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Abstract. Due to their wide area of applications, queueing models with
batch service, where the server can process several customers simulta-
neously, have been studied frequently. An important characteristic of
such batch-service systems is the size of a batch, that is the number
of customers that are processed simultaneously. In this paper, we anal-
yse a two-class batch-service queueing model with variable server capac-
ity, where all customers are accommodated in a common first-come-first
served single-server queue. The server can only process customers that
belong to the same class, so that the size of a batch is determined by
the number of consecutive same-class customers. After establishing the
system equations that govern the system behaviour, we deduce an expres-
sion for the steady-state probability generating function of the system
occupancy at random slot boundaries. Also, some numerical examples
are given that provide further insight in the impact of the different pa-
rameters on the system performance.
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1 Introduction

In telecommunication applications, a single server can often process multiple cus-
tomers (i.e. data packets) simultaneously in a single batch. An important charac-
teristic of such batch-service systems is the maximum size of a batch, that is the
maximum number of customers processed simultaneously. In many batch-service
systems this number is assumed to be a constant [1–5]. However, in practice, the
maximum batch size or capacity of the server can be variable and stochastic, a
feature that has been incorporated in only a few papers. Chaudhry and Chang
analysed the system content at various epochs in the Geo/GY /1/N + B model
in discrete time, where Y denotes the stochastic capacity of the server, which is
upper-bounded by B, and N is the maximum queue capacity [6]. Furthermore,
Pradhan et al. obtained closed-form expressions for the queue length distribution
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at departure epochs for the discrete-time M/GYr /1 queue where the service pro-
cess depends on the batch size [7]. A similar feature in the models from Chaudhry
and Chang, and Pradhan et al. is that the capacity of a batch is independent of
the queue length and of the capacities of the previous batches. On the contrary,
Germs and van Foreest have recently developed an algorithmic method for the
performance evaluation of the continuous-time M(n)X(n)/G(n)Y (n)/1/K + B
queue [8]. In that model, both the arrival rate and service process (the service
times as well as the capacities) depend on the queue size.

Another feature of the above models is that customers are indistinguishable,
i.e., they all are of the same type. Although in many types of queueing systems
several customer classes are included to account for customer differentiation,
only a few papers on batch service consider multiple customer classes. Reddy
et al. study a multi-class batch-service queueing system with Poisson arrivals
and a priority scheduling discipline, in the context of an industrial repair shop
where the most critical machines are repaired first [9]. Boxma et al. study a
polling system with Poisson arrivals and batch service [10]. In this case, each
customer class has a dedicated queue and the server visits the different queues
in a cyclic manner. Boxma et al. focus on the influence of a number of different
gating policies on the performance. Dorsman et al. study a polling system with
a renewal arrival process and batch service, where the batches are created by
accumulation stations before they are added to a queue [11]. Such a system can
be used when a single server processes multiple product types with batching
constraints. Dorsman et al. focus on optimizing the batch sizes of each class.

In this paper, we analyse a two-class discrete-time batch-service queueing
model, with a variable service capacity that depends on the queue size and on
the specific classes of the successive customers. To the best of our knowledge,
the combination of batch service with variable capacity and multiple customer
classes has not appeared in the literature before. Whereas in the mentioned
papers about priority queueing and polling systems the customers of different
classes are accomodated in different queues, the customers of all classes are ac-
commodated in a common queue here. When the server becomes available, it will
simultaneously process the customer at the head of the queue, and all successive
customers that are of the same class as the head customer. This, for instance,
means that if the first customer is of class A, all of the following class A cus-
tomers are also grouped in the batch that will be taken into service, until the
next customer is of class B. Applications of this server can be found in manufac-
turing environments or telecommunication systems, where customers with the
same system parameter, such as the required temperature or the destination of
the customer, can be processed simultaneously on a FCFS-basis.

The paper is structured as follows. In Section 2 we describe the discrete-
time two-class queueing model with batch service in detail. This system consists
of a single First-Come-First-Served (FCFS) queue of infinite size, and a single
batch server with a variable capacity. In Section 3 we establish the system equa-
tions, from which we deduce the stability condition, and derive a closed-form
expression for the steady-state probability generating function (pgf) of the sys-
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tem occupancy at random slot boundaries. Next, using the expressions obtained
in Section 3, we evaluate the behaviour of the system through some numerical
examples in Section 4. Our conclusions are presented in Section 5.

