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Abstract. This paper investigates the uncertainties resulting from different measure–correlate–predict (MCP)
methods to project the power and energy yield from a wind farm. The analysis is based on a case study that
utilises short-term data acquired from a lidar wind measurement system deployed at a coastal site in the northern
part of the island of Malta and long-term measurements from the island’s international airport. The wind speed at
the candidate site is measured by means of a lidar system. The predicted power output for a hypothetical offshore
wind farm from the various MCP methodologies is compared to the actual power output obtained directly from
the input of lidar data to establish which MCP methodology best predicts the power generated.

The power output from the wind farm is predicted by inputting wind speed and direction derived from the
different MCP methods into windPRO® (https://www.emd.dk/windpro, last access: 8 May 2020). The predicted
power is compared to the power output generated from the actual wind and direction data by using the normalised
mean absolute error (NMAE) and the normalised mean-squared error (NMSE). This methodology will establish
which combination of MCP methodology and wind farm configuration will have the least prediction error.

The best MCP methodology which combines prediction of wind speed and wind direction, together with the
topology of the wind farm, is that using multiple linear regression (MLR). However, the study concludes that
the other MCP methodologies cannot be discarded as it is always best to compare different combinations of
MCP methodologies for wind speed and wind direction, together with different wake models and wind farm
topologies.

1 Introduction

The measure–correlate–predict (MCP) methodology intro-
duces uncertainty due to its inherent statistical nature. Re-
cent developments have seen the introduction of new com-
putational regression techniques such as artificial neural net-
works (ANNs) and machine learning, which include deci-
sion trees (DTs) and support vector regression (SVR). In a
previous study, light detection and ranging (lidar) data were
used to compare the results of the various regression method-
ologies at different lidar measurement heights (Mifsud et
al., 2018), with the reference site being Malta International
Airport (MIA), Luqa, and the candidate site being a coastal
watch tower at Qalet Marku on the northern part of the is-

land. This study uses the same wind data for the year 2016 to
construct the MCP models. However, this time the prediction
is carried out for both wind speed and wind direction. Wind
speed and direction are then predicted for the period June–
December 2015. This is done for the different MCP models.
The predicted wind speed and wind direction time series are
then fed into a wind farm model implemented in windPRO®

version 2.7 to model the overall energy yield, considering
wake losses. The power output for various wind farm con-
figurations is obtained for each methodology. As the lidar is
sited on the roof of a coastal tower, at a height of 20 m above
mean sea level, the wind data measured at a height of 80 m
would be equivalent to a wind turbine (WT) hub height of
100 m above the sea surface.
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The power output in each case is compared to that ob-
tained when the actual wind data are fed to the wind farm
model. Thus, the NMAE, the NMSE and the percentage er-
ror in the overall energy yield are compared for the various
methodologies and wind farm topologies. This is therefore a
study about the uncertainties introduced by the various sta-
tistical methods, which are then further complicated by the
wind farm layout. It is innovative due to the use of an MCP
methodology to predict both the wind speed and the wind
direction. The following literature review describes different
MCP methodologies, four of which are then used in the pre-
diction of wind speed and wind direction. The wake models
are also described. This is followed by a description of the
methodology used in the study, together with a description
of the hypothetical wind farm used as a basis for this study.
Finally, the results are presented and discussed.

2 Literature review

The first MCP methods estimated the mean long-term annual
wind speed (Carta et al., 2013). MCP methods later made use
of simple linear regression (SLR) (Rogers et al., 2005a) to es-
tablish a relationship between hourly wind characteristics of
the candidate and the reference sites. A multiple linear re-
gression is a regression model that involves more than one
regressor variable (Montgomery et al., 2006). The regres-
sion is carried out using concurrent wind speed and wind
direction data at the reference and the candidate sites. The
reference site is normally the closest meteorological station,
e.g. airports, and the candidate site is the location chosen
for the wind farm. When the model is created, hence estab-
lishing a relationship between the wind speed at both sites,
the long-term wind data at the reference site can be used
to predict the long-term wind speed at the candidate site.
More recent models established non-linear-type relationships
(Clive, 2004; Carta and Velazquez, 2011) by employing sta-
tistical learning (Hastie et al., 2009). Amongst these are al-
gorithms such as artificial neural networks (ANNs) (Bilgili
et al., 2007; Monfared et al., 2009) and the more recent
machine-learning (ML) techniques, which include support
vector regression (SVR) (Oztopal 2006; Zhao et al., 2010;
Scholkopf and Smola, 2002; Alpaydin, 2010) and decision
trees (DTs) (James et al., 2015; Alpaydin, 2010).

A study (Carta et al., 2013) reviewed many MCP method-
ologies. These included the method of ratios, first-order lin-
ear regression, higher-than-first-order linear methods, non-
linear methods and probabilistic methods. The authors were
also concerned with the uncertainties associated with MCP
methodologies and argued that users of MCP methodologies
have little information with which to determine the uncer-
tainty of the methodology. One methodology to measure this
uncertainty is to use the full set of data from the concurrent
period to train the model and assess its quality.

