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ABSTRACT 
 

In linking the power centers of the world-economy, a network of 
world cities provides the spatial outline for the reproduction of 
society as a capitalist world-system. An exploratory analysis of this 
global urban system is necessary to attain insight in its 
functioning, but specifications and analyses based on the use of 
classic data analysis techniques are hampered by the fact that they 
cannot assess the various sources of vagueness in this complex 
network of world cities. It is argued that by replacing the premises 
of the classic two-valued framework of conventional mathematics 
by a fuzzy set-theoretical approach where degrees of membership 
are computed rather than a mere assessment of crisp memberships 
in clusters, the inherent vagueness of possible classifications of 
world cities can be taken into account. This assertion is tested by 
comparing the results of some mainstream data analysis 
techniques (principal component analysis, crisp c-means 
clustering) to the results of a classification based on the premises 
of fuzzy set theory (fuzzy c-means clustering). 
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Introduction: fuzzy set theory and its applications 
 
The theory of fuzzy sets was formally introduced by Zadeh (1965), and addressed problems in 
which the absence of sharply defined criteria is involved. In particular, fuzzy sets aim at 
mathematically representing the vagueness and lack of preciseness, which are intrinsic in 
linguistic terms and approximate reasoning. As such, through the use of the fuzzy set theory, 
ill-defined and imprecise knowledge and concepts can be treated in an exact mathematical 
way (Tzafestas, 1994). However, this fact does not imply that fuzziness is mere ambiguity or 
stems from total or partial ignorance. Rather, fuzziness deals with the natural imprecision 
associated with everyday events (Cox, 1994). To illustrate the problem of imprecision in 
formalising linguistic terms, take, for instance, a simple statement like “John is tall”. 
Interpreting this statement in the classical two-valued logical framework of conventional 
mathematics, this would imply that we would have to design a criterion that unambiguously 
describes a person as either “tall” or “not tall”. However, in reality, such a statement is 
abundant with vague and imprecise concepts that are difficult to translate in more precise 
language without losing some of its semantic value. For example, the statement “John’s 
height is 178 cm.” does not explicitly state whether he is tall, and if we would state that 180 
cm. is tall, this does generally not imply that 178 cm. is not to be considered tall. Furthermore, 
a person can be considered both tall and not tall depending on one’s perspective. Any crisp 
analysis resulting in disjoint groups fails to grasp this semantic vagueness (Lakoff, 1972; 
Zadeh, 1972). Fuzzy set theory aims to provide the mathematical underpinnings for the 
specification of this inherent vagueness. More formally, Zadeh (1965, p. 338) defined a fuzzy 
set as “a class of objects with a continuum of grades of membership”. Fuzzy sets are 
characterized by a membership function which assigns to each object of the set a grade of 
membership ranging from zero (non-membership of the set) to one (full-membership of the 
set). Apart from the apparent fuzziness in standard linguistic terminology and everyday 
events, vagueness is also a problem in classification schemes framed upon the unravelling of 
patterns in large data sets (Bezdek, 1981; Pal & Dutta Majumder, 1986; Bezdek & Sankar, 
1992; Pal and Mitra, 1999). This simple and straightforward example, then, is merely a first 
step to possible broader applications in the field of mathematical assessments of vagueness 
drawing on the premises of fuzzy set theory.  
 
The purpose of this article is to provide evidence about the assertion that it is possible to 
account for different sources of vagueness in large geographical databases by using a fuzzy 
classification technique. The assertion that a fuzzy set algorithm should be able to offer a 
more sensitive classification than conventional, crisp methods will be empirically tested by 
comparing results of more classic data analysis techniques (principal component analysis, 
crisp clustering algorithm) with results obtained by a clustering algorithm based on the 
premises of fuzzy set theory. The argument will proceed as follows. First, focusing on 
possible applications in geography, a brief overview of the premises of both types of 
classifications is provided in order to distinguish clearly between crisp and fuzzy 
classifications. Second, a description of the database on the network of world cities, as 
constructed by the Globalization and World Cities Study Group and Network (GAWC), will 
be provided. Special attention will be given to theoretical and practical sources of vagueness 
related to classification analyses in this database. This database on relations between world 
cities is useful for our analysis for three reasons: 
1. Any classification scheme based on the database on world cities should take into account 
the fact that patterns will never be clear-cut, since the network of world cities is characterized 
by complexity rather than by a simple hierarchy (Taylor et al. 2001a; Sassen, 2000) 



2. A great deal of information in this database rests on sparse data, yielding vagueness in any 
classification (Beaverstock et al., 1999; Taylor et al., 2001b).  
3. Some “classical” data analysis techniques (principal component analysis) have been 
applied on this database (Taylor et al., 2001b), providing us the opportunity to assess possible 
advantages and disadvantages of the use of a fuzzy set-algorithm.  
The outset and results of the fuzzy clustering algorithm will be preceded by the outset and 
results of the associated crisp clustering algorithm. This enables us to show the 
methodological differences between both approaches, as well as providing additional results 
that can be compared.  
 
Crisp and fuzzy classifications in geography 
 
The main purpose of unsupervised classification (clustering) of a set of objects is to detect 
subgroups (clusters) based on similarity or dissimilarity between objects. There are many 
different approaches to clustering depending on the definitions and interpretation of these 
subgroups, and each of them may give a different grouping of a dataset. The choice of a 
particular method will depend on the type of output desired, the known performance of 
method with particular types of data, and the size of the dataset. For instance, clustering 
methods may be divided into two categories based on the cluster structure they produce. Non-
hierarchical methods divide a dataset into disjoint clusters, whereas hierarchical methods 
produce a set of nested clusters in which each pair of objects or clusters is progressively 
nested in a larger cluster until only one cluster remains. The choice of either of these two 
techniques in this instance, then, depends primarily on the form of the desired output 
(Kaufman & Rousseeuw, 1990; Everitt et al., 2001). 
  
Although hierarchical and non-hierarchical algorithms are two distinct approaches towards 
the classification of objects, they both share one essential feature: any partition of a set of n 
objects results in mutually exclusive clusters. In the case of non-hierarchical clustering, the 
state of clustering is expressed by an n x C matrix U=(uic), where uic=1 if object i belongs to 
the cluster c, otherwise uic =0. To ensure that the clusters are disjoint and non-empty, uic must 
then satisfy the following conditions (Sato et al., 1996): 
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This classification scheme has certain distinct advantages. For one thing, results are clear-cut, 
and possible cumbersome interpretations of in-between values are expelled from any analysis 
since there is no overlap in cluster membership. When applied to the classification of regions 
or countries based on certain criteria, this fact implies that the only admissible spatial 
boundaries are unambiguous ones (MacMillan, 1995; e.g. Dezzani, 2001; Arrighi & Drangel, 
1986; Van Rossem, 1996). Any location is either entirely situated in a region or a country, or 
it is not. As a consequence, interpretation of the clustering results is straightforward.  
 
