
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Funded by Naval Postgraduate School

2009-01-31

Reducing the Vulnerability of Electric Power
Grids to Terrorist Attacks

Baldick, Ross; Boutsika, Thekla; Hur, Jin; Joung, Manho;
Wu, Yin; Zhong, Minqi
The University of Texas at Austin

Baldick, Ross, et al. Reducing the vulnerability of electric power grids to terrorist
attacks. No. DOE/ER/25671-1. Univ. of Texas, Austin, TX (United States), 2009.
https://hdl.handle.net/10945/71628

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

Reducing the Vulnerability of Electric
Power Grids to Terrorist Attacks

Final Project Report
Report Number DOE/ER/25671-1

(DOE Research Project DE-FG02-05ER25671)

Ross Baldick
Thekla Boutsika

Jin Hur
Manho Joung

Yin Wu
Minqi Zhong

January 31, 2009

The University of Texas at Austin

Table of Contents

1 Introduction... 2

1.1 Project Overview .. 2
1.2 Overview of Cascading Outage Analyzer... 2

2 Design Patterns of COA software ... 5
2.1 Introduction.. 5
2.2 Design Patterns used in the implemented COA ... 9

3 Development of COA software ... 19
3.1 Data workflows ... 19
3.2 Operational algorithm... 22
3.3 Implementation of outage checkers ... 24

3.3.1 Line overload and under voltage checkers 24
3.3.2 Under/Over frequency checker 25

4 Conclusion ... 50
Appendix A: User’s Manual .. 51
User’s Manual Index ... 83
References... 84

2

1 Introduction

1.1 Project Overview

This project (‘Reducing the Vulnerability of Electric Power Grids to Terrorist
Attacks’) is collaborative research with the Naval Postgraduate School (NPS), under the
sponsorship of the U.S. Department of Energy. The research at The University of Texas
focuses on analyzing cascading outages in large-scale electricity grids, both as a
standalone tool and also as a component to eventually be added to the Vulnerability of
Electric Grids Analyzer (VEGA) [1].

We refer to the proposal (Wood, Salmeron and Baldick 2003), and references therein,

for detailed background on the problem of electric power-grid vulnerability. In that
document, goals were established for this research and its critical importance. One aspect
of that research, conducted primarily at University of Texas at Austin (UT), is the
development of a cascading analysis tool, building on the experiences of a prototype tool
developed by Commonwealth Associates and described in a white paper [2].

This development is aimed at including the short-term effects of cascading outages

into the analysis of network vulnerability. In addition to integrating representation of
cascading outages into VEGA, informal feedback from industry suggested that it was also
important that for this research to develop a standalone cascading analysis tool.
Development as a standalone tool has also facilitated the division of activities between
NPS and UT. This report details the development of the prototype standalone tool.
Future work includes extending the types of initial disturbances that can be considered
and integration of the tool with VEGA.

1.2 Overview of Cascading Outage Analyzer

UT has had the primary responsibility for developing a cascading outage tool that has

its own graphical user interface (GUI). The work has concentrated on developing the
simulation algorithm and the GUI, both in a windows-based environment. Before
beginning the cascading outage analysis, we need to specify the initial disturbances to be
investigated for their progression to cascading outages. In the current algorithm, line
outage type is considered as an initial disturbance. The extension to other types of
outages such as generator outages, bus outages, and substation outages remains future
work.

3

Following the initial disturbance, the Cascading Outage Analyzer software has three
outage checking algorithms, namely ‘Frequency Checker’, ‘Line Overload Checker’, and
‘Under Voltage Checker’, that determine the status of the resulting operating state, or
‘equilibrium’. Some resulting operating states would result in protection equipment
removing more elements from the system and therefore potentially precipitating further
outages. Among the three checkers, the ‘Line Overload Checker’ and ‘Under Voltage
Checker’ use the AC power flow as a basic simulation engine. In the case of the
frequency checker, we use the System Frequency Response (SFR) model as a frequency
change model.

The Cascading Outage Analyzer (COA) program is PC-based Windows software.
COA simulation engine is written on the Microsoft .NET common language runtime
(CLR). The Microsoft .NET Framework (ver. 1.1 higher) must be installed on the
computer before running COA software. The following table shows the summarized
specifications of Cascading Outage Analyzer.