Another study by Rogers compared four different MCP
methodologies (Rogers et al., 2005a). These included a lin-
ear regression model, the distributions of ratios of the wind
speeds at the two sites, an SVR model and another method
based on the ratio of the standard deviations of the two data
sets. The authors concluded that SVR gave the best results. In
a different study, the same authors (Rogers et al., 2005b) also
analysed the uncertainties introduced with the use of MCP
techniques. They concluded that linear regression method-
ologies could seriously underestimate uncertainties due to
serial correlation of data. Another study shows that a proper
assessment of uncertainty is critical for judging the feasibil-
ity and risk of a potential wind farm development, and the
authors describe the risk of oversimplifying and assuming
uncertainties (Lackner et al., 2012).

A hybrid MCP method (Zhang et al., 2014), which in-
volved adding different weights depending on the distance
and elevation of the candidate site to the reference sites,
was applied to the input of five MCP methodologies. The
methods used consisted of the linear regression, variance
ratio, Weibull scale, ANNs and SVR. The results were as-
sessed in terms of metrics such as the mean-squared error
and mean absolute error. Other authors (Perea et al., 2011)
evaluated three methodologies. One method included a linear
regression, which was derived from the bivariate normal joint
distribution and the Weibull regression method. The other
method was based on conditional probability density func-
tions applied to the joint distributions of the reference and
the candidate sites. The results from these two methodologies
were in turn compared to SVR. Although the conclusion was
that the SVR method predicted all the parameters very accu-
rately, the probability density function based on the Weibull
distribution was better in terms of prediction accuracy.

The ability of ANNs to recognise patterns in complex data
sets means that they can also be used to correlate and pre-
dict wind speed and wind direction (Zhang et al., 2014). A
neural network contains an input layer, one or more hid-
den layers of neurons and an output layer. A learning pro-
cess updates the weights of the interconnections and biases
between the neurons in the various layers. The Levenberg–
Marquardt (Principe et al., 2000) algorithm may be used for
this purpose. The regression is performed by means of feed-
forward networks (Alpaydin, 2010) with multilayer percep-
trons (MLPs).

Another study (Velazquez et al., 2011) utilised wind speed
and direction from various reference stations. These were in-
troduced into the input layer of an ANN. It was concluded
that when wind direction was used as an angular magnitude
to the input signal, the model gave better results. Estimation
errors also decreased as the number of reference stations was
increased. The authors concluded that ANNs are superior to
other methods for predicting long-term wind data.

The use of ANNs for long-term predictions was also in-
vestigated by Bechrakis et al. (2004) using wind speed and
direction measurements from just one reference station and
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compared these to standard MCP algorithms. This resulted
in an improved prediction accuracy of 5 % to 12 %. Unfortu-
nately, many models that use various reference stations use
only the recorded wind speeds as input. The topologies of the
ANNs used have only a single neuron in the input layer, with
the output signal being the wind speed at the candidate site
(Monfared et al., 2009; Oztopal, 2006; Bilgili et al., 2009).

Data from meteorological stations possessing long mea-
surement periods provide a large number of potential inputs
for MCP methods. Apart from wind speed and direction, in-
puts can also include other climatological variables such as
air temperature, relative humidity and atmospheric pressure.
Hence, a multivariate MCP methodology may be utilised
(Patane et al., 2011). This technique considers all the inputs
and extracts the maximum amount of information at the sites.
Since some input variables may be intercorrelated, or may
not provide information about the target site wind charac-
teristics, the methodology is a two-stage process. Input vari-
ables are analysed, and those that contain little or redundant
information about the candidate site wind characteristics are
discarded, after which a multivariate regression is performed.
It was concluded from the results of the tests made that the
methodology was more accurate than standard MCP meth-
ods, with the quality of the estimation of the long-term wind
resource increasing by 19 %.

SVR is the adaptation of support vector machines to the
regression problem. This technique was developed by Vap-
nik (Vapnik, 1995; Vapnik et al., 1998) to solve classifica-
tion problems. SVR (Alpaydin, 2010) is popular within the
renewable energy community since it is a unique way to
construct smooth and non-linear regression approximations
(Diaz et al., 2017). The analysis of MCP models using SVR
techniques shows that SVR is one of the techniques which
best represents the ML state of the art (Diaz et al., 2017). This
is not only due to its prediction capability, but also to its prop-
erty of universal approximation to any continuous function
and an efficient and stable algorithm that provides a unique
solution to the estimation problem (Diaz et al., 2017). Dif-
ferent hyperparameters were used to study the SVR method-
ology. Other studies describe how SVR may be adapted to
wind speed prediction (Zhao et al., 2010).

Another recent study shows the importance of DTs in im-
proving the regression results for MCP (Diaz et al., 2018).
The study applied five different MCP techniques to mean
hourly wind speed and direction, together with air density,
using the data from 10 weather stations in the Canary Islands.
The study showed that the models using SVR and DTs pro-
vided better results than ANNs. A DT is a hierarchical data
structure which implements the “divide and conquer” rule,
and it may also be applied to the regression problem (Hastie
et al., 2009; Alpaydin, 2010; James et al., 2015).

The use of lidar for wind resource assessment (Probst and
Cardenas, 2010) shows a distinct advantage of this method
over the traditional cup and wind vane measurements. This
is demonstrated by studies carried out using different MCP

methods such as SLR and ratio analysis. However, no anal-
ysis with ANNs, DTs or SVR is carried out. A more recent
study (Mifsud et al., 2018), which utilised the same data as
this current study, analysed the accuracy of different MCP
methodologies and their capability according to lidar mea-
surement height. The study concluded that the MCP accuracy
depended on both methodology and measurement height at
the candidate site. Other studies using lidar at the same mea-
surement site were also carried out. These analysed the tur-
bulent behaviour of the wind data (Cordina et al., 2017).