In some cases, however, it is not expected that classifications will be clear-cut. As Leung 
(1987, p. 125) points out, “regions are fundamental analytical units on which most spatial 
analyses are based. Conventionally, a region is treated as a spatial construct which can be 



precisely identified and delimited”. However, “…regions may not be precisely identified and 
boundaries generally exist as zones rather than lines”. In addition to this inherent vagueness in 
classifications, the clustering of objects based on sparse data is another source of vagueness 
with respect to the classification of locations.  
 
A possible solution for this problem lies in the use of a fuzzy set-theoretical approach to 
clustering; that approach discards the unambiguous mapping of the data to classes and 
clusters, and instead computes degrees of membership specifying to what extent objects 
belong to clusters. If { }1,0∈icu  in [2] is replaced by  

[0,1]∈
ic

iµ         [3] 

then the clustering result is more sensitive to vagueness in classifications (Sato et al., 1996). 
In using a crisp clustering algorithm, minor shifts in the data may yield a completely different 
outcome although the basic pattern in the data may in fact remain pretty much the same. In a 
fuzzy framework, all places may have a membership in any region. In classifying regions 
where it is more natural to treat them as transient regions between any two areas as fuzzy 
domains in which the degree of fairness, the cases having almost the same profile or pattern 
and the gradual change between sample spaces are in fact the expression of fuzziness (Leung, 
1987; Rolland-May, 1986; Harris et al., 1993). 
 
Since its original outset, fuzzy set theory has been employed in many areas to simulate and 
manage vague information (Höppner et al., 1999). Obviously, these vagueness problems also 
apply to large geographical databases. MacMillan (1995) has pointed out that fuzzy thinking 
has been around in geography for as far back as the 1970s. MacMillan himself (1978) and 
Gale (1972a, 1972b) applied fuzzy set theory with respect to locational decision-making and 
behavioural geography. However, “at that stage, it did not become fashionable in 
geographical circles (…)” (MacMillan, 1995, p. 404). More recent examples of applications 
of the use of fuzzy sets in geography can be found in the domains of spatial analysis (e.g. 
Leung, 1987; 1988), site selection (e.g. Witlox, 1998), and land-use planning (e.g. Smith, 
1992; Xiang et al., 1992). Although there are, then, quite a few examples of the use of fuzzy 
set theory, research topics and methodology issues relying on the use of fuzzy set theory are 
as yet not a part of mainstream geography. Furthermore, the outset of the basic premises of 
fuzzy set theory itself was merely the start for myriad studies leading to an explosive growth 
of both the original core ideas and possible extensions, such as research of expert knowledge 
systems and neural networks. Possible applications for geographers, then, are not limited to 
the application of the basic ideas. A whole range of new methods and applications are 
available now. 
 
One of the major advantages of the use of a fuzzy set-theoretical approach lies in the fact that 
it is possible to capture various aspects of vagueness (Everitt et al., 2001). For instance, fuzzy 
sets can at the same time capture vagueness due to the sparsity of data and vagueness due to 
the lack of theoretically defined pre-existent categories. Hence, a minor shift in the data does 
not necessarily result in a major shift of the classification of in-between values. Rather, a 
minor shift in the dataset will be reflected by minor changes in membership degree, allowing 
for a more sensitive approach of the classification scheme. In general, four of the main useful 
features of fuzzy set methodologies are (Höppner et al., 1999; Chi et al., 1996): 
(i) Fuzzy set theory provides a systematic basis for quantifying vagueness due to                             

incompleteness of information; 
(ii) Classes with unsharp boundaries can be easily modelled using fuzzy sets; 
(iii) Fuzzy reasoning is a formalism that allows the use of expert knowledge, and is able to  

process this expertise in a structured and consistent way; 



(iv) There is no broad assumption of complete independence of the evidence to be      
  combined using fuzzy logic, as required for probabilistic approaches. 
 
 
Features and specification of the network of world cities 
 
Urban geographers have long sought to unravel and describe the systematic nature of the 
spatial arrangement of urban centers. The original outline of Christaller’s central place-theory 
(1933) and Lösch’s extensions of this central place-theory (1954) are but two classic 
examples of such an endeavour. Most of the studies oriented towards the description of the 
spatial arrangement of such an urban system inherit their physical boundaries from their 
definition as an integrated economy. Since the beginning of the twentieth century, the world-
economy is truly global (Wallerstein, 1983), and hence all cities can be thought of as 
participating in a single urban system in a Christallerian sense. This global urban network 
should then theoretically be characterised by functional specialisations as predicted by the 
spatial optimization processes described by central place-theory.  
 
Although the original outline of central place-theory may still do a reasonably good job in 
describing the spatial pattern of urbanization on a regional scale or in assessing the location of 
some service and retail industries at a regional scale, it is not suited to explain patterns of 
global urbanization. At the most basic level, there are at least four (heavily intertwined) 
alterations that should be taken into account with respect to the assessment of a global urban 
network:  

(i) The original hierarchy needs to be supplemented by some additional levels (Hall, 2001); 
(ii) The combined effect of an ever-increasing globalization and a shift from capitalist 

production primarily based on manufacturing to a capitalist system focused on 
knowledge production, suggests that there are new and previously unassessed central 
place functions in place. This holds especially true with reference to the additional 
global levels of urbanization (Sassen, 2000); 

(iii) Under contemporary globalization, cities are increasingly defined by mutual relations in 
spaces-of-flows, rather than by relations to their immediate hinterland (Castells, 1996).  

(iv) The presumed equivalence between hierarchical position in the urban system and central 
place functions seems to be altered due to functional specializations among cities 
(Sassen, 2000). 

 
This extremely brief overview of the most salient features of a global network of world cities 
has a profound impact on the assessment of this urban system. Clearly, an analysis of this 
network should concentrate on flows between cities (Smith and Timberlake, 1995; Castells, 
1996). Moreover, the flows generated by the spatial strategies of advanced producer services 
are crucial determinants in this overall space of flows where world cities act as nodes in a 
complex network (Sassen, 2000). However, irrespective of these theoretical underpinnings on 
the importance of both (i) relational data and (ii) the role of advanced producer services in 
these relations, a more precise and practical specification of this network of world cities is 
obvious. For without such a specification, there can be no detailed study of its nodes, the 
connections, and how these connections and nodes constitute an integrated whole (Taylor et 
al., 2001b).  
 
