delays, fractional differentials, and complex transmission line 
effects, such as a skin-effect [3],[4]. In the case of simulations, 
the researchers have to be able to distinguish between a non-
convergence of solvers, instability and inaccurate solutions [7]. 
For this reason, they are interested in analyzing a topology 
using an independent method, which may be a higher accuracy 
and possibly also be faster. This paper demonstrates the 
complementarity between two methods used to test the step 
feedback responses of a PV boost Converter found in [1]. The 
paper focuses on a topology used for a Reduced Losses 
technique in PV Converters by Modulation of the DC Link 
Voltage [1]. The topology has two main parts, a boost and an 
inverter. The aim is to control the current in inductor L2 while  
switching  Q1, so that the DC link voltage follows the grid 
voltage during the top of the period and the bridge does not 
have to switch. Normally ,it is expected that it is not easy to 
directly control the current in L2 since the system is third order 
dynamic type. The paper analyses the current control feedback 
behavior of the boost converter. To create enough phase 
margin, a second high pass filter type has been introduced in 
the topology [Fig.2]. The proposed controller uses a small film 
capacitor C2= 20 µF and the storage is done at level of C1= 
2200 µF, L1=600 µH and L2= 1400 µH. One test was carried 
out using Matlab/Simulink 

TM
.  

 

 
Fig.1 Single phase PV converter using a three-phase bridge [1] 

Some solvers in Matlab/Simulink
TM

 are appropriate to 
some types of problems: stiff or non-stiff systems. In this case 
the solver ODE 23s gave the best results. The reason is that 
power electronic circuits may be of a non-linear and 
discontinuous nature. On the other hand, the user can be 
challenged and loosing time by choosing the right solver. 
Finding the right parameters may not be easy without a view 
on the phase and amplitude margin, it is even not guaranteed 
that  a stable solution can be found. For small signals, the 
power electronic converters behave often in a linear way. This 
means that those cases can also be analyzed using transfer 
functions as reference cases to test the simulations. As 
calculating transfer functions and inverse Laplace goes fast, it 
is possible to use it to search for the approximate values for 
feedback topologies and parameters. The inverse laplace 
Transform was known for centuries and it has many algorithms 
which are often complex [2],[12]. Nevertheless, the used 
inverse Laplace Transform, in this paper, is based on a simple 
definition. It shows how any scientist or engineer can  
implement the numerical inverse Laplace Transform as a 
simple and fast tool to test a step response or other responses of 
an electrical, electronic or mechanical circuit more than what 
some complex tools do. Matlab Simulink 

TM
 has been 

mentioned earlier as another tool that can be used. Numerical 
Inverse Laplace Transform 

The numerical Inverse Laplace Transform has many 
possible algorithms. The most popular are: Talbot, Week and 
Post’s methods [2]. However, all of them are based on the 
Laplace Transform definition. Eq.1 gives the definition of the 
unilateral  Laplace which is mostly used [2]. Bidirectional 
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Laplace transform is equivalent to the unidirectional type if the 
poles and zeros are symmetrical. 

 [ ( )]   ( )  ∫  ( )
 

 

                                             ( ) 

Where f(t) is a function with a real argument, t. 

  ( ) is a function with a complex argument,     
     with (   )    .Using a Fourier transform operator, Eq.1 
can be written as follows:  

 [ ( )]    (      )  ∫  ( )
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Eq.2 is a link between Fourier and   Laplace Transforms.  After 
some mathematical deduction [2], the inverse Laplace 
transform is expressed by the following equation:  
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 Programs such as Mathcad14 do not support equations with 
complex limits, but it can be converted to real limits in (4). For 

a frequency range between min and max which may be 0.01 
rad/s to 100 Mrad/s  should be sufficiently wider than the 
applied signal type. Then the following equation can be 
obtained: 
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Where ω=2πv, but the limits are converted to real values to 
have some meanings . The integral can also be replaced by a 
sum, with a frequency which is distributed in a logarithmic 
way: 
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Where: m and n are real numbers 
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Considering the previous frequency range the Eq.6 can be 
written as follows: 

 ( )        
 
   

                                                                   ( ) 

 

II. CURRENT CONTROL WITH A SECOND HIGH PASS FILTER 

FEEDBACK TRANSFER FUNCTION OF THE BOOST CONVERTER 

 Fig.2 and Fig.3 show the boost converter with a second 
high pass filter feedback used to deduct its transfer function. It 
is not obvious that the current in L2 is intended  be controlled 
by switching the current in L1. 