The issue of wake losses in a wind farm has been described
by several authors and can be minimised by optimising the
layout of the wind farm (Manwell et al., 2009). A short liter-
ature review of wake models is now presented.

Wake models are classified into four categories (Manwell
et al., 2009) which are surface roughness models (Bossanyi
et al., 1980), semi-empirical models (Lissaman and Bates,
1977; Vermeulen, 1980), eddy viscosity models (Ainslie,
1985) and Navier–Stokes solutions (Crespo and Hernan-
dez, 1986, 1993). A review of wind turbine wake models
(Sanderse, 2009) shows the effects of reduced power produc-
tion due to lower incident wind speed and the effect on the
wind turbine rotors due to increased turbulence. The author
presents a number of reasons on why the focus on numeri-
cal simulation is preferred to experimentation; this is mainly
due to the use of computational fluid dynamics (CFD). One
study presents the mathematical theory behind a simple wake
model and that for a multiple wake model (Gonzalez-Longatt
et al., 2012) while another study (Churchfield, 2013) de-
scribes a hierarchy of wake models ranging from the empiri-
cal to large-eddy simulation (LES). Some of the models com-
pared include Ainslie’s model (Ainslie, 1985), Frandsen’s
model (Frandsen, 2005) and Jensen’s model (Jensen, 1983).
The dynamic wake meandering model is another method
which is described (Larsen et al., 2008) and also validated
(Larsen et al., 2013) in a study carried out on the Egmond
aan Zee offshore wind farm. Another study (Barthelmie et
al., 2006) compares wake model simulations for offshore
wind farms, with the wake profiles measured by sonic de-
tection and ranging (sodar). In this case, the models gave a
wide range of predictions, and it was not possible to identify
a model with superior projections with respect to the mea-
surements.

In some studies, it is necessary for any wake model used
to be straightforward, dependent on relatively few wake mea-
surements and economic in terms of the necessary computing
power. Despite their relative simplicity, these models tend to
give results which are in reasonable agreement with the avail-
able data in the case of a single wake within a small wind
farm and a simple meteorological environment. In addition,
a comparison of different wake models does not suggest any
particular difference in terms of accuracy between the so-
phisticated and simplified models (Manwell et al., 2009).

The use of wake models can also be illustrated by consid-
ering a semi-empirical model (Katić et al., 1986) that is often
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Figure 1. Difference between the meteorological wind direction
and the mathematical wind direction and the component of the wind
vector.

Figure 2. Calculating the value of θmetip according to the value of
uip and vip .

used for wind farm output predictions. This model attempts
to characterise the energy content in the flow field whilst ig-
noring the details of the exact nature of the flow field, which
is assumed to consist of an expanding wake with uniform ve-
locity deficit that decreases with distance downstream (Man-
well et al., 2009).

The N.Ø. Jensen wake model (Jensen, 1983) is a simple
wake model based on the assumption of a wake with a linear
wake cone. The results from this model are comparable to
experimental results.

Several metrics may be used to evaluate the accuracy of
the models (Rogers et al., 2005a), and it is important to em-
ploy more than one metric (Santamaria-Bonfil et al., 2016) to
perform the evaluation. The lower the value of the metric, the
better the performance of the model. In this case the NMAE
and the NMSE were used to quantify the performance of the
model. The purpose of using normalised values is to provide
results which are independent of wind farm sizes (Madsen et
al., 2005).

The NMAE is suitable to describe the errors which are uni-
formly distributed around the mean, also revealing the aver-
age variance between the true value and the predicted value

Figure 3. Map of Malta showing relative location of the candidate
and the reference sites (Google, 2019) (©Google Maps 2019).

Figure 4. Satellite imagery of the Qalet Marku coastal watch tower,
located on a promontory near Bahar ic-Caghaq.

(Hu et al., 2013). The NMAE applies the same weight to the
individual errors. The NMSE is a measure of the extent of the
dispersion of the errors around the mean and gives a higher
weight to larger errors. It assumes that the errors are unbi-
ased and follow a normal distribution (Santamaria-Bonfil et
al., 2016). The percentage error of the energy yield gives an
estimate of the accuracy of the model for predicting the total
energy generated by the wind farm over the period of eval-
uation. Since each metric has disadvantages that can lead to
inaccurate evaluation of the results, it is not recommended to
depend only on one measure (Shcherbakov et al., 2013)

3 Theoretical background

MCP methods are based on regression techniques. Re-
gression can be performed by using MLR. However, as
mentioned above, several more powerful techniques exist,
amongst which are ANNs, SVR and DTs. While MCP
methodologies have been developed for wind speed, they
cannot be directly used for predicting wind direction (Bosart
and Papin, 2017). Nothing has been found in literature on
MCP techniques that explicitly mentions prediction of wind
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Figure 5. View of the wind farm rendered onto an image of the area
and also showing the lidar unit.