This need for the construction of geographical databases focusing on relations between world 
cities has been recognized from the very beginning of world city-research (Smith and 
Timberlake, 1995), but the construction itself has been hampered by methodological 



problems. This is due to the fact that the bulk of information on cities is attributional data 
(Short et al., 1996). Hence, although all of the definitions and specifications of a network of 
world cities should be premised upon the existence of worldwide transactions, most of recent 
research efforts on cities have been centred on studying the internal structures of individual 
cities and comparative analyses of these cities (Taylor, 1999). Moreover, some earlier 
attempts towards a specification of the relational character of the network of world cities have 
remained “ambition rather than reality” (Taylor et al., 2001), resulting in ad hoc 
classifications (Friedmann, 1986; Knox, 1995; Sassen, 2000), often limited to the highest 
ranks in the hierarchy (e.g. Sassen, 1991). The overall aim of the Globalization and World 
Cities Study Group and Network (GaWC) has been to provide data and research on the 
relational character of world cities. Arguably one of the most important accomplishments of 
GaWC was Taylor’s (2001) specification of the world city network, by outlining the 
construction of connectivity matrices based on data on the presence of advanced producer 
firms in world cities (Beaverstock et al., 1999; Table 1). Connectivities as measure of flows 
between world cities were derived for each pair of world cities by applying a specific kind of 
network analysis. Using a specific kind of network analysis was deemed necessary because 
the nodes in this network (the world cities) are in fact connected by constituent 
subcomponents (global service firms). That is, although world cities are the formal nodes in 
this network, they are by themselves at best modest actors in the flows in this network. World 
cities are only perceived as nodes in that they harbor advanced producer firms that are 
connected in a complex web of flows. The network of world cities as an interlocking network 
characterized by boundary penetration relations is defined at two levels: a system-level where 
the network operates (the network of world cities), and a unit-level consisting of the nodes as 
actors whose behaviour define the relations (global service firms). Drawing on the formal 
outline by Knoke and Kuklinski (1982), connectivity measures were derived by computing 
the sum of the cross products of all of the firms for any pair of cities. These sums reflect the 
similarity between the cities in terms of global services, and can hence be thought off as a 
surrogate for particular flows of information and knowledge between the cities when two 
assumptions are made. First, offices generate more flows within a firm’s network than to 
other firms in the sector. Although not formally empirically tested, this assumption is 
plausible, for flows of information and knowledge are indispensable for a seamless service. 
Second, the larger the office, the more flows will be generated, which will have a 
multiplicative effect on inter-city relations (Taylor, 2001; Taylor et al., 2001c).  
 
To summarize, data on the presence of global service firms in cities (55 cities x 46 firms, 
Table 1) has been used to derive measures of inter-locking connectivity between cities, 
resulting in indices of network connectivity, where positions of cities within the world city 
network can be assessed (55 cities x 55 cities, Table 2). The resulting matrices with 
connectivities between cities then give way “to various forms of analysis available to simpler 
types of network. This means the wide repertoire of network techniques from elementary 
derivation of indices to scaling, ordinating, factoring, clustering and blocking” (Taylor, 2001, 
p. 192). It is the purpose of this article to complement the specification of this unusual 
network by a non-classic approach to data analysis. 
 
 
 
 
 
 
 



Exploratory analyses of the network of world cities using ‘standard’ classification techniques 
 
A Hierarchical classification 
 
GaWC-researchers themselves have undertaken efforts to apply some ‘standard’ techniques to 
their data. First, in search for a roster of world cities, Beaverstock et al. (1999) identified three 
hierarchical levels of world cities. Based upon the scores in four global service centers 
(advertising, banking, accountancy and legal services), 10 Alpha world cities, 10 Beta world 
cities, and 35 Gamma world cities were identified (Table 3). The initial database consisted of 
123 cities, but only 55 cities were classified as world cities. A city was designated as a world 
city if it served as a global service center for at least two sectors, where at least one of those 
sectors could be designated as a major service provider. The remaining cities, then, were 
merely showing evidence of world city formation processes, but this evidence was not strong 
enough to really call them world cities. 
 
A classification based on principal component analysis 
 
Another classification was provided by Taylor et al. (2001b), in applying an exploratory 
research design using principal component analysis. Principal components analysis (PCA) is a 
member of the factor-analytic family of multivariate techniques, commonly used to define 
patterns of independent sources of variation in a data matrix. As such, they are a popular 
means of producing parsimonious descriptions of large and complex sets of data. It is 
important to note that the application of this PCA-analysis on world cities was used as an 
exploratory rather than a confirmatory research design. This choice for an exploratory 
research design stemmed from the fact that there are ‘uncertainties’ in the application of the 
factor analytic family of techniques, and the fact that the world city-network seems to be a 
complex network rather than a simple hierarchy (Taylor, 2000; Friedmann, 1986). This 
exploratory research design, then, resulted from a positive approach towards vagueness: the 
creation of alternative results provides a means for exploring a set of data. Instead of 
searching for some sort of ideal classification, a multiple-number design allowed for the 
comparison of results over a range of levels of data reduction (Yates, 1987). 
 
Factor allocation for two components resulted in the identification of two groups of world 
cities (“Inner Wannabes” versus “Outer Wannabes”, Table 4). The generic names of these 
clusters of cities were derived from the fact that these cities invariably have policies helping 
them strive for world city status (Short et al., 2000). The labelling of these two “wannabe” 
categories was quite straightforward. Cities with high loadings on the first component were 
situated in what used to be called the ‘third world’, plus eastern European cities and some 
more peripherally located cities in Western Europe, notably in the far south (Mediterranean 
and Iberian cities) and far north (Scandinavian cities), hence the designation as “Outer 
Wannabes”. Cities with high loadings on the second component were termed “Inner 
Wannabes”, since they are primarily relatively minor US cities plus the ‘second cities’ in 
western European countries (Manchester, Birmingham, Barcelona, Lyon, Rome and 
Rotterdam), and second cities in selected associated countries (Montreal, Melbourne, Cape 
Town, Rio de Janeiro and Abu Dhabi). Unallocated cities in this analysis cover all parts of the 
world, but they share one notable feature: they are the major world cities (in the previous 
allocation termed as Alpha en Beta world cities). Next to this dichotomization of the data, a 
PCA with 5 and 10 components was applied, yielding new classifications in ‘outer cities’, 
‘US cities, ‘Pacific-Asian cities’, ‘Euro-German cities’ and ‘Old Commonwealth Cities’ 
(Table 5). To summarize, whereas Beaverstock et al. (1999) provide a hierarchical 



classification, Taylor et al. (2001b) were able to discern a classification based on a spatial 
pattern reflecting functional specializations in the network of world cities.  
 
A classification based on a crisp clustering algorithm 
 
Cluster analysis is a rather loose collection of multivariate statistical methods that seek to 
organize information on variables so that relatively homogenous groups can be formed. All 
members belonging to the same group or cluster have certain properties in common. Hence, 
the resultant classification may provide some insight into the data. The classification has the 
effect of reducing the dimensionality of a data table by reducing the number of rows (cases). 
The aim of a classical crisp cluster analysis is thus to partition a given set of data or objects 
into clusters (subsets, groups, classes), with the following properties (Everitt et al., 2000): 
• Homogeneity within the clusters: data belonging to the same cluster should be as 
similar as possible. 
• Heterogeneity between clusters: data belonging to different clusters should be as 
different as possible.  
 