Table 1.1 Specification of COA program

Cascading Outage Analyzer Specifications

Operating System Window 32 bit System
(Wind XP OS system)

Input Database Microsoft Access DB
(MS Access 2003 higher)

Load Flow program
AC power flow

Decoupled power flow
(Commonwealth Associates Inc.)

Platform MS .NET Framework

Development Languages
Visual Basic .NET (MMI)

Visual C# (Algorithms)

As indicated in the table, the Cascading Outage Analyzer (COA) uses MS Access as a

database. When running COA program, users can select either of two load flow
programs: Full AC power flow or Decoupled power flow, both provided by
Commonwealth Associates Inc. That means that COA program requires the hardware
lock key for running these load flow programs.

The following sections of this report will be organized as follows. In section II,

design specification of COA software; design patterns will be introduced. In section III,

4

Functional specification for developing COA software focusing on data workflows,
operating algorithm and implementation of outage checkers will be presented. A
conclusion and future extension of COA software are given in section IV. In addition to
the technical report, the user manual of COA software is provided in the Appendix.

5

2 Design Patterns of COA software

2.1 Introduction

Computers and specially designed software have been used extensively in the past
decades in the power system industry, mainly for simulation analysis so as to assess the
system’s future performance and reliability. The increase in size and complexity of inter-
connected power systems and the automation of their operation has led to more computer
applications with large and complicated software, most of which has been based on
procedural programming languages. However, the liberalization of the electricity markets
imposes great needs for more accessible, flexible, and expandable power system software,
since there are many differences in market and system operations between regions and
the deregulated environment brings along frequent and sometimes drastic changes of
these operations. For these reasons the power system industry has started viewing object-
oriented programming techniques as a good alternative to procedural programming
languages, because they allow for more flexibility and expandability. Most recently, a
further step has been taken and design patterns have been deployed in power system
software to successfully address issues as flexibility, expandability, and the reusing of
legacy systems.

Design patterns are part of the cutting edge of object-oriented programming (OOP) in

software development. A design pattern is ‘a generalized solution to a commonly
occurring problem’, meaning that a design pattern is specific to the problem at hand, yet
general enough to address future problems and requirements. Essentially, a design pattern
is a combination of two things: a description of a problem and a description of its solution.
Design patterns make it easier to reuse successful software designs and architectures and
the use of proven techniques like design patterns enhances their accessibility to
developers of new systems. In addition, design patterns allow developers to communicate
using well-known, well understood names for software interactions.

Design patterns arose from architecture and anthropology. A great architect named
Christopher Alexander defined a pattern as ‘a solution to a problem in a context’. Though
many people had already been working on design patterns in the early 1990s, trying to
establish the connections between design patterns in architecture and software design, the
book that had the greatest influence on this emerging issue was Design Patterns:
Elements of Reusable Object-Oriented Software, by Gamma, Helm, Johnson and
Vlissides, also known as the Gang of Four in recognition of their contribution to the field.

Design patterns are composed of four essential parts: a pattern name, a problem

context, a generalized approach to a solution, and a set of consequences. The pattern

6

name is used to describe the design problem, its solutions, and consequences in a word or
two. The problem describes when the pattern is applicable. The solution describes the
elements of which the design is composed along with their relationships, responsibilities,
and collaborations. Finally, the consequences are the results and trade-offs of applying
the pattern, including its impact on a system's flexibility and expandability. Design
patterns are most commonly described using graphical notations. However, apart from
the design pattern’s name and structure other parameters should also be recorded in order
to facilitate its reusability. These parameters include, but are not limited to, participants,
collaborations and consequences. Participants are the classes and/or objects participating
in the design pattern and their responsibilities, while collaborations are the ways the
participants collaborate to carry out their responsibilities.