Figure 6. Satellite imagery of the wind farm showing the loca-
tion of the 50 wind turbines with respect to the coastal lidar station
(©Google Maps 2019).

direction at that candidate site. The use of wind speed vec-
tors is a way of using a regression methodology to predict the
wind direction, by breaking the wind speed vector into its re-
spective components. MCP methodologies are normally used
to predict the wind speed magnitude at the candidate site, but
not the direction. Wind velocity may be negative (if one con-
siders it as a vector), and the MCP methodology normally
considers the positive value of the wind, i.e. magnitude. The
methodology used creates a regression model using the wind
velocity vector components to predict the wind vector com-
ponents at the candidate site (Bosart and Papin, 2017).

The methodology is based upon a simple relationship be-
tween the meteorological wind direction θmet and the mathe-
matical wind direction θmath such that

θmath = 90− θmet, (1)

in which the wind speed vector V i can be broken down into
its vector components such that

Figure 7. Applied methodology.

ui = |V i |cosθmath = |V i |cos(90− θmet) , (2)
vi = |V i |sinθmath = |V i |sin(90− θmet) , (3)

in which case the values of ui and vi , which may be either
positive or negative depending on the direction of the wind
(the value of θmet), are the wind components in the north (y)
and the east (x) directions (axes). The relationship is shown
in Fig. 1.

Also,

|V i | =

(
u2
i + v2

i

) 1
2
. (4)

The regression is carried out between the respective compo-
nents of the wind velocity in the y and x directions, hence
establishing a relationship between the components at both
sites. The forecasted wind direction at the candidate site is
then obtained from the forecasted wind components using
the relationship in Eq. (5):

θmetip = 90− tan−1 vip

uip
. (5)

The value of the angle θmetip depends on the direction of uip
and vip as shown in Fig. 2 and in accordance with the rela-
tionships shown in Eq. (6),

uip > 0andvip > 0 NE winds 0◦ < θmetip < 90◦

uip > 0 and vip < 0 SE winds 90◦ < θmetip < 180◦

uip < 0 and vip < 0 SW winds 180◦ < θmetip < 270◦

uip < 0 and vip > 0 NW winds 270◦ < θmetip < 360◦,

(6)

and Eq. (7),

uip = 0andvip > 0 (North wind) θmetip = 0◦

uip = 0andvip < 0 (South wind) θmetip = 180◦

uip > 0andvip = 0 (East wind) θmetip = 90◦

uip < 0andvip = 0 (West wind) θmetip = 270◦.

(7)
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Figure 8. Application of regression methodologies to wind direc-
tion.

The results are compared by using the NMAE and the NMSE
of the residuals, using Eqs. (8) to (12). The residuals ei are
the errors between the predicted and the actual output power
values from the wind farm,

ei = Pi −Pacti . (8)

The formula used to calculate the NMAE is shown in Eq. (9),
whereby the errors are normalised by dividing by the average
power production over the whole period of evaluation (Mad-
sen et al., 2005):

NMAE=
∑N
i=1 |ei |∑N
i=1Pi

. (9)

The NMSE is given by

NMSE=
1
N

∑N
i=1(ei)2

P ·Pact
, (10)

where

P =
1
N

∑N

i=1
Pi (11)

and

Pact =
1
N

∑N

i=1
Pacti . (12)

The percentage error in overall energy yield is given by
Eq. (13), where

eeng =

(∑N
i=1Pi −

∑N
i=1Pacti∑N

i=1Pacti

)
· 100%. (13)

4 A case study – site conditions and the modelled
offshore wind farm

4.1 The reference and candidate sites

The reference site employed in this study is the Meteoro-
logical Office at Malta International Airport (MIA), Luqa,
and the candidate site is comprised of data collected by

Figure 9. Predicting the wind direction.

a ZephIR 300 lidar (https://www.zxlidars.com/wind-lidars/
zx-300/, last access: 10 May 2020) unit administered by the
University of Malta’s Institute for Sustainable Energy. The
unit was situated on the roof of a coastal watch tower at Qalet
Marku, situated in the northern part of the island of Malta
(Mifsud et al., 2018). The relative location of the two sites is
shown in Fig. 3, while Fig. 4 shows a satellite image of the
location of the coastal watch tower.

Tables 1 and 2 show the properties of the candidate and the
reference sites respectively (Cordina et al., 2017; Mifsud et
al., 2018). In this case the wind data measured by the lidar at
a height of 80 m would be equivalent to a cumulative height
of 100 m above sea level, which would be the hub height of
the wind turbines in the wind farm. This is because the lidar
is situated on the rooftop of a coastal tower at a height of
20 m above sea level, as shown in Table 3.

4.2 The available wind data

The measurement campaign at the candidate site started on
1 July 2015 and ended on 31 December 2016. Hourly wind
data were available for this time period from both the ref-
erence and candidate sites. The ideal number of data points
used to create the MCP models is thus 8784, i.e. the num-
ber of hours in 2016. Following analysis and filtration of
the wind speed data at the reference site, 98 % of the data
were considered suitable for the creation of the model. The
data at the reference site were all considered suitable. Hence,
the regression model was created using the concurrent 8616
wind speed and direction values. For the year 2015, 95.6 % of
the data were considered valid (the measurement campaign
started on 26 June 2015; hence there were 4368 h of wind
speed and direction measurements of which 4176 were valid
data points).