The classification of the data is based upon a measure of dissimilarity between the different 
data points in the matrix. The Euclidean distance is the most simple and common measure of 
dissimilarity. However, one should consider the fact that (i) different variables as constituent 
components of the classification analysis may be of different relevance for the classification, 
and (ii) the range of values should be suitably scaled in order to obtain reasonable distance 
values (Kaufman & Rousseeuw, 1990). Generally, the second problem can be accounted for 
by using standardized data (z-scores), for this yields a "unit free" measure.  However, since 
we use connectivity measures that were derived using a singular method and based on real-
valued vectors bearing the same meaning (Table 1), this is of no concern here. 
 
Apart from the overall general method (i.e. cluster analysis), one has to choose a particular 
clustering algorithm. This choice depends both on the type of data available and on the 
particular purpose (Chi et al., 1996). The clustering algorithm that will be used here is a c-
means clustering algorithm. A formal specification of this method will be outlined in order to 
highlight the differences with its fuzzy counterpart. This c-means partitioning method 
constructs clusters that satisfy the standard requirements of a crisp partition: 
• Each group must contain at least one object (no empty clusters). 
• Each object must belong to exactly one group (exclusivity of the assignment to a   

cluster). 
Both conditions imply that the maximum number of clusters (C) cannot be greater than the 
number of objects to classify (n), hence C ¡Ün. The second condition also implies that two 
different clusters cannot have any objects in common and that the C clusters together add up 
to the full data set. Defined more formally, the outset of the crisp clustering problem can be 
stated as follows (Chi et al., 1996). 
Let: 

}x,...,x,x{=X n21        [4] 
be a set of samples to be clustered into C classes. The clustering process can be considered as 
an iterative optimization procedure. Suppose that the samples have already been partitioned 
into c classes, be it by random assigning the data points to clusters or through theoretical 
considerations on potential clusters. The task at hand, then, is to adjust the partition so that the 
similarity measure (based on the Euclidean distance) is optimized. The criterion function for 
this optimization procedure is equal to: 
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where vi is the center of the samples in cluster i, and 
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In order to improve the similarity of the samples in each cluster, we can minimize this 
criterion function so that all samples are more compactly distributed around their cluster 
centers. Setting the derivative of J(V) with respect to vi to zero, we obtain 
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Thus, the optimal cluster center of cluster center vi is 
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where ni is the number of samples in class i and Ci contains all samples in class i. 
 
Starting with the initial clusters and their center positions (be it randomly chosen or initially 
assigned), the samples can now iteratively be regrouped so that the criterion function J(V) is 
minimized. Once the samples have been regrouped, the cluster centers need to be recomputed 
to minimize J(V). This process then continues for the new cluster centers: the samples are 
regrouped in order to reduce J(V) yielding a new classification with associated cluster 
centers, and so forth. This iterative process can be repeated until J(V) cannot be further 
reduced or drops below a pre-defined small number å . Obviously, the criterion function is 
minimized if each sample is associated with its closest cluster center. This means that xk will 
be reassigned to cluster i so that (xk-vj)² is minimum when j=i. Up to this point, each sample xk 
appears only once, that is, it is associated with only one cluster center. 
 
Note that we subscribe to an exploratory rather than a confirmatory research design: we are 
not looking for a ‘best result’, rather, the fact that very different results can be found in using 
a different number of clusters is perceived as the most fruitful approach towards uncertainty 
in the resulting classifications (Yates, 1987). Here, we shall describe the clustering results for 
2, 4 and 8 clusters. In the case with two clusters (c=2, Table 6), we note that there is a strong 
dichotomy between the cities with a high connectivity versus cities with a lower connectivity. 
Hong Kong, London, Los Angeles, New York, Paris, Singapore and Tokyo are all assigned to 
the first cluster, all of the other world cities are assigned to the second cluster. All world cities 
belonging to the first cluster are identified by Beaverstock et al. (1999) as Alpha world cities. 
Only Milan, Frankfurt and Chicago are Alpha world cities that are not classified in the first 
cluster. However, this is not a surprise when compared to the results of Beaverstock et al. 
(1999), since these cities are found amongst the lower ranked Alpha world cities. 
 
The clustering result for four clusters (c=4, Table 7) reveals two clusters containing a subset 
of the most important Alpha world cities, and two clusters containing the rest of the world 
cities. The rather odd appearance of a cluster only consisting of Los Angeles and Washington 
DC may be traced back to the concentration of law firms in Los Angeles and Washington DC, 
whereas the other cluster containing Alpha world cities is characterised by a concentration in 
banking and finance services. This corresponds to Sassen’s (2000) expectations on functional 
specializations among American world cities. Taylor et al. (2001b; 2001c) were able to define 
a spatial pattern in their 5-component cut, but the crisp cluster analysis fails to do so. Both 
clusters 3 and 4 include European cities, cities from the semi-periphery of the world-



economy, and a number of American cities, hence no apparent spatial pattern can be 
discerned.  
 
Arguably the most interesting results were found with the application of the algorithm for 
eight clusters (c=8, Table 8). It shows both the possibilities and the restrictions of the crisp 
clustering algorithm when applied to the network of world cities. An apparent spatial pattern 
in the connectivities can be observed. North American cities, German cities and European 
cities around the old European core form a cluster, Latin American cities and cities in the old 
European core are assigned to another cluster. The Pacific-Asian world cities have similar 
connectivities and are, hence, assigned to another cluster (due to their similar relative strength 
in banking services). However, as in the classification provided by Taylor et al. (2001b; 
2001c), the classification of some cities (e.g. Johannesburg, Osaka, Toronto, Warsaw) 
remains open to interpretation.  
 
Summary: classifications based on classical two-valued logic (figure 1) 
 
Exploratory research resting on the application of principal component analysis and cluster 
analysis clearly reveals some basic patterns in the large and complex data matrices on world 
cities. However, the use of these standard techniques, although often revealing and promising, 
still leaves way for additional analysis, i.e.: 
(i) The classification of some cities rests on the fact that they are not allocated to any of 
the components (Taylor, 2001b). As such, the only similarity they bear is the fact that the 
retrieved factors cannot explain the observed variance in the observed patterns for these 
unallocated cities. 
(ii) The first GaWC classification (Beaverstock et al., 1999) assesses a hierarchical 
classification, whereas the second GaWC classification (Taylor et al., 2001b; 2001c) and the 
crisp clustering algorithm primarily assess spatial patterns. A classification that assesses both 
functional and hierarchical tendencies, however, would provide some major advantages. 
(iii) The original intention of Beaverstock et al. (1999) was to account for the bottom end 
of the scale of the roster of world cities, where uncertainty in classifications reigned.  
 