2 Model description

Let us consider a discrete-time two-class queueing system with infinite queue size,
and a batch server whose capacity is stochastic. The classes of the customers are
denominated as A and B. Arriving customers are inserted at the tail of the
queue. When the server is or becomes available and finds a non-empty queue, a
new service is initiated. The size of the batch is then determined by the number
of consecutive customers at the front of the system that are of the same class.
More specifically, the server starts serving a batch of n customers if and only if
one of the following two cases occurs:

– Exactly n customers are present and they are all of the same class.
– More than n customers are present, the n customers at the front of the queue

are of the same class and the (n+ 1)-th customer is of the other class.

We define the class of a batch as the class of the customers within it.
The aggregated numbers of customer arrivals in consecutive slots are mod-

elled as a sequence of independent and identically distributed (i.i.d.) random
variables, with common probability mass function (pmf) e(n) and pgf E(z). The
mean aggregated number of customer arrivals per slot is denoted as λ. A ran-
dom customer is of class A with probability (w.p.) σ and of class B w. p. 1− σ
regardless of the classes of other customers. The service time of a batch is always
a single slot, independently of both the class of the batch and its size.

3 Analysis

In this section, we first determine the system equations that capture the system
behaviour. Then we analyse the conditions for stability, and we establish the
steady-state pgf of the system occupancy, that is the number of customers in
the system at the beginning of a slot, including those in the batch that will be
served during this slot (if any).

3.1 System Equations

In this subsection, we give the system equations that capture the behaviour of
the system at successive slot boundaries. The number of customers in the system
or the system occupancy at random slot boundaries is denoted by uk. We also
define the random variables uI,k, uA,k and uB,k as the system occupancy at the
boundary of slot k when the server respectively is idle or processes a class A or
B batch.

If the server is idle during slot k, then the next slot is also an idle slot if there
are no new arrivals. On the other hand, when there is at least one arrival, then
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the server will process a class A or B batch based on the class of the first arrival.
This leads to the system equations if uI,k = 0:

uI,k+1 = 0, if ek = 0

uA,k+1 = ek, if ek > 0 & first arrival of class A,w.p. σ

uB,k+1 = ek, if ek > 0 & first arrival of class B,w.p. 1− σ , (1)

where ek is the number of customers that arrive during slot k, with pmf e(n)
and pgf E(z).

On the other hand, if a class A batch is processed during a random slot k and
there are uA,k customers in the system, then the system equations also depend
on the size of the processed batch. In the first case, all waiting customers are
served meaning that the batch size ck is equal to uA,k. This leads to a similar
behaviour as for an idle slot. If the size of the batch is less than uA,k meaning
that not all customers are processed simultaneously, then the customer at the
head of the queue must be of the opposite class, implying that a class B batch
is always processed during slot k + 1. Summarized, we have

uI,k+1 =0, if ek = 0 & ck = uA,k

uA,k+1 =ek, if ek > 0 & ck = uA,k & first arrival of class A (w.p. σ)

uB,k+1 =ek, if ek > 0 & ck = uA,k & first arrival of class B (w.p. 1− σ)

uB,k+1 =uA,k − ck + ek, if ck < uA,k , (2)

where ck > 0 is the size of the batch being processed during slot k.
The case that a class B batch was processed during a random slot k leads to

the counterpart system equations

uI,k+1 =0, if ek = 0 & ck = uB,k

uA,k+1 =ek, if ek > 0 & ck = uB,k & first arrival of class A (w.p. σ)

uB,k+1 =ek, if ek > 0 & ck = uB,k & first arrival of class B (w.p. 1− σ)

uA,k+1 =uB,k − ck + ek, if ck < uB,k . (3)

3.2 Stability Condition

In order to find the stability condition, we analyse the system under the condi-
tion that the queue is saturated. In such a system, the batch server is never idle
and the size of the processed batches is not limited by a lack of customers and
therefore geometrically distributed. Because the server processes all same-class
customers at the head of the queue, the server will alternate between process-
ing class A and B batches, which means we can limit ourselves to considering
2 consecutive slots. The system is stable when the mean number of customer
arrivals during two consecutive slots, which is equal to 2λ, is less than the mean
number of customers processed during the same slots. The mean number of pro-
cessed customers during two consecutive slots is the sum of the mean batch size
of a class A and B batch. The batch size follows a geometric distribution with
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parameter σ (class A) or 1− σ (class B) respectively. The stability condition is
then given by

2λ <
1

1− σ
+

1

σ
.

