

FACULTY OF PHARMACEUTICAL SCIENCES

HUMAN SKIN KINETICS OF CYCLIC DEPSIPEPTIDE MYCOTOXINS

Lien Taevernier¹, Lieselotte Veryser¹, Nathalie Roche² and Bart De Spiegeleer^{1,*}

¹ Drug Quality and Registration (DruQuaR) group, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium. ² Department of Plastic and Reconstructive Surgery, University Hospital Ghent, De Pintelaan 135, B-9000 Ghent, Belgium.

* Corresponding author: bart.despiegeleer@ugent.be (O. Ref.: 2014-316c)

INTRODUCTION

- Mytochondrial dysfunction
- DNA damage \rightarrow genotoxic (?)

Cytotoxic

• Cation complexing ionophores

Intact skin

Damaged skin

- ACAT inhibitors
- Antibacterial, insecticidal
- Influence immune system

EXPERIMENTAL

1. HUMAN SKIN KINETICS

Static *in-vitro* Franz diffusion cells Intact vs. superficially damaged (tape-stripped 20x) skin Receptor fluid: 1% HPBCD in PBS Donor solution: 1 mg/mL in 60:40 EtOH/H₂O (V/V) Quantification with UHPLC-MS/MS (MRM)

2. DERMAL DAILY EXPOSURE (DDE)

 $K_p \rightarrow DDE$

RESULTS and DISCUSSION

Figure 1: Cumulative amount (ng) vs. time (h) curves for ENN B (left) and BEA (right).

MT	K _p (x 10⁻6 cm/h)				
	Intact	Damaged			
BEA	2.35 ± 0.52	9.76 ± 3.56			
ENN B	9.44 ± 1.94	30.15 ± 3.99			
ENN B1	5.62 ± 1.19	23.29 ± 2.83			
ENN A	2.80 ± 0.42	5.78 ± 1.27			
ENN A1	3.03 ± 0.63	12.83 ± 2.73			
ENN D	4.67 ± 1.02	19.07 ± 0.28			
ENN E	4.26 ± 0.86	13.46 ± 2.12			

Table 1: Permeability coefficients (mean \pm SEM, n = 3 – 11).

b) In-silico K_p comparison

		BEA	ENN A	ENN A1	ENN E	ENN B1	ENN D	ENN B	
Intact sl	kin	245.06	393.94	316.23	231.62	251.63	175.53	178.48	
Damaged skin		292.50	449.55	327.83	221.59	273.16	157.54	187.30	
lion	30 -	Dermis				 Intact skin Damaged skin 			
ntrat /mL)	20 -		I	I	Т	Ţ			
conce (µg	10 -	I	I	I	I	I	I	I	
0	0 –	BEA	ENN A	ENN A1	ENN E	ENN B1	ENN D	ENN B	
Intact sł	kin	11.56	8.54	7.90	5.72	7.03	4.70	5.63	
		00.00	00.00	10.40	44.00	10.10		40.40	

Figure 3: Normalised (1 mg/mL application) skin concentrations (epidermis + dermis).

RISK ASSESSMENT AFTER DERMAL EXPOSURE

Local skin effects a)

Locally found skin concentrations compared to literature data \rightarrow possible epidermal apoptosis, immunological disorders.

Systemic effects b)

Scenario (1st approximation): industrial exposure to contaminated fruit/nuts:

- Mycotoxin exposure concentration [MT]: based on reported literature.
- Estimation of TDI = 5 μ g/(kg BW · day): using NOAEL from limited literature data. 2)
- Calculation of DDE's: using our experimentally determined Kp's. 3)

Figure 2: Comparison experimentally determined and in-silico calculated Kp's.

ENN A ENN A1 ENN B1 **Mycotoxin: ENN B** BEA 0.0311 - 0.0870 0.0017 - 0.0047 0.0301 - 0.0842 0.0277 - 0.07740.0004 - 0.0010Intact 0.0641 - 0.17950.0072 - 0.02010.0961 - 0.26900.1146 - 0.3209 0.0015 - 0.0043Damaged

Table 2: Non-genotoxic – genotoxic estimated DDE's (ng/(kg BW · day).

TDI > DDE's \rightarrow no acute systemic toxicity risk for industrial food related workers.

CONCLUSIONS

- **Intact vs. damaged skin:** 2 5 times increase of Kp, Jss and Q1d for damaged skin.
- In-silico K_P comparison: significant difference independent of models used \rightarrow more appropriate models required for (cyclic)(depsi)peptides.
- Local skin effects: skin reservoir properties \rightarrow local skin effects possible: epidermal apoptosis, immunological disorders.
- Risk assessment after dermal exposure: first estimation: no acute systemic toxicity risk based on limited data available.

REFERENCES

Taevernier L, Veryser L, Roche N, Peremans K, Burvenich C, Delesalle C, De Spiegeleer B, Human skin penetration of emerging mycotoxins (beauvericin and enniatins). Journal Of Exposure Science And Environmental Epidemiology, 2014, submitted for publication.

Taevernier L, Veryser L, Vandercruyssen K, D'Hondt M, Vansteelandt S, De Saeger S, De Spiegeleer B, UHPLC-MS/MS method for the determination of the cyclic depsipeptide mycotoxins beauvericin and enniatins in *in-vitro* transdermal experiments. Journal of Pharmaceutical and Biomedical Analysis, 2014, doi: 10.1016/j.jpba.2014.07.021.