Classification of this “grey area” under the clearly discernible higher rungs of the global 
urban hierarchy, however, merely resulted in the conceptualisation of world cities in the “dark 
grey area”. Cities were dropped from the analysis (316 to 123 (sometimes even to 55)) 
because of the sparsity of the data. Although the classification of these cities is a huge step 
forward as compared to the previous ad hoc classifications (Friedmann, 1986; Friedmann & 
Wolff, 1982) and the focus on the top end of the hierarchy (Sassen, 1991), it is still far from 
complete. The uncertainty due to the sparsity of data, however, tends to prevent the 
classification of cities only showing weak signs of world city formation.  
 
Fuzzy c-means clustering algorithm 
 
Methodology   
 
In the classical crisp clustering process, each city is assigned to only one cluster and all 
clusters are regarded as disjoint gatherings of the data set. However, previously, it was argued 
that the network of world cities constitutes a distinctively non-hierarchical urban structure 
(Taylor, 2001, p. 192). In other words, the global urban hierarchy of world cities is a complex 
network system rather than a simple hierarchy. Although the first two ranks stand out 
(London and New York), this urban system is not a so-called “double-primate” city pattern. 



There may or may not be hierarchical patterns within the spatial organisation of individual 
firms at the global scale (depending on their particular strategies), but when aggregated the 
result is a world city network. It is therefore unlikely that classical, disjoint clusters resulting 
in clear-cut patterns will be able to provide the most salient results. From both a 
methodological and a theoretical point of view, it is hardly acceptable that a crisp 
classification process cannot cater for such a situation. Therefore, we propose to replace the 
separation of the clusters by a fuzzy notion, in order to represent the real data structures more 
accurately. The criterion function for the crisp clustering algorithm in [5] is replaced by a 
fuzzy notion (Chi et al., 1996; Höppner et al., 1999; all drawing on the seminal work by 
Bezdek, 1981), based on the iterative minimization of 
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where 
• x1, x2,…,xn are n data sample vectors 
• V={v1,v2,…,vn} are cluster centers 
• U=[uik] is a Cxn matrix, where uik is the ith membership value of the kth input sample xk, 
and the membership values satisfy the following conditions 
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for i=1,2,…,C and k=1,2,…,n. 
• [,1] ∞∈m  is an exponent weight factor. This weight factor m reduces the influence of 

small membership values. The larger the value of m, the smaller the influence of samples 
with small membership values in the optimization procedure outlined below. 

 
The altered objective function is the sum of the squared Euclidean distances between each 
input sample and its corresponding cluster center, with the distances weighted by the fuzzy 
memberships. The algorithm is iterative and makes use of the following equations: 
 

∑
∑ =

=

=
n

k
ik

m
ikn

k

m
ik

i xv
1

1

1
µ

µ
      [10] 

 
 

∑
=

−

−

−

−
=

c

j

m

jk

m

ik
ik

vx

vx

1

)1/(1

2

)1/(1

2

1

1

µ       [11] 

For the calculation of a cluster center, all input samples are considered in accordance with 
their membership value. For each sample, its membership value in each cluster depends on its 
distance to the corresponding cluster center. Following Chi et al. (1996), the clustering 
procedure consists of the following steps: 



1. Initialize U(0) randomly or based on an approximation (for instance, the results of the 
crisp c-means clustering) by initializing V(0) and calculating U(0). The iteration counter á is set 
to 1, and the number of clusters C and the exponent weight m are chosen.  
2. Using the criterion function, the cluster centers ( ))((ααV ) can be computed based on the 
values of the membership values ( ))((ααU ). 
3.       The membership values ( ))((ααU ) are then updated based on the new cluster centers 

( ))((ααV ). This iteration is stopped if εαα ≤|-|max
)1-()(

uu ikik
, else let 1+= αα  and go to step 2, 

where å  is a pre-specified small number representing the smallest acceptable change in ))((ααU . 
 
Note that the crisp c-means clustering algorithm can be considered as a special case of the 
fuzzy c-means clustering algorithms. If uik is 1 for only one class and zero for all other classes 
in equation [11], then the criterion function J(U,V) used in the fuzzy c-means clustering 
algorithm is the same as the criterion function J(V) used in the crisp c-means cluster 
algorithm. This is the so-called extension-principle. 
  
Classifications of world cities based on the fuzzy c-means clustering algorithm 
 
Again, in our attempt to provide an alternative classification approach based on fuzzy set-
theory, we subscribe to an exploratory research design: there is no definitive way as to the 
number of clusters we are likely to expect in the data matrix. Therefore, any number of 
clusters can yield a result that has some interesting conclusions. For two clusters (c=2, Table 
9), the results are straightforward. When thresholds are placed on a membership degree of 
greater than 0.75 and in the interval [0.3-0.75] in the first cluster, we get two cuts of ten world 
cities comparable to the results of Beaverstock et al. (1999). Nine of the ten world cities 
originally described as Alpha world cities have a membership degree exceeding 0.75 in the 
first cluster. The only difference is Chicago and Sydney changing places. A minor difference, 
since Chicago was ranked as one of the lower ranked Alpha world cities, whereas Sydney was 
originally ranked as one of the higher Beta world cities. Apart from the Chicago/Sydney 
switch, three of the world cities ranked in the [0.3-0.75] interval are not identified as Beta 
world cities by Beaverstock et al. (1999). Three semi-peripheral cities (São Paulo, Mexico 
City and Seoul) are replaced by two American cities (Miami and Washington DC) and Taipei. 
Again, the replaced cities were among the lower ranked Beta world cities, whereas the 
replacing cities (except for Miami) are to be found in the higher ranks of the Gamma world 
cities. In short, our results are consistent with the results of Beaverstock et al. (1999), since 
only a few cities located at the edge of the initial classification change their position in the 
classification based on the fuzzy c-means algorithm.  
 
Computing membership degrees for four clusters (c=4), we can distinguish among several 
groups. World cities with high membership degrees in the second cluster (>0.75) are 
exclusively world cities situated in the Pacific-Asian part of the semi-periphery of the world-
economy: Seoul, Shangai, Bangkok, Bejing, Jakarta, Kuala Lumpur, Manila and Taipei. This 
fact indicates that all these cities show a remarkable resemblance in their connectivity 
profiles. This classification resembles the third category (Pacific-Asian cities) provided by 
Taylor et al. (2001b, Table 8). In contrast with the classification provided by Taylor et al. 
(2001b), Tokyo and Hong Kong are not assigned to a cluster of Asian-Pacific cities, since 
their highest membership degrees are primarily found in a cluster representing the Alpha 
world cities: all cities scoring > 0.7 in the third cluster are identified by Beaverstock et al. 
(1999) as Alpha world cities. In addition, Tokyo also scores 0.27 in the second cluster. This 
score means that Tokyo’s connectivity profile bears both (i) strong resemblance to that of 



other Alpha world cities and (ii) some significant (though less strong) resemblance to the 
Asian-Pacific cluster. This observation implies that this classification scheme is more 
sensitive towards interpretations, since it provides us with the possibility to discern world 
cities that have some sort of in-between profile. On the other hand, this classification grasps 
both hierarchical tendencies (third cluster: Alpha world cities) and functional connectivity 
patterns (second cluster: Asian-Pacific cities). 
 