If σ is either 0 or 1, then the stability condition is reduced to λ < ∞, i.e., the
system is always stable. This is as expected, since in this case all customers are
of the same class, which means that no matter how many customers arrive, the
server will always aggregate all waiting customers in a single batch. Also, if σ is
equal to 0.5 then the maximum tolerable arrival rate reaches a minimum value.

We can also define the load ρ of the system as the fraction of the average
number of arrivals versus the maximum allowed arrival rate, which leads to

ρ :=
2λ

1
1−σ + 1

σ

= 2λσ(1− σ) < 1 . (4)

3.3 System occupancy

Assuming the stability condition is met, we can define the pmf of uk, the system
occupancy at random slot boundaries, as

u(i) := lim
k→∞

Pr[uk = i] ,

with corresponding pgf

U(z) :=

∞∑
i=0

u(i)zi .

We can split the generating function of the system occupancy U(z) in three
parts based on the state of the server (idle, processing a class A batch or class
B batch). This leads to

U(z) = uI + UA(z) + UB(z) , (5)

where we introduced the following definitions

uI := lim
k→∞

Pr[uI,k = 0] ,

UA(z) :=

∞∑
i=1

lim
k→∞

Pr[uA,k = i]zi ,

UB(z) :=

∞∑
i=1

lim
k→∞

Pr[uB,k = i]zi .
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The first term in the right-hand side of Eq. 5 corresponds to the probability
that the server is idle during a random slot. This probability uI is found by
invoking the system equations in Section 3.1.

uI =uIE(0) + lim
k→∞

∞∑
i=1

Pr[uA,k = i]E(0)σi−1

+ lim
k→∞

∞∑
i=1

Pr[uB,k = i]E(0)(1− σ)i−1

=uIE(0) + E(0)
UA(σ)

σ
+ E(0)

UB(1− σ)

1− σ
,

leading to

uI =
E(0)

(1− E(0))

(
UA(σ)

σ
+
UB(1− σ)

1− σ

)
. (6)

Based on the state of the server during the previous slot, we can split the
second term of Eq. 5 as

UA(z) =E[zuA,k+1 ] = E[zuA,k+1I{uI,k=0}] + E[zuA,k+1I{uA,k>0}]

+ E[zuA,k+1I{uB,k>0}] , (7)

where I{C} are indicator functions which are equal to 1 if event C occurs and zero
otherwise. The first part of this equation gives the partial generating function in
case of the server being idle in the previous slot. Using Eq. 1 we can write this
function as

E[zuA,k+1I{uI,k=0}] = σE[zekI{uI,k=0,ek>0}] = σuI(E(z)− E(0)) . (8)

Analogously we can write the second part, invoking the system equations in Eq.
2, as

E[zuA,k+1I{uA,k>0}] =σE[zekI{uA,k>0,ck=uA,k,ek>0}]

=(E(z)− E(0)) lim
k→∞

σ

∞∑
i=1

σi−1Pr[uA,k = i]

=(E(z)− E(0))UA(σ) . (9)

The last part of UA(z) corresponds to the case that a class B batch is processed
during the previous slot. Using Eq. 3, we obtain the following equation

E[zuA,k+1I{uB,k>0}]

=σE[zekI{uB,k>0,ck=uB,k,ek>0}] + E[zuB,k−ck+ekI{uB,k>1,ck<uB,k}] .

If the number of customers in the system is equal to i, then the probability that
the size of the batch is equal to i is given by (1− σ)i−1 since we know the class
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of the first customer and the next i − 1 customers must be of class B. On the
other hand, the probability that the size of the served batch is equal to j < i is
given by σ(1 − σ)j−1 because the (j + 1)-th customer must be of class A. This
leads to

E[zuA,k+1I{uB,k>0}]

=σ(E(z)− E(0))

∞∑
i=1

(1− σ)i−1 lim
k→∞

Pr[uB,k = i]

+ σE(z)

∞∑
i=2

i−1∑
j=1

zi−j(1− σ)j−1 lim
k→∞

Pr[uB,k = i]

=σ(E(z)− E(0))
UB(1− σ)

1− σ

+ σE(z)

∞∑
i=2

lim
k→∞

Pr[uB,k = i]
(1− σ)zi − z(1− σ)i

(1− σ)(z − (1− σ))

=σ(E(z)− E(0))
UB(1− σ)

1− σ

+
σE(z)

(1− σ)(z − (1− σ))

(
(1− σ)UB(z)− zUB(1− σ)

)
. (10)

By combining Eqs. 8, 9 and 10, we obtain the partial pgf of the system occupancy
in a slot where a class A batch is processed.