The MCP analysis was carried out using both wind speed
and wind direction. The data from the reference site were
used as the independent data set. The models were created
using the data for the year 2016, while the reference site wind
data for 2015 were used to create the predicted wind speed
and wind direction as inputs to the wind farm model.
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Table 1. Candidate site parameters (Cordina et al., 2017).

Station name Qalet Marku lidar station

Lidar type ZephIR 300 (https://www.zxlidars.
com/wind-lidars/zx-300/,
last access: 10 May 2020)

Cone angle,
lidar aperture height above the tower
rooftop

60◦, 1 m

Measurement height, above the lidar
aperture window (m)

80 m

Data Average hourly wind speed, wind
direction, atmospheric pressure and
relative humidity

Data range 26 June 2015–31 December 2016

Geographical coordinates 35.946252◦ N, 14.45329◦ E

Average tower rooftop height above
surrounding ground level

10 m

Height of base of tower above sea level 6 m

Table 2. Reference site parameters (Malta International Airport).

Station name Luqa MIA weather station

Measuring instruments Wind – cup and vane digital tempera-
ture probe digital barometer

Data Average hourly wind speed, wind direc-
tion, air temperature, atmospheric pres-
sure and relative humidity

Mast height 10 m above ground

Height of site above sea level 78 m

Geographical coordinates 35.85657◦ N, 14.47676◦ E

Table 3. Wind turbine parameters used in the study (https://
wind-turbine-models.com, last access: 10 May 2020).

Wind turbine parameter

Manufacturer RE power (Germany)
Rated power 5000 W
Rotor orientation Upwind
Number of blades Three
Rotor diameter 126 m
Swept area 12 469 m2

Blade type LM
Cut in speed 3.5 m s−1

Rated wind speed 14 m s−1

Cut-out speed (for offshore) 30 m s−1

Hub height, z 100 m

4.3 The wind farm design in windPRO®

The hypothetical wind farm is located opposite the coastal
watch tower of Qalet Marku (35.945892◦ N, 14.452498◦ E).
WindPRO® 2.7 was used to render an image of the wind farm
onto an image of the lidar unit taken from the watch tower.
This gives an indication as to the extent of the wind farm.
This is shown in Fig. 5 while Fig. 6 shows the satellite im-
agery of the wind farm, showing a 250 MW capacity wind
farm. The wind farm faces the northwest direction, which is
the prevailing wind direction.

The wind farm is made up of 50 wind turbines. There
are 10 wind turbines in a row, having a cross-wind spacing of
five rotor diameters (5D). The distance between the succes-
sive rows of wind turbines, or the downwind spacing, is eight
rotor diameters (8D). Thus, considering wind turbines with
a rotor diameter, D, of 126 m (for a 5 MW wind turbine), the
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Figure 10. Comparing actual wind speed and wind speed predicted by MLR methodology with wind data for 2015.

Figure 11. Comparing actual wind speed and wind speed predicted by ANN methodology with wind data for 2015.

distance between the turbines in the cross-wind direction is
630 m, and the distance between successive rows of wind tur-
bines in the downwind direction is 1008 m. The wind turbine
selected for use in windPRO® is the REpower 5 MW wind
turbine whose parameters are shown in Table 3.

5 Methodology

Figure 7 shows the methodology applied in this paper. The
study is divided into three steps as follows.

1. Step 1. The various MCP methodologies are used to
compute the MCP model. For wind speed, the models
are trained using wind speed and direction data at candi-
date and reference sites for the year 2016. For the wind
direction the input training data are the wind velocity
vector component in the north or east direction at the

candidate site, and the output of the model is the re-
spective component at the candidate site. The models
are summarised in Table 4. Table 4 describes the inputs
used to train the respective models, for both wind speed
and wind direction. It also shows the parameters of the
models and the algorithms used to train the model, such
as least squares for MLR and the Levenberg–Marquardt
algorithm for ANNs.

2. Step 2. The 2015 wind speed and wind direction are
predicted using the models computed in Step 1. The
predicted and actual wind speed and wind direction are
used to compute the power output from the wind farm.
This is done by feeding the wind speed and direction
data into the windPRO® model.
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Table 4. Description of the regression methodologies used for the measure–correlate–predict methodology.

MCP methodology Wind speed Wind direction

MLR Independent variables: two – wind speed mag-
nitude and wind direction at the reference site.
Dependent variables: wind speed magnitude
at the candidate site.

Independent variable: one – wind velocity vector in
the north and east directions at the reference site.
Dependent variable: wind velocity vector in the
north and east directions at the candidate site.

Methodology: least squares

ANN Number of inputs: two – wind speed magni-
tude and wind direction at the reference site)
Number of outputs: one – wind speed
magnitude at the candidate site.

Number of inputs: one – wind velocity vector in the
north and east directions at the reference site)
Number of outputs: one – wind velocity vector in
the north and east directions at the candidate site.

Number of layers: three
Number of neurons in layer: 30, 30, 10
Training methodology: Levenberg–Marquardt algorithm
Percentage of points used for training: 70 %
Percentage of points used for verification: 15 %
Percentage of points used for testing: 15 %

DT Number of inputs: two – wind speed magni-
tude and wind direction at reference site.
Number of outputs: one – wind speed at
the candidate site.