Other spatial patterns are found when assessing the membership degrees in the first and the 
fourth cluster: all Latin American world cities (Buenos Aires, Mexico City, São Paulo, 
Santiago and Caracas) score >0.8 in the first cluster, whereas most US cities (Atlanta, Boston 
Dallas, Houston, Minneapolis and Montreal) score high in the fourth cluster. The European 
cities are scattered mostly over two clusters, with a concentration of German cities in one 
group, bearing resemblance with the classification provided by Taylor et al. (2001b). 
 
Some cities are very hard to classify (e.g. San Francisco’s minimum membership degree is 
0.1942 and its maximum membership degree is 0.3476), while other cities seem to be 
‘hanging’ in-between two clusters, yielding additional interesting profiles. For instance, 
Melbourne and Sydney have a very fuzzy profile, yielding memberships of about 0.4 in both 
the second cluster (Asian-Pacific world cities) and the first cluster (Latin American world 
cities). Rather than bearing solely resemblance with Asian-Pacific world cities, as would be 
the case in classifications based on a two-valued logic, Melbourne and Sydney have a 
connectivity profile in-between that of Latin American world cities and Asian-Pacific cities, 
yielding almost equal membership degrees in both clusters. Using the fuzzy c-means 
algorithm, then, vagueness in the connectivity profile of Melbourne and Sydney can be 
assessed. In other words, a marginal shift in service profiles and hence connectivity structure 
could lead to a complete (and unwanted) shift in classification in a crisp classification, 
whereas the use of the fuzzy clustering algorithm adapts its resulting classification in a more 
sensitive way. 
 
Conclusion 
 
The data provided by the Globalization and World Cities Study Group and Network (GaWC) 
on the relational character of the network of world cities can be analysed with routine data 
analysis techniques. However, principal component analysis and a crisp clustering algorithm 
make it very hard to assess patterns in the relational data, since it is often characterized by 
different sources of vagueness. Sparse data at the basis of all classifications and theoretical 
considerations on the presence of a complex pattern rather than a clear-cut hierarchy make 
that crisp classifications of world cities have a highly uncertain character. Therefore, rather 
than applying data analysis strategies based on the classical two-valued framework of 
conventional mathematics, we have applied a clustering algorithm that is based on the 
premises of fuzzy set theory.  
 
After outlining the results of other attempts towards an exploratory analysis on the network of 
world cities, we have described the crisp and fuzzy c-means clustering algorithms for 
unsupervised classification. In both algorithms, the distance of an input sample to the center 
of the cluster is used as a criterion to measure the cluster compactness. In the hard c-means 
algorithm, an input sample belongs to one cluster only, while in the fuzzy c-means algorithm 
the degree to which an input sample belongs to a cluster is represented by a membership 
value. Preliminary results of the application of a fuzzy set-algorithm on the 55x55-matrix 
provided by GaWC, point out that it is possible (i) to assess both hierarchical tendencies and 



connectivity patterns (e.g., the case of Tokyo), and (ii) to reveal previously hidden 
information, especially with respect to the assessment of world cities exhibiting an ‘in-
between’ connectivity profile (e.g. Melbourne and Sydney). Therefore, the use of membership 
values provides more flexibility and makes the clustering result more useful in practical 
applications, especially when (i) the data is hampered by sparsity and (ii) identifying in-
between values is the specific aim for the data analysis. Using this technique, then, it might be 
possible to assess connectivity patterns for cities originally expelled from the analysis due to 
sparsity of the data.   
 
There are, however, some drawbacks. First, although the use of a fuzzy clustering algorithm 
may reveal some additional information in exposing more sensitivity in the classification, the 
classification of some objects is hard to interpret. San Francisco, for instance, has for c=4 
significant memberships in all clusters, yielding a very fuzzy pattern, and making it 
impossible to classify it in a convincing way. Moreover, since membership values are 
computed for all clusters using an intensive optimization procedure, a more sensitive 
interpretation also implies a larger task at hand in interpretation itself. 
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Table 1: Extract of the distribution of offices for 46 global advanced producer service firms 
over 55 world cities (collected by Taylor, P.J. and Walker, D.R.F.). 
 
 KPMG Coopers & 

Lybrand 
Ernst & Young 
International 

… 

Amsterdam 3 3 1 … 
Atlanta 3 3 2 … 
Bangkok 1 1 1 … 
… … … … … 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Table 2: Extract of the inter-city matrix on the symmetrical relations between 55 world cities 
(collected by Taylor, P.J. and Walker, D.R.F.). 
 
 Amsterdam Atlanta Bangkok … 
Amsterdam 0,333333343 0,118421055 0,285087705 … 
Atlanta 0,118421055 0,157894731 0,100877196 … 
Bangkok 0,285087705 0,100877196 0,342105269 … 
… … … … … 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 3: A roster of world cities (Beaverstock et al. 1999). 
 
Alpha world cities London, Paris, New York, Tokyo, Chicago, 

Frankfurt, Hong Kong, Los Angeles, Milan 
and Singapore 

Beta world cities San Francisco, Sydney, Toronto, Zurich, 
Brussels, Madrid, Mexico City, Sao Paulo, 
Moscow and Seoul 

Gamma world cities Amsterdam, Boston, Caracas, Dallas, 
Dusseldorf, Geneva, Houston, Jakarta, 
Johannesburg, Melbourne, Osaka, Prague, 
Santiago, Taipei, Washington, Bangkok, 
Beijing, Montreal, Rome, Stockholm, 
Warsaw, Atlanta, Barcelona, Berlin, Buenos 
Aires, Budapest, Copenhagen, Hamburg, 
Istanbul, Kuala Lumpur, Manila, Miami, 
Minneapolis, Munich and Shanghai 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 4: Cities allocated to two components in a principal component analysis (Taylor et al., 
2001b). 
 

