Probing pairing correlations in Sn isotopes using Richardson-Gaudin integrability

This content has been downloaded from IOPscience. Please scroll down to see the full text. 2014 J. Phys.: Conf. Ser. 533012058
(http://iopscience.iop.org/1742-6596/533/1/012058)
View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 157.193.118.243
This content was downloaded on 27/11/2014 at 10:20

Please note that terms and conditions apply.

Probing pairing correlations in Sn isotopes using Richardson-Gaudin integrability

S De Baerdemacker ${ }^{1,2}$, V Hellemans ${ }^{3}$, R van den Berg ${ }^{4}$, J-S Caux ${ }^{4}$, K Heyde ${ }^{2}$, M Van Raemdonck ${ }^{1,2}$, D Van Neck 1,2, P A Johnson ${ }^{5}$
${ }^{1}$ Ghent University, Center for Molecular Modeling, Technologiepark 903, 9052 Ghent, Belgium
${ }^{2}$ Ghent University, Department of Physics and Astronomy, Proeftuinstraat 86, 9000 Ghent, Belgium
${ }^{3}$ Université Libre de Bruxelles, PNTPM, CP229, 1050 Brussels, Belgium
${ }^{4}$ Institute for Theoretical Physics, University of Amsterdam, Science Park 904, Postbus 94485, 1090 GL Amsterdam, The Netherlands
${ }^{5}$ Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
E-mail: stijn.debaerdemacker@ugent.be

Abstract

Pairing correlations in the even-even $A=102-130 \mathrm{Sn}$ isotopes are discussed, based on the Richardson-Gaudin variables in an exact Woods-Saxon plus reduced BCS pairing framework. The integrability of the model sheds light on the pairing correlations, in particular on the previously reported sub-shell structure.

1. Introduction

Pairing is an important component of the correlations in atomic nuclei at low-excitation energy $[1,2,3]$. The Sn isotopes provide a unique laboratory to probe the neutron-neutron pairing correlations, because the large proton shell gap at $Z=50$ ensures that the low-lying nuclear structure is largely unaffected by proton particle-hole excitations across the shell gap. Moreover, experimental data of the Sn isotopes in three major shells have become available in recent years thanks to intensive experimental activity with radio-active beam facilities. There exist several theoretical approaches to investigate pairing correlations in atomic nuclei, ranging from fundamental ab initio calculations to studies based on a more phenomenological footing [2]. In the present contribution, we will employ a Woods-Saxon [4] plus level-independent Bardeen-Cooper-Schrieffer (BCS) pairing Hamiltonian [5, 6] as a global probe for pairing correlations in the ground state of Sn . The level-independent, or reduced, BCS Hamiltonian has a complete basis of Bethe Ansatz eigenstates [7, 8], and belongs to the class of RichardsonGaudin (RG) integrable models [9, 10]. Integrability offers unique opportunities to investigate pairing correlations. On the one hand, the RG variables in the pair-product structure allow for a transparent graphical representation, as well as a clear-cut connection with bosonization approximations [11] via a pseudo-deformation of the quasi spin algebra [12]. On the other hand, physical observables related to particle removal and addition properties [13] can be obtained conveniently using Slavnov's theorem for the RG model [14].

2. Richardson-Gaudin integrability for Sn isotopes

The reduced BCS Hamiltonian is given by [1]

$$
\begin{equation*}
\hat{H}=\sum_{i=1}^{m} \varepsilon_{i} \hat{n}_{i}+g \sum_{i, k=1}^{m} \hat{S}_{i}^{\dagger} \hat{S}_{k}, \tag{1}
\end{equation*}
$$

with $\hat{S}_{i}^{\dagger}=\sum_{m_{i}>0}(-)^{j_{i}-m_{i}} a_{j_{i} m_{i}}^{\dagger} a_{j_{i}-m i}^{\dagger}$ the nucleon-pair creation operator in a single-particle level ε_{i} with (spherical) quantum numbers ($i \equiv n_{i}, l_{i}, j_{i}$) and of degeneracy $\Omega_{i}=2 j_{i}+1$. This Hamiltonian supports a complete set of Bethe Ansatz eigenstates parametrised by the set of RG variables $\{x\}$ that are a solution of the RG equations $[7,8]$. The associated eigenstate energy is then given as $E=\sum_{\alpha=1}^{N_{p}} x_{\alpha}+\sum_{i=1}^{m} \varepsilon_{i} v_{i}$, with v_{i} the seniority [15], and N_{p} the number of pairs.

The single-particle levels are provided by a Woods-Saxon potential [4], for which we used a recent global parametrisation [16], and the single-particle energy spectrum for ${ }^{100} \mathrm{Sn}$ is given in Table 1. We followed a global prescription $g=g_{0} / \sqrt{A}$ for the pairing interaction, in order to reproduce the 3-point pairing gaps $\Delta^{(3)}(A)=(-)^{A}[B E(A)-2 B E(A-1)+B E(A-2)][4]$, presented in Figure 1b. The two-neutron separation energies $S_{2 n}=[B E(A)-B E(A-2)][4]$ are