Number of inputs: one – wind velocity vector in the
north and east directions at the reference site.
Number of outputs: one – wind velocity vector in
the north and east directions at the candidate site.

Number of trees: 200
Minimum number of leaves: five
Methodology: tree bagger ensemble

SVR Number of inputs: two – wind speed magni-
tude and wind direction at reference site.
Number of outputs: one – wind speed magni-
tude at the candidate site.

Number of inputs: one – wind velocity vector in the
north and east directions at the reference site.
Number of outputs: one – wind velocity vector in
the north and east directions at the candidate site.

Methodology: hyperparameter optimisation
Kernel: Gaussian
Solver: sequential minimal optimisation

3. Step 3. Compute and compare the normalised mean-
squared error (NMSE), normalised absolute error
(NMAE) and percentage error in the power.

The combinations of lidar measurement heights and MCP
methodologies are shown in Table 5.

Regression models were created for the MCP methodolo-
gies using the reference and candidate wind speed and direc-
tion for the year 2016. These regression models were created
using MLR, ANNs, DTs and SVR. A model was created for
both wind speed and direction.

The wind speed and wind direction for 2015 were then
predicted with the models by feeding the speed and direction
values from the reference site from the year 2015. Thus, a
sequence of predicted wind speeds and wind direction time
series could be compared to the actual speed and direction
measured at the candidate site for the year 2015. The models
for the wind speed and the wind direction are independent of
each other.

In the case of wind direction, the MCP methodologies are
applied as shown in Figs. 8 and 9. Figure 8 shows that two
regressions are carried out: one for the magnitude of the wind
component in the north direction and one for the wind com-
ponent in the east direction. Thus, two models are created
using the wind speed and direction data of the reference and
the candidate sites for 2016. The two models are then used
to derive the predicted wind direction for 2015 at the candi-
date site as shown in Fig. 9, by using the wind components
at the reference site for 2015 as inputs to the respective mod-
els. The values of the wind speed in the north direction and
the east direction are first predicted, and the wind direction
at the candidate site for 2015, θmetp , is then derived from the
mathematical relationships given in Eqs. (6) and (7).

The sequences of wind speed and wind directions (both
actual and predicted) were fed into the wind farm model.
This was done for different combinations of methodology
and wind farm (250, 200, 150, 100 and 50 MW) configura-
tions. The results were compared to determine which combi-
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Table 5. Summary of combinations of methodologies, lidar measurement heights and amount of wind turbines used in the analysis.

MCP methodology

80 m Simple linear Artificial neural Decision trees Support vector
(equivalent to a regression networks (ANNs) (DTs) regression
100 m hub height) (SLR) (SVR)

Wind speed and wind direction, predicted for 2015. Actual and predicted sequences fed into wind farm model;
comparisons of wind farm power output made for a capacity of 250, 200, 150, 100 and 50 MW.

Table 6. Summarised results for normalised mean absolute error
(NMAE) by MCP methodology and wind farm capacity.

Normalised mean absolute error

Wind farm capacity MLR ANN DT SVR

250 MW 0.505 0.502 0.572 0.544
200 MW 0.502 0.499 0.565 0.539
150 MW 0.492 0.482 0.545 0.532
100 MW 0.484 0.472 0.537 0.515
50 MW 0.510 0.547 0.573 0.558

Table 7. Summarised results for the normalised mean-squared error
(NMSE) by MCP methodology and wind farm capacity.

Normalised mean-squared error

Wind farm capacity MLR ANN DT SVR

250 MW 0.977 1.004 1.170 1.082
200 MW 0.956 0.979 1.123 1.052
150 MW 0.912 0.938 1.056 1.002
100 MW 0.834 0.868 0.960 0.917
50 MW 0.789 0.884 0.930 0.890

nation of MCP methodology and wind farm capacity would
give the lowest prediction error. The prediction error for the
power output from the wind farm is analysed using the nor-
malised mean-squared error (MSE), the normalised mean ab-
solute error (NMAE) and the percentage error in the overall
energy yield for the period of analysis. The results are shown
in the following section.

6 Results

A summary of the results is shown below where sequences
of data for a specific period of 2015 are compared. These
sequences are for wind speed, wind direction and power out-
put. All NMSE, NMAE and percentage errors in the overall
energy yield are then shown in the following tables.

Table 8. Summarised results for percentage error in overall energy
yield by MCP methodology and wind farm capacity.

Percentage error in
overall energy yield

Wind farm capacity MLR ANN DT SVR

250 MW 4.63 4.54 18.83 9.44
200 MW 4.80 4.90 18.40 9.34
150 MW 4.92 5.40 17.78 9.23
100 MW 4.78 5.70 16.92 8.71
50 MW 3.65 7.03 14.73 8.23

6.1 Wind speed and wind direction with MCP
methodology

6.1.1 Wind speed with MCP methodology

Figures 10 to 13 show the wind speed from the period 23–
30 November 2015. The particular period is chosen because
of the high availability of wind. The actual wind data are
compared with those predicted by the MLR, ANN, DT and
SVR methodologies. The predicted wind values closely fol-
low the actual wind values, for all the MCP methodologies
applied.

6.1.2 Wind direction with MCP methodology

Figures 14 to 17 show the wind direction from the period 23–
30 November 2015. As above, the actual wind direction at
the candidate site is compared to that predicted by the MLR,
ANN, DT and SVR methodologies. Again, as in the case for
wind speed, there is a similarity between the actual and pre-
dicted wind direction values, in all cases.