… … … 
* indicates second highest loading for a city 

Cities unallocated to two components:  
Antwerp, Berlin, Chicago, Cologne, Dusseldorf, Frankfurt, Hamilton, London, Luxembourg, 
Mexico City, Munich, Nassau, New York, Singapore, Stockholm, Sydney, Tokyo, 
Wellington, Zurich.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Component I: “Outer 
Wannabes” 

Component II: “Inner 
Wannabes” 

>0.7 Istanbul, Athens, Cairo, 
Montevideo, Sofia, Beirut, 
Prague 

St Louis, Indianapolis 

0.6-0.69 Dubai, Bucharest, Mumbai, 
Karachi, Tel Aviv, Budapest, 
Casablanca, Nairobi, Manila, 
Zagreb, Warsaw, Lisbon, 
Santiago, Quito, Moscow, 
Taipei 

Charlotte, Kansas City, 
Atlanta, Seattle, Vancouver, 
Perth, Pittsburgh, Brisbane, 
Denver, Manchester, 
Adelaide 

0.5-0.59 Panama City, Kuwait, 
Calcutta, Jakarta, Bangalore, 
Chennai, Caracas, Seoul, 
Kuala Lumpur, Lima, 
Vienna, Kiev, Johannesburg, 
Auckland*, Jeddah, Madrid, 
Amsterdam, Nicosia, 
Helsinki, Copenhagen, 
Dublin, Ho Chi Minh City 

Portland, Houston, 
Philadelphia, Boston, Dallas, 
Minneapolis, Cleveland, 
Montreal, Melbourne, 
Birmingham, Cape Town, 
San Diego, Auckland, 
Barcelona, Calgary 



Table 5: Cities allocated to five components in a principal component analysis (loadings 
above 0.4; Taylor et al., 2001b). 
 

I 

OUTER CITIES 

II 

US CITIES 

III 

PAC.-ASIAN 
CITIES 

IV 

EURO-
GERM. 
CITIES 

V 

OLD-COMM. 
CITIES 

784 Tel Aviv 

767 Sofia 

753 Kuwait 

730 Helsinki 

730 Quito 

724 Beirut 

769 St Louis 

703 Cleveland 

740 Taipei 

726 Tokyo 

725 Bangkok 

703 Jakarta 

782 Berlin 

768 Munich 

703 
Hamburg 

716 Perth 

715 Adelaide 

696 Casablanca 

681 Athens 

670 Nairobi 

666 Montevideo 

664 Jeddah 

660 Bucharest 

650 Indianapolis 

645 Cairo 

642 Lagos 

629 Panama 

624 Lima 

608 Vienna 

680 Dallas 

664 Kansas City 

650 Pittsburgh 

634 Portland 

633 Atlanta 

631 Seattle 

623 Charlotte 

622 Denver 

620 Detroit 

607 
Philadelphia 

664 Beijing 

658 Manila 

633 Seoul 

630 Kuala Lumpur 

607 Hong Kong 

697 Cologne 

660 Stuttgart 

687 Brisbane 

657 Hamilton 

616 
Birmingham 

599 Dubai 

595Copenhagn 

560 Boston 

557 San Diego 

598 Guangzhou 

593 Shanghai 

593 
Frankfurt 

547 Manchester 

504 Nassau 



595 Oslo 

592 Zagreb 

590 Karachi 

586 Chennai 

584 Bangalore 

572 Istanbul 

570 Lisbon 

553 Bratislava 

535 Kiev 

534 Nicosia 

533 Calcutta 

524 Washington 

524 
Minneapolis 

502 San Francis 

500 Houston 

560 Ho Chi Min 

516 Istanbul 

511 Mumbai 

500 Singapore 

569 Paris 

530 
Budapest 

530Dusseldo
rf 

519 Warsaw 

511 Milan 

508 
Luxembg 

501 Vancouver 

501 Nicosia 

495 Riyadh 

492 Prague 

468Auckland 

461 Moscow 

457 Johannesbg 

452 Cape Town 

448 Manila 

446 Budapest 

427 Mumbai  

424 Warsaw 

421 Port Louis 

418 Santiago 

499 Melbourne 

473 Los 
Angeles 

462 Vancouver 

437 Chicago 

425 Miami 

410 Montreal 

409 Toronto 

455 Sao Paulo 

443 Caracas 

416 New Delhi 

405 Santiago 

482 Antwerp 

460 Prague 

452Rome 

437 Lyons 

433 
Amsterdam 

402 Moscow 

457 Abu Dhabi 

453 Montreal 

442 Auckland 

441 Calgary 

426 London 

423 Dubai 

410 Port Louis 

408 Dublin 

402 Wellington 

 
 
 
 



Table 6: Crisp c-means clustering algorithm for c=2. 
 
Cluster 1: Alpha world cities Cluster 2 
Hong Kong, London, Los Angeles, New 
York, Paris, Singapore, Tokyo 

All other world cities 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 7: Crisp c-means clustering algorithm for c=4. 
 
Subset of Alpha world cities Other world cities 
Cluster 1 Cluster 2 Cluster 3 Cluster 4 
LosAngeles, 
Washington D.C. 

London, Paris, 
Tokyo, Hong Kong, 
New York 

Amsterdam, Buenos 
Aires, San Francisco, 
Singapore,… 

Copenhagen, 
Joahannesburg, 
Atlanta, Kuala 
Lumpur,… 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 8: Crisp c-means clustering algorithm for c=8. 
 

Alpha and Beta world cities  Gamma world cities Pacific-
Asian world 
cities 

Cluster 
1 

Cluster 
2 

Cluster 
3 

Cluster 
4 

Cluster 
5 

Cluster 6 Cluster 7 Cluster 8 

London
, New 
York 

Chicago, 
San 
Francisc
o 

Paris, 
Brussels
. 

Los 
Angeles 

Washing
ton D.C. 

Seven North-
American 
cities:  
Atlanta, 
Boston, 
Dallas, 
Houston, 
Miami, 
Minneapolis, 
Montréal. 
Four German 
cities: 
Hamburg, 
Düsseldorf, 
Berlin, 
Münich. 
Six cities 
around the old 
European: 
Prague, 
Budapest, 
Istanbul, 
Rome, 
Stockholm, 
Copenhagen. 

 Osaka, 
Johannesburg. 
 

Six 
European 
core cities: 
Barcelona, 
Frankfurt, 
Amsterdam, 
Milan, 
Madrid, 
Zürich. 
Five Latin 
American 
cities:  
São Paulo, 
Buenos 
Aires, 
Santiago, 
Mexico 
City, 
Caracas. 
Moscow, 
Toronto, 
Tokyo, 
Warsaw. 
 

Bangkok, 
Bejing, 
Hong Kong, 
Jakarta, 
Kuala 
Lumpur, 
Manila, 
Seoul, 
Shangai, 
Singapore, 
Taipei, 
Melbourne.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 9: Memberships degrees for c=2 (m=1.2). 
 