V1

L1 L2

V2C2 C3C1 Q1
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Cf1 Cf2

 

Fig.2 Buck Boost converter of the Topology 

For small signal deviations and continuous conduction mode 
[CCM], the scheme can be converted into Fig.3: 

E=V1/(1-δ)

L1/(1-δ)
2

L2

V2C2

 

Fig.3 Equivalent Circuit of Buck Boost Converter of the Topology 

To stabilize the LC filter and to compensate its calculation 
delay, the high pass filter transfer equation is expressed in 
Eq.8. The single order high pass filters did  not give enough 
phase advance. 
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Where, Td1 is a delay for digital sampling,  1=5*10
-5

 and 
 2=1*10

-4
 are time constant for the high pass filter 1 and 2 

respectively [1]. 

The values of the second hang pass filter are: Rf1=5E3 
Ohms; Rf2=50E3 Ohms; Cf1=10E-9 F, Cf2= 1E-9 F.  

Considering Fig.3, the dynamic behavior of the topology 
and its CCM case, the transfer function can approximately be 
formulated as follows:  

 

 (   )

 
       

(       ) [     (        )]
(   ) 

        
     ( ) 

Where R, L1, L2, δ are parameters of the topologies. 

 Eq.10 is a product of Eq.8 and Eq.9 which expresses the 
open loop system transfer function.  

 

    (  )   (   )                                                            (  ) 

 

 The bode diagrams of  the open loops of the high pass 
filter in Fig.4 and Fig.5 can help to figure out the current 
feedback loop transfer function. 
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Fig.4 TF1 open loop  phase Vs frequency 

 

Fig.5 TF2 open loop magnitude Vs frequency 

 

In fact, Fig. 4 and Fig. 5 give the stability limit information 
of the system. Around the gain margin of 12 the system 
oscillates. Therefore, the gain margin less than 12 can make the 
system stable. The chosen gain is 5 for the current feedback 
loop. The transfer function of the current feedback is found in 
Eq.11. 

  (   )  
 (   )

   (   )     ( )     

 
 

        
                                                                   (  ) 

Where Ghp is the gain of the high pass filter. 

The dynamic behavior in Fig.6 and Fig. 7 is found based on 
the Eq. 11. Since the feedback is a PI type, Fig. 6 and 7 present 
the limit of the resonant frequency which are useful to tune the 
PI parameters. Based on them, the PI transfer function is 
calculated [Eq.12]. PI together with the analog sampled second 
order high pass could be considered as PI on the current Il2 plus 
D

2
 at the level of voltage across C2. The D has been 

implemented in an analogue way to avoid delay while 
completing digital high pass filter actions. The programmer 
could sample the voltage across C2 and implement the  high 
pass filter action, but anyhow an attenuation is needed. The 
direct sampling of the voltage and , a second order high pass 
filter would still result in an additional delay. 

 

Fig. 6  I2(p,δ1) closed loop phase Vs frequency 

 

Fig.7 I2(p,δ1)  closed loop magnitude vs  frequency 

  (   )  [
     (   )

 
  ]                      (  ) 

Where Td2 is the delay of the PI controller. 

The Open Loop Transfer Function (OLG) of the current in 
the second inductor combined with the transfer function of the 
PI controller is in Eq.13. 

   (    )    (   )    (   )                            (  ) 

For the tuned parameters, the system is stable. The pole is 
at one in left side. Fig.8 shows that for different values of delta, 
0.0, 0.5, 0.8, the system is stable.   