Figure 1. Experimental (squares) and theoretical (circles) two-neutron separation energies $S_{2 n}$ (a) and three-point pairing gaps $\Delta^{(3)}$ (b). Experimental data taken from [17].
given in Figure 1a, following a general linear trend, with the exception of a small kink around mid shell, signaling a sub-shell closure. The calculated curve is smoother than the experimental values at this point, consistent with the overestimated pairing gaps $\Delta^{(3)}$ around mid shell. Recent measurements showed a decrease in the $B\left(E 2: 0_{1}^{+} \rightarrow 2_{1}^{+}\right)$strength around mid shell [18], which was qualitatively attributed [19] to this sub-shell effect in the seniority scheme [15]. Figure 2 depicts the RG variables for the ground state of the even-even ${ }^{102-130} \mathrm{Sn}$ isotopes, and sheds more light on the sub-shell structure. Weakly correlated pair states give rise to a clustering of RG variables around the single-particle poles in the complex plane, whereas collective pairing states organise the RG variables along a broad arc in the complex plane [10, 12]. The pairing interaction in the lighter isotopes is strong enough to distribute the RG variables along an arc in the complex plane, however the arc only extends over the $d_{5 / 2}$ and $g_{7 / 2}$ sub-shell single particle poles. For the heavier nuclei, the pairs separate into two distinct sets, with seven RG variables clustering around the $d_{5 / 2}$ and $g_{7 / 2}$ sub-shell poles and the remaining forming a collective arc around the other poles. For medium-heavy nuclei, there is a gradual transition between both situations. This structure can be quantified using the pseudo-deformation scheme, where all RG variables can be labeled according to their collective behaviour in the Tamm-Dancoff Approximation (TDA) (see Table 1) [12]. From the table, it can be seen that the TDA structure is consistent

Figure 2. The RG variables (circles) and single-particle poles (squares) of the even-even ${ }^{102-130} \mathrm{Sn}$ isotopes.
with the discussed sub-shell structure. The lightest isotopes are consistent with a collective TDA condensation in the $d_{5 / 2}$ and $g_{7 / 2}$ sub shell, whereas the TDA structure of the heavier isotopes points towards a normal filling of the $d_{5 / 2}$ and $g_{7 / 2}$ sub shell, with the additional pairs collectively distributed over the $s_{1 / 2}, d_{3 / 2}$ and $h_{11 / 2}$ sub shell.

level	$\varepsilon_{i}[\mathrm{MeV}]$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$d_{5 / 2}$	-11.164	1	2	3	4	5	6	7	8	3	3	3	3	3	3	3
$g_{7 / 2}$	-10.275	0	0	0	0	0	0	0	0	6	7	4	4	4	4	4
$s_{1 / 2}$	-9.124	0	0	0	0	0	0	0	0	0	0	4	5	6	1	1
$d_{3 / 2}$	-8.766	0	0	0	0	0	0	0	0	0	0	0	0	0	6	2
$h_{11 / 2}$	-7.754	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5

Table 1. The single-particle energies ε_{i} obtained from a Woods-Saxon potential [16], and the TDA eigenmode decomposition of the 0^{+}ground state for the even-even isotopes ${ }^{102-130} \mathrm{Sn}$. The number of active pairs N_{p} in the isotope ${ }^{\mathrm{A}} \mathrm{Sn}$ is given in the upper row $\left(N_{p}=(A-50) / 2\right)$.

3. Conclusions

We have investigated pairing correlations in the Sn isotopes by inspecting the location of the RG variables with respect to the single-particle poles in the complex plane, generated by a schematic Woods-Saxon plus reduced BCS Hamiltonian. The results point towards a sub-shell structure, consistent with previous studies. We expect this structure to also be reflected in the relevant transition rates; this will be investigated in future publications

Acknowledgments

SDB is an FWO-Vlaanderen post-doctoral fellow and acknowledges an FWO travel grant for a "long stay abroad" at the University of Amsterdam (The Netherlands). VH acknowledges financial support from the FRS-FNRS Belgium. This project is also supported by Belspo IAP Grant no P7/12 (SDB, VH, and KH).

References

[1] Heyde K 1994 The nuclear shell model (Berlin: Springer-Verlag)
[2] Dean D J and Hjorth-Jensen M 2003 Rev. Mod. Phys. 75607
[3] Brink D and Broglia R 2005 Nuclear superfluidity, pairing in finite systems (Cambridge: University Press)
[4] Bohr A and Mottelson B 1998 Nuclear Structure, Vol. 2 (Singapore: World Scientific)
[5] Bardeen J, Cooper L N and Schrieffer J 1957 Phys. Rev. 1081175
[6] Bohr A, Mottelson B R and Pines D 1958 Phys. Rev. 110936
[7] Richardson R W 1963 Phys. Lett. 3277
[8] Richardson R W and Sherman N 1964 Nucl. Phys. 52221
[9] Gaudin M 1976 J. Phys. (Paris) 371087
[10] Dukelsky J, Pittel S and Sierra G 2004 Rev. Mod. Phys. 76643
[11] Ring P and Schuck P 2004 The Nuclear Many-Body Problem 3rd ed (Berlin: Springer)
[12] De Baerdemacker S 2012 Phys. Rev. C 86044332
[13] Grasso M, Lacroix D and Vitturi A 2012 Phys. Rev. C 85034317
[14] Faribault A, Calabrese P and Caux J S 2008 Phys. Rev. B 77064503
[15] Talmi I 1993 Simple models of complex nuclei (Chur: Harwood academic publishers)
[16] Schwierz N, Wiedenhöver I and Volya A 2007 (Preprint nucl-th/0709.3525)
[17] Audi G, Wapstra A H and Thibault C 2003 Nucl. Phys. A 729337
[18] Jungclaus et. al. 2011 Phys. Lett. B 608110
[19] Morales I O, Van Isacker P and Talmi I 2011 Phys. Lett. B 703606