Alpha world cities 
Beta world cities 
 
 Cluster 1 Cluster 2 

Amsterdam 0.0983 0.9017 

Atlanta 0.0405 0.9595 

Bangkok 0.1841 0.8159 

Barcelona 0.0864 0.9136 

Bejing 0.0665 0.9335 

Berlin 0.0121 0.9879 

Boston 0.1037 0.8963 

Brussels 0.6399 0.3601 

Budapest 0.0429 0.9571 

Buenoas Aires 0.0398 0.9602 

Caracas 0.0315 0.9685 

Chicago 0.4336 0.5664 

Copenhagen 0.0186 0.9814 

Dallas 0.1202 0.8798 

Dusseldorf 0.0724 0.9276 

Frankfurt 0.8678 0.1322 

Geneva 0.0589 0.9411 

Hamburg 0.0254 0.9746 

Hong Kong 0.9617 0.0383 

Houston 0.0338 0.9662 

Istanbul 0.0567 0.9433 

Jakarta 0.1904 0.8096 

Johannesburg 0.041 0.959 

Kuala Lumpur 0.0872 0.9128 

London 0.9631 0.0369 

Los Angeles 0.7787 0.2213 

Madrid 0.7118 0.2882 

Manila 0.0254 0.9746 

Melbourne 0.1186 0.8814 

Mexico City 0.4149 0.5851 

Miami 0.2053 0.7947 

Milan 0.8017 0.1983 

Minneapolis 0.0258 0.9742 

Montréal 0.0412 0.9588 

Moscow 0.4468 0.5532 

Münich 0.0148 0.9852 

New York 0.9385 0.0615 

Osaka 0.0142 0.9858 

Paris 0.9459 0.0541 

Prague 0.1187 0.8813 

Rome 0.018 0.982 

San Francisco 0.733 0.267 

São Paulo 0.3059 0.6941 

Santiago 0.0469 0.9531 



Seoul 0.181 0.819 

Shangai 0.0805 0.9195 

Singapore 0.9212 0.0788 

Stockholm 0.0518 0.9482 

Sydney 0.8455 0.1545 

Taipei 0.4264 0.5736 

Tokyo 0.9629 0.0371 

Toronto 0.4132 0.5868 

Warsaw 0.1359 0.8641 

Washington DC 0.5621 0.4379 

Zürich 0.6725 0.3275 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 10: Membership degrees for c=4 (m=1.2). 
 
 Cluster 1 Cluster 2 Cluster 3 Cluster 4 

Amsterdam 0.524123 0.306897 0.004424 0.164556 

Atlanta 0.02802 0.050987 0.001817 0.919177 

Bangkok 0.049657 0.918786 0.004012 0.027546 

Barcelona 0.49155 0.352507 0.004947 0.150996 

Bejing 0.053499 0.88279 0.001879 0.061832 

Berlin 0.018868 0.026729 0.000344 0.954059 

Boston 0.097505 0.188287 0.009952 0.704257 

Brussels 0.615905 0.189492 0.061804 0.132799 

Budapest 0.270859 0.538072 0.003472 0.187597 

Buenoas Aires 0.650816 0.284257 0.00114 0.063787 

Caracas 0.633092 0.196391 0.001641 0.168876 

Chicago 0.329475 0.23966 0.059238 0.371627 

Copenhagen 0.076183 0.072819 0.001196 0.849802 

Dallas 0.203804 0.171604 0.01073 0.613862 

Dusseldorf 0.137256 0.240522 0.006825 0.615397 

Frankfurt 0.643882 0.149012 0.13084 0.076266 

Geneva 0.221924 0.551812 0.0037 0.222564 

Hamburg 0.0401 0.050294 0.00107 0.908535 

Hong Kong 0.05245 0.049765 0.886345 0.01144 

Houston 0.076289 0.186034 0.002741 0.734937 

Istanbul 0.150946 0.487548 0.007376 0.35413 

Jakarta 0.171782 0.799264 0.002761 0.026192 

Johannesburg 0.162217 0.370754 0.004099 0.46293 

Kuala Lumpur 0.064078 0.787284 0.005949 0.142689 

London 0.006198 0.003729 0.988516 0.001557 

Los Angeles 0.074831 0.106491 0.743886 0.074792 

Madrid 0.88104 0.085558 0.012942 0.02046 

Manila 0.047634 0.928858 0.000408 0.023101 

Melbourne 0.378934 0.412471 0.006964 0.201632 

Mexico City 0.855859 0.100751 0.005759 0.03763 

Miami 0.341053 0.292682 0.032896 0.33337 

Milan 0.808024 0.098918 0.045067 0.047991 

Minneapolis 0.030464 0.069439 0.00156 0.898537 

Montréal 0.091494 0.080668 0.002173 0.825666 

Moscow 0.457956 0.261764 0.075146 0.205134 

Münich 0.023434 0.033815 0.000455 0.942296 

New York 0.009922 0.006757 0.979927 0.003394 

Osaka 0.021008 0.061036 0.000636 0.917321 

Paris 0.165979 0.078834 0.724841 0.030346 

Prague 0.364467 0.354509 0.014034 0.26699 

Rome 0.11081 0.188571 0.001409 0.69921 

San Francisco 0.347625 0.194246 0.263695 0.194434 

São Paulo 0.95959 0.030323 0.000983 0.009104 

Santiago 0.809093 0.120572 0.001107 0.069227 

Seoul 0.081293 0.865856 0.004585 0.048267 

Shangai 0.057417 0.808512 0.005624 0.128447 

Singapore 0.263969 0.296401 0.406517 0.033113 



Stockholm 0.372888 0.158211 0.004673 0.464227 

Sydney 0.417064 0.417061 0.108132 0.057743 

Taipei 0.102919 0.846042 0.01474 0.036299 

Tokyo 0.008328 0.271475 0.696712 0.023484 

Toronto 0.80892 0.118192 0.007306 0.065582 

Warsaw 0.401989 0.292484 0.014729 0.290798 

Washington DC 0.185934 0.182946 0.328281 0.302839 

Zürich 0.77475 0.13121 0.032399 0.06164 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1: Vagueness in the assessment of a network of world cities. 

 
 

 

Sharp rise in telecommunication, 
computing, reinforced by focus on 

knowledge production 

Advanced producer services 
(legal, consulting, advertising and 

financial services) 

 
Increased independence of 

hinterland  

Organizational logic: 
 world cities in spaces-of-
flows replace spaces-of-

places 

Specification and assessment of the world city 
network: 

• the network of world cities is defined by flows 
between cities 

• flows are primarily mediated by the location 
strategies of advanced producer services 

 
 
 
• specification of the world city network as a 

network characerised by boundary penetration 
layers (Taylor, 2001): from attributional data 
to relational data 

• assessment of resulting data matrices by 
classic data analysis techniques (PCA, crisp c-
means clustering algorithm,…) 

 

• sparse data 
prevents 
classification of 
cities with low 
connectivities 

• the network of 
world cities is a 
complex network 
rather than a 
simple hierarchy: 
clearcut patterns 
are unlikely 

• scrambling 
functional 
specialisations and 
hierarchical 
tendencies  
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