Following Gamma et al. [3] design patterns can be classified by two criteria: purpose

and scope. According to the purpose classification, which reflects what a pattern does,
patterns can be grouped into three general categories which are creational, structural
and behavioral. Creational patterns concern the process of object creation. Structural
patterns deal with the composition of classes or objects. Behavioral patterns characterize
the ways in which classes or objects interact and distribute responsibility. The scope
classification of a design pattern specifies whether the pattern applies primarily to classes
or to objects. Class patterns deal with relationships between classes and their subclasses,
which are established through inheritance and are static—fixed at compile-time. Object
patterns deal with object relationships, which can be changed at run-time and are more
dynamic. Almost all patterns use inheritance to some extent but most design patterns are
object patterns.

Prior to presenting the design patterns used specifically in the outage checkers of the

implemented cascading outage analyzer some important definitions and parameters of
object-oriented programming will be given along with some clarifications on notations
used in design pattern diagrams (which follow the standard UML notation).

Object-oriented programs are made up of objects, which package both data and the
procedures, typically called methods or operations, which operate on that data. An object
performs an operation when it receives a request (or message) from a client. The
operation’s signature consists of the operation's name, the objects it takes as parameters,
and the operation's return value. The set of all signatures defined by the operations of an
object is called the interface to the object. A type is a name used to denote a particular
interface. A class defines an object's implementation. The class specifies the object's
internal data and representation and defines the operations the object can perform. It is
important to understand the difference between an object's class and its type. An object's
class defines how the object is implemented, while an object's type only refers to its
interface—the set of requests to which it can respond.

7

In the following a class will be depicted as a rectangle with the class name in bold.
Operations appear in normal type below the class name. Any data that the class defines
comes after the operations. Horizontal lines separate the class name from the operations
and the operations from the data.

ClassName
Operation1()
Type Operation2()
...

instanceVariable1()
Type instanceVariable2()
...()

Figure 2.1 Class diagram

The object is considered an instance of a class, thus objects are created by

instantiating a class. The process of instantiating a class allocates storage for the object's
internal data (made up of instance variables) and associates the operations with these data.
A dashed arrowhead line indicates a class that instantiates objects of another class. The
arrow points to the class of the instantiated objects.

Instantiator Instantiatee

Figure 2.2 Class instantiating objects of another class

Class inheritance allows the definition of new classes in terms of existing classes.

Objects that are instances of the subclass contain all data defined by the subclass and its
parent classes, and are able to perform all methods defined by this subclass and its parent
classes. Overriding refers to a subclass handling a request instead of its parent class, in
which case the subclass overrides a method defined by its parent class. The subclass
relationship is indicated with a vertical line and a triangle:

ParentClass

Operation()

Subclass

Figure 2.3 Class inheritance – Subclass and parent class relationship

Classes can be concrete or abstract. The main purpose of an abstract class is to

define a common interface for its subclasses. An abstract class cannot be instantiated,
because some or all of its implementations come from operations defined in subclasses.

8

The operations that an abstract class declares but does not implement are called abstract
operations. Classes that are not abstract are called concrete classes. To distinguish them
from concrete classes the names of abstract classes appear in italics.

AbstractClass

Operation()

ConcreteSubclass

Operation() implementation
pseudocode

Figure 2.4 Abstract class and concrete subclass diagram

Apart from the difference between an object’s class and its type it is also important to

understand the difference between class inheritance and interface inheritance. Class
inheritance defines an object's implementation in terms of another object's
implementation while interface inheritance (or subtyping) describes when an object can
be used in place of another. Many of the design patterns depend on this distinction.

Class inheritance is one of the two most common techniques for reusing functionality

in object-oriented systems. The other one is object composition. In class inheritance an
implementation of a class is defined in terms of the implementation of another class.
Reuse by subclassing is called white-box reuse, where the term ‘white box’ refers to
visibility, since with inheritance the internals of parent classes are often visible to
subclasses. In object composition objects are composed to achieve more complex
functionality. Reuse by composition is called black-box reuse, because no internal
details of objects are visible. Objects appear only as ‘black boxes’.