UA(z) = σ(E(z)− E(0))

(
uI +

UA(σ)

σ
+
UB(1− σ)

1− σ

)
+

σE(z)

(1− σ)(z − (1− σ))

(
(1− σ)UB(z)− zUB(1− σ)

)
. (11)

An analogous analysis leads to the partial generating function UB(z).

UB(z) = (1− σ)(E(z)− E(0))

(
(uI +

UA(σ)

σ
+
UB(1− σ)

1− σ

)
+

(1− σ)E(z)

σ(z − σ)

(
σUA(z)− zUA(σ)

)
. (12)

By substituting Eq. 12 in Eq. 11 we obtain for UA(z)

UA(z) = σ(E(z)− E(0))

(
uI +

UA(σ)

σ
+
UB(1− σ)

1− σ

)
− σzE(z)UB(1− σ)

(1− σ)(z − (1− σ))

+
σE(z)

z − (1− σ)

(
(1− σ)(E(z)− E(0))

(
uI +

UA(σ)

σ
+
UB(1− σ)

1− σ

)

+
(1− σ)E(z)

z − σ
UA(z)− (1− σ)zE(z)UA(σ)

σ(z − σ)

)
.
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We now multiply by (z − σ)(z − 1 + σ) and put all terms that contain UA(z) in
the left-hand side of the equation. Also using Eq. 6 to substitute uI leads to

UA(z)
(

(z − σ)(z − (1− σ))− σ(1− σ)E(z)2
)

= σ(z − σ)
(
z − 1 + σ + (1− σ)E(z)

)E(z)− E(0)

1− E(0)

(
UA(σ)

σ
+
UB(1− σ)

1− σ

)
− σ(z − σ)zE(z)UB(1− σ)

1− σ
− (1− σ)zE(z)2UA(σ) . (13)

The analogous expression for class B then satisfies

UB(z)
(

(z − σ)(z − (1− σ))− σ(1− σ)E(z)2
)

= (1− σ)(z − 1 + σ)
(
z − σ + σE(z)

)E(z)− E(0)

1− E(0)

(
UA(σ)

σ
+
UB(1− σ)

1− σ

)
− (1− σ)(z − 1 + σ)zE(z)UA(σ)

σ
− σzE(z)2UB(1− σ) . (14)

The sum of Eqs. 6, 13 and 14 lead to the pgf of the system occupancy at
random slot boundaries. This generating function is equal to

U(z)
(

(z − σ)(z − (1− σ))− σ(1− σ)E(z)2
)

= uI

(
(z − σ)(z − (1− σ))− σ(1− σ)E(z)2

)
+
E(z)− E(0)

1− E(0)

·
(

(z − σ)(z − 1 + σ) + σ(1− σ)(2z − 1)E(z)
)(UA(σ)

σ
+
UB(1− σ)

1− σ

)
− (1− σ)zE(z)UA(σ)

(
E(z) +

z − 1 + σ

σ

)
− σzE(z)UB(1− σ)

(
E(z) +

z − σ
1− σ

)
. (15)

The two remaining unknowns UA(σ) and UB(1− σ) in the pgf U(z) are yet
to be determined. With the theorem of Rouché, we can easily prove that the
denominator of U(z) has two zeros inside or on the unit circle. Each zero of the
denominator must also be a zero of the numerator since generating functions are
analytical functions inside the complex unit disk and bounded for |z| = 1. In Eq.
15 we can easily see that z = 1 is a zero of the denominator. The other zero can
be calculated numerically. The equations provided by the zeros constitute a set
of two linear equations for two unknowns. We also note that z = 1 leads to the
normalisation condition. By evaluating Eq. 15 at z = 1 and applying l’Hôpital’s
rule we obtain

1 = uI + UA(σ)
1 + 2(1−σ)λE(0)

1−E(0)

1− 2σ(1− σ)λ
+ UB(1− σ)

1 + 2σλE(0)
1−E(0)

1− 2σ(1− σ)λ
.
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4 Numerical results

In this section, we illustrate the results obtained in the previous section through
numerical examples. In Fig. 1-3, we consider a geometric arrival process with
mean arrival rate λ. The pgf E(z) is equal to

E(z) =
1

1 + λ(1− z)
.