6.2 Wind farm power output with MCP methodology, for
a wind farm capacity of 250 MW

Figures 18 to 21 compare the output power from the wind
farm, which is derived from the actual wind speed and wind
direction, to the power output derived from the predicted
wind speed and direction. This comparison is carried out for
the MLR, ANN, DT and SVR methodologies. The results for
a wind farm capacity of 250 MW are being shown. As in the
case for wind speed and direction, the predicted power out-
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Figure 12. Comparing actual wind speed and wind speed predicted by ANN methodology with wind data for 2015.

Figure 13. Comparing actual wind speed and wind speed predicted by SVR methodology with wind data for 2015.

put closely follows that obtained with the actual wind speed
and direction.

A wind data analysis, carried out using windPRO®, is
shown in the next section. The results presented are a Weibull
distribution for wind speed and the wind rose. These charts
are computed from the wind speed and direction which are
predicted by using the MLR, ANN, DT and SVR MCP
methodologies. Thus, the predicted wind speed and direction
are compared with the results computed from the actual wind
data.

6.3 The actual wind data for 2015 measured by the lidar
system

Figure 22 shows the wind data analysis report from
windPRO® for the actual lidar data measured at the 80 m
level height (equivalent to a hub height of 100 m). The im-
ages show the Weibull distribution for the wind speed and
the wind rose. The reports are used to compare the proper-

ties of the actual wind measurements and the predicted wind
speed and direction.

A wind data analysis, carried out using windPRO®, is
shown in the next section. The results presented are a Weibull
distribution for wind speed and the wind rose. These charts
are computed from the wind speed and direction which are
predicted by using the MLR, ANN, DT and SVR MCP
methodologies. Thus, the predicted wind speed and direction
are compared with the results computed from the actual wind
data.

6.4 Wind speed and direction predicted using the MCP
methodologies

Figures 23 to 26 represent the Weibull distribution and the
wind rose for the wind speed and direction predicted by
the MLR, ANN, DT and SVR MCP methodologies respec-
tively at the hub height of 100 m. There is a similarity be-
tween the Weibull plots for the actual wind data and those
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Figure 14. Comparing actual and predicted wind direction predicted by MLR methodology with wind data for 2015.

Figure 15. Comparing actual and predicted wind direction predicted by ANN methodology with wind data for 2015.

for the predicted wind speed, for the same measurement pe-
riod. Meanwhile, the wind direction predicted by the ANN
and DT methodologies shows a higher resemblance to that
of the actual wind direction than that predicted by the MLR
or SVR methodologies. Hence it is expected that the ANN
and the DT methodologies would yield the least error in the
predicted power output from the wind farm.

The results for the NMAE, the NMSE and the percentage
error in the overall energy yield are summarised in Tables 6
to 8. The tables show that the MLR and ANN methodologies
have the best performance in NMAE, NMSE and percentage
error for energy yield. The results are consistent for all wind
farm capacities under consideration. ANNs are better than
MLR in the case of NMAE, while MLR is slightly better than
ANNs in the case of the 50 MW wind farm capacity. MLR is
superior to ANNs in the case of NMSE for all wind farm
capacities. However, the differences between the MLR and
the ANN methodologies are minimal, and both methodolo-
gies show a better performance than the DT or SVR method-
ologies, especially in the case of the overall energy yield as

shown in Table 8. Graphical results are also shown in Figs. 27
to 29.

The ANN methodology also shows the best similarity to
the actual wind speed and wind direction, as seen in Fig. 24.
In the case of the overall energy yield, the MLR and ANN
methodologies show a significant improvement in percent-
age error over the DT and SVR methodologies. The ANN
methodology is only better than the MLR methodology for
the 250 MW wind farm capacity. The MLR methodology has
better results in the case of 200, 150, 100 and 50 MW wind
farm capacities, with the percentage error being 3.65 % at a
wind farm capacity of 50 MW, when compared to an error of
7.3 % obtained with the ANN methodology.

Thus, the metrics show that the best methodology for pre-
dicting the output power from the wind farm is therefore
MLR, closely followed by ANNs.
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Figure 16. Comparing actual and predicted wind direction predicted by DT methodology with wind data for 2015.

Figure 17. Comparing actual and predicted wind direction predicted by SVR methodology with wind data for 2015.

7 Conclusions

The above research has combined the use of MCP method-
ologies for wind speed and used a different method for pre-
dicting the wind direction at a candidate site. Three of the
four MCP methodologies used are based on modern statis-
tical learning methodologies. The data were collected from
a reference site which is the island of Malta’s international
airport, while the candidate site data have been collected by
means of a lidar wind measurement system placed on the
rooftop of a coastal building.

The wind direction at the candidate site was predicted with
the various MCP methodologies by breaking down the wind
velocity vector into its respective north and east direction
components. The regression analysis was then carried out on
the respective components at the reference and the candidate
sites. The wind speed is predicted by using the magnitude
of the wind speed at the respective sites for creating the re-
gression model. The projected wind speed and direction time

series were applied to a hypothetical wind farm. Thus, the
error introduced by the four MCP methods could be mea-
sured. This was done by calculating the NMAE, the NMSE
and the percentage error in the wind farm’s energy yield. The
results show that the NMAE, NMSE and percentage error in
energy yield depend on the MCP methodology and the wind
farm capacity and can be used to establish an optimal MCP
methodology.