 

Fig.8 OLG Imaginary Vs Real part Nyquist 
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Then, the total feedback transfer function of the system 
becomes as follows: 

   (   )  
 

  
 

   (   )

                                           (  ) 

Eq.15 and  16 deducted  when the Eq.4 and 5 are applied  
on Eq.14.  
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 The step response of the transfer function can be test with 
the following input signal, where a slow square wave is used 
instead of a step wave. 

 ( )  ∑

 
 

    

   

   

    [(     )    ]                            (  ) 

Where k is a real number, k ϵ R  

The step response can as well be applied , but at least,100 
harmonics are needed at least to lower the Gibbs effects [11]. It 
is slow if a low frequency step wave is applied. It is ,moreover, 
difficult to check if an overshoot is present or not. It can be 
formulated using a complex Fourier Transform [Eq.18]. Fig.9 
results from Eq.18. It is obvious that the step response has 
periodically the Gibbs effects.  

 ( )

 ∑

 
 

    

   

   

   [   [(   

  )       ]   (     )                                                           (  ) 

 

 
Fig.9 Step response at       

 
 However, instead of using an sum of harmonics, also an 
inverse Laplace could be used. The inverse Laplace is going 
back from Laplace/frequency domain back to the time domain. 
Both Eq.15 and Eq.16 are used for the numerical Inverse 
Laplace transform. The first one is integral type with the limits, 
in this paper, are chosen to vary from 10

-2
 to 10

-8
 whereas for 

the second one, summation type, m varies from 0 to 4000. In 
fact, the interested frequencies are between 30 and 300 kHz. 
This means that 400 division /decades are more than sufficient. 
The equations gives the same results with a slight difference 
between the running time. One may be faster than the other 
depends on the boundaries applied on the integral as well as on 
the summation. Next section presents the results given by 
MatlabSimulink

TM
. 

 

Fig.10 Step response of Eq.15 and Eq.16 

 

 

Fig.11 The PV converter current mode control block diagram in Matlab/SimulinkTM 
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Fig.12 Iref and IL2 of the Boostconverter with       

The same test was firstly done in Mathlab/Simulink 
TM

 to 
test the step response. Fig.11 shows the Matlab simulation 
block diagram of the  boost converter. This method is 
mathematically easier than the previous method since for this 
method the transfer function deduction is not required . 
Nevertheless, choosing the right solver is a key task while 
Matlabsimulink

TM
  is opted. Fig. 12 presents the simulation 

results. The parameters used for simulation are found in [1].  
Different ODES have been used for this simulation.  ODE 45 is 
designed for non-stiff problems [6]. Specific  ODES of the 
implicit type  have to be  used for the stiff systems. The 
implicit solver grants the high stability for the oscillatory 
systems [7]. In this paper, the ODE 23S was used and it proved 
that the current control tuned parameters using numerical 
Laplace Transform  make the system stable.   

A special effect is that the numerical inverse Laplace 
always results in stable responses, even if the system is 
unstable, but it can be recognized as the system reacts before 
the step is applied, which is an a-causal effect. Also, other 
responses can be analyzed by adaptation of Eq.16. The step 
response was used to test the stability and the damping in a 
wide frequency range. In real PV converters,  the set values 
will be rather sine waves, but one has to be sure that the system 
is well damped.  

III. CONCLUSIONS 

 There are different software and tools that engineers and 
scientists can use, the sequence of Nyquist, inverse numerical 
Laplace and Matlab Simulink is interesting.. In a Nyquist plot 
the engineer can easily first tune the parameters to get the right 
phase and amplitude margin. After this, the step response can 

be optimized by inverse Laplace using Mathcad  or another 
type of software. Here, the numerical Inverse Laplace 
Transform is used with a simple definition. It was employed to 
tune parameters to stabilize a feedback in a PV converter 
system with filters, which is normally not easy to obtain. 
Afterwards, these parameters were used as an input for Matlab 
simulation including PWM.  So, the stability of the system is in 
fact triple  checked. The  methods are complementary to each 
other proving that a current control with a second order high 
pass filter feedback of a boost converter is stable at different 
duty ratio values.    
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