The influence of the parameter σ on the average system occupancy E[U ]
is shown in Fig. 1 as function of both the mean arrival rate and the load of
the system. In Fig. 1a we note that smaller values of σ lead to a significant
improvement of the performance of the system. This is caused by the inverse
proportionality of the parameter σ to the size of the batches being processed.
On the other hand, we observe in Fig. 1b that the mean system occupancy is
larger for smaller values of σ when the server is operating under the same load,
as defined in Eq. 4. This is the result of two conflicting effects. A smaller value
of σ leads to a higher average number of customers that the server can process
due to larger sequences of same-class customers, but also to a higher arrival rate
to obtain the same load in the system. In Fig. 1b it is clear that the influence
of the increased arrival rate is most significant, partially because the number
of customers in the server are also part of the system occupancy and partially
because there must be more customers waiting in the queue to create the larger
batches that can be processed.

(a) Versus the mean arrival rate λ (b) Versus the load ρ

Fig. 1: Influence of σ on the average system occupancy as a function of the arrival
rate λ (a) and the load ρ (b).

A more detailed analysis of the influence of σ on the mean system occupancy
when the server is operating under a certain load is shown in Fig. 2. We first
observe that σ is symmetric around 0.5, which means that a probability of a
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class A customer being equal to σ or 1 − σ will lead to the same value for the
mean system occupancy. If we look at 0.2 < σ < 0.8 we see that the influence
of σ is only significant for larger loads. This is because the performance of the
server is limited by a lack of customers at lower loads for these values of σ. For σ
closer to 0 or 1 we see that the average system occupancy is increases drastically,
even for small loads. This is because the server can process larger batches and
the arrival rate must increase to obtain the same load.

Fig. 2: Influence of σ on the mean system occupancy for a number of different
loads

Another important characteristic of the system is the probability that a server
is idle during a random slot. This probability is calculated according to Eq. 6
and depends on the probability that there are no arrivals during a slot and the
probability that the server processes all customers during the same slot. In Fig.
3 we show this characteristic in terms of σ for a number of different loads. We
observe that when σ approximates 0 or 1, that the server is almost never idle
regardless of the load of the system. This occurs because the maximum allowed
arrival rate is very large so that even small loads lead to a large mean arrival
rate. A large mean arrival rate means that the probability that there are no
arrivals is very small so that the server will almost always be able to start a
service. We also observe that for σ closer to 0.5, the probability uI is not very
sensitive for variations of σ. This is caused by a conflict between the probability
that there are no arrivals and the probability that all customers are processed.
Values of σ closer to 0.5 means that the probability that there are no arrivals
increases but the probability that all customers are processed decreases.

In a last example we examine the influence of the variance in the arrival
process. Therefore, we consider an arrival process where the number of arrivals
in an arbitrary slot is with probability α determined by a geometric distribution
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Fig. 3: Influence of σ on uI , the probability that the server is idle, for the system
under different loads

with mean λ
2α and with probability 1−α by a geometric distribution with mean

λ
2(1−α) . The pgf that describes this arrival process is therefore given by

E(z) = α
1

1 + λ
2α (1− z)

+ (1− α)
1

1 + λ
2(1−α) (1− z)

.

The mean arrival rate of this arrival process is still equal to λ, and the variance
of e, the number of arrivals during a random slot,

Var[e] =
λ2

2α(1− α)
+ λ− λ2 .

This equation indicates that the variance is minimal for α = 0.5, and approaches
infinity for α close to 0 or 1. In Fig. 4, we plot the mean system occupancy as a
function of α for values of σ as indicated and with a load of ρ = 0.9. We clearly
observe the detrimental effect an increasing variance has on the mean system
occupancy.

5 Conclusions

In this paper we have analysed a discrete-time two-class single-server queueing
system with batch service. The size of the batches that are processed are deter-
mined by the number of customers in the queue and their respective classes. We
have derived the steady-state pgf of the number of customers in the system at
random slot boundaries. Using these results, we have demonstrated the impact
of the various parameters of the arrival process on the average system occupancy
and the probability that the server is idle.

There are a number of possible extensions that could be considered for this
model. A first extension would be to find the probability generating function
for the number of customers that are being processed by the batch server. In
a second extension we could extend the model to use a class-dependent general
service time distribution for class A and B batches. A further extension we
mention is that we could introduce bursty behaviour of same class customers
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Fig. 4: Influence of α, which determines the variance in the arrival process, on
the system occupancy for a number of values of σ and with a load of 0.9

by introducing correlation between the class of two consecutive customers. This
can for instance be done by using a general 2-state Markov process to assign
customer classes. This allows us to tweak the length of class A or B customers
that arrive while maintaining a certain ratio of class A and B customers.
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