In this case, the best MCP method was that which used
MLR. Although other MCP methodologies gave larger er-
rors, they cannot be totally discarded. It is always best
to compare methodologies, comparing results by analysing
residuals and errors and then choosing the best methodology
on a case-by-case basis. In this case the results from the ANN
methodology were very close to those of the MLR method-
ology, while the DT and SVR methodologies gave larger er-
rors.
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Figure 18. Comparing actual and predicted power output from the wind farm with wind data for 2015, actual and predicted by MLR
methodology.

Figure 19. Comparing actual and predicted power output from the wind farm with wind data for 2015, actual and predicted by ANN
methodology.

Figure 20. Comparing actual and predicted power output from the wind farm with wind data for 2015, actual and predicted by DT method-
ology.
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Figure 21. Comparing actual and predicted power output from the wind farm with wind data for 2015, actual and predicted by SVR
methodology.

Figure 22. The windPRO® wind data analysis using actual wind data measured by the lidar equipment at a height of 100 m.

Figure 23. The windPRO® wind data analysis using wind data predicted by MCP applying MLR at a hub height of 100 m.
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Figure 24. The windPRO® wind data analysis using wind data predicted by MCP applying ANNs at a hub height of 100 m.

Figure 25. The windPRO® wind data analysis using wind data predicted by MCP applying DTs at a hub height of 100 m.

Figure 26. The windPRO® wind data analysis using wind data predicted by MCP applying SVR at a hub height of 100 m.
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Figure 27. Comparison of the normalised mean absolute error for the various wind farm topologies and MCP methodology, for the 2015
energy output from the wind farm.

Figure 28. Comparison of the normalised mean-squared error for the various wind farm topologies and MCP methodology, for the 2015
energy output from the wind farm.

Figure 29. Comparison of the percentage error in overall energy yield for the various wind farm topologies and MCP methodology, for the
2015 energy output from the wind farm.
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Unless actual wind data are available, one cannot carry out
this analysis, as the uncertainty is obtained by comparing the
energy from the wind farm with predicted and actual wind
data. The above analysis could be done because 18 months
of data were available, rather than the normal 12 months,
which is usual for a wind resource assessment which uses
MCP methodologies.

The above study was limited to using the same MCP
methodology for both the wind speed and the direction and
to the N.Ø. Jensen methodology for wake losses. The lay-
out chosen was one that ensured a recommended minimum
distance between the wind turbines. Different combinations
of MCP methodologies for wind speed and direction can be
examined.

In this case, an MCP model was created for wind speed,
and two more MCP models were created for wind speed
components, which were then used to calculate the wind di-
rection. Another possible method is to calculate the magni-
tude of the wind speed from the models used to calculate the
wind direction. This was done, but the results from the first
method were by far superior to those from the latter method.
The reason why still needs to be investigated as part of future
work is are not presented in this paper. Having three models
also allows the possibility of using different combinations
of MCP methodologies, i.e. using MLR for wind speed and
ANNs for wind direction. This was also performed for a lim-
ited number of combinations and is also the subject of further
research.

Another area which warrants further study is trying out
different wind farm topologies or selecting different wind
turbines and different hub heights. It would also be of inter-
est to study the application of different wake methodologies
as a possible means of decreasing the uncertainties.
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Appendix A: Nomenclature

ANN Artificial neural network
CFD Computational fluid dynamics
DTs Decision trees
Lidar Light detection and ranging
LES Large-eddy simulation
MCP Measure–correlate–predict
MIA Malta International Airport
MLR Multiple linear regression
MLP Multilayer perceptron
MSE Mean-squared error
NMAE Normalised mean absolute error
NMSE Normalised mean-squared error
SLR Simple linear regression
Sodar Sonic detection and ranging
SVR Support vector regression
WT Wind turbine
Vi Magnitude of wind speed in metres per second
enormi

Normalised residual
eeng Percentage error in energy yield
ei Residual, MW
uip Predicted component of wind speed vector in the easterly direction at the candidate site in metres per second
uiref Component of wind speed vector in the easterly direction at the reference site in metres per second
uiref Component of wind speed vector in the easterly direction at the reference site in metres per second
ui Component of wind speed vector in the easterly direction in metres per second
vican Component of wind speed vector in the northerly direction at the candidate site in metres per second
vip Predicted component of wind speed vector in the northerly direction at the candidate site in metres per second
viref Component of wind speed vector in the northerly direction at the reference site in metres per second
vi Component of wind speed vector in the northerly direction in metres per second
z0 Surface roughness
V i Wind speed vector (speed in metres per second and wind direction in degrees)
θmathip Predicted mathematical wind direction at the candidate site in degrees
θmetip Predicted meteorological wind direction at the reference site in degrees
θmetcan Meteorological wind direction at the candidate site in degrees
θmetref Meteorological wind direction at the reference site in degrees
θmath Mathematical wind direction
θmet meteorological wind direction
D Wind turbine diameter, m
N Number of data points
P Predicted power output from wind farm, MW
Pact Actual power output from wind farm, MW
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