Composition is made into a reuse tool that is as powerful as inheritance with delegation,
which allows two objects to be involved in handling a request with a receiving object
delegating operations to its delegate. In the following diagram the Window class is
depicted delegating its Area operation to a Rectangle instance. Class Window is not a
subclass of Rectangle but it reuses the behavior of Rectangle by keeping a Rectangle
instance variable and delegating Rectangle-specific behavior to it. Window must now
forward requests to its Rectangle instance explicitly, whereas with class inheritance it
would have inherited those operations. A plain arrowhead line indicates that a class keeps
a reference to an instance of another class. The reference has an optional name,
‘rectangle’ in this case. Delegation shows that class inheritance can always be replaced by
object composition for code reuse. Though delegation enables the composition of
behaviors at run-time, it is very dynamic and thus harder to understand than more static
reuse techniques.

9

Rectangle
width
height

Area()

Window
Area()

return rectangle->Area()

return width * height

rectangle

Figure 2.5 Delegation representation

Finally, two important notions are object aggregation and acquaintance. Object
aggregation is used to denote that an object owns or is responsible for another object,
while acquaintance implies that the two objects merely know each other, they are able to
request operations from each other but are not responsible for each other. Acquaintance is
a weaker relationship than aggregation and suggests much looser coupling between
objects. Aggregation relationships are fewer but permanent while acquaintances are more
frequent and more dynamic. In the design pattern diagrams a plain arrowhead is used to
denote acquaintance, while an arrowhead line with a diamond at its base denotes
aggregation.

Aggregator Aggregatee
aggregateInstance

Figure 2.6 Aggregation representation

2.2 Design Patterns used in the implemented COA

The design of an application program should cover three main priorities: internal
reuse, maintainability and extension. Design patterns can help address all of these
priorities, since they provide dependency reduction. Using design patterns that loosen
coupling between classes and reduce algorithmic and representational dependencies can
increase the internal reuse. Reduced coupling along with class hierarchy extension can
also increase extensibility. When platform dependencies are limited the maintainability of
the application is increased.

Reusing legacy systems

It has already been pointed out that the increase in size and complexity of the power

systems and the automation of their operation has led to an increase in computer
applications used in power systems and maintains the need for new power systems

10

application and simulation software. Financial constraints on development effort together
with frequent changes in the system operation schemes result in limited development
time. Under these constraints, reusing previously developed software is very useful.

As mentioned previously there are two fundamental techniques for reusing

functionality in object-oriented systems: white-box reuse, which refers to class
inheritance, and black-box reuse, which refers to object composition. When a white-box
approach for reusing legacy systems is adopted the code of the inner structure of the
legacy system is studied and reengineered. The size and complexity of the power systems
software often results in a white-box approach requiring more effort than completely
rebuilding the software. Moreover, the source code or the inner structure of the legacy
system may not be available. In these cases a black-box approach can be applied instead.
Under a black-box approach the legacy system is wrapped with a software layer that
hides the unwanted complexity of the old system and exports a modern interface. The two
most frequently design patterns used for this purpose are Adapter and Decorator.

The main purpose of the Adapter design pattern, also known as wrapper, is to

convert the interface of a class into another interface that clients expect. Using the
Adapter allows classes to work together, which could not otherwise because of
incompatible interfaces. The Adapter design pattern can be used in the following
circumstances:

• there is desire to use an existing class, which has an incompatible interface to the

client’s class,
• a reusable class needs to be created which should cooperate with classes that do

not necessarily have compatible interfaces, and
• several existing subclasses need to be used, but subclassing every one of them so

as to adapt their interface is impractical.

The class diagram of an object Adapter design pattern is given in figure 2.7. The
participants of the Adapter design pattern class are:

• Target: defines the domain-specific interface that Client uses.
• Client: collaborates with objects conforming to the Target interface.
• Adaptee: defines an existing interface that needs adapting.
• Adapter: adapts the interface of Adaptee to the Target interface.

11

Adaptee

+specificRequest()

Target

+request()

Adapter

+request()

Client

+doWork()

Figure 2.7 Adapter design pattern class diagram

As can be seen from the above structure diagram the Adapter class inherits the Target

class, so the main purpose of the Target class is to provide a compatible interface with
which the Client class can communicate with the Adapter class. The Client class, through
the doWork method, calls the request method on the Adapter class, which in turn calls the
corresponding specificRequest method on the Adaptee class. So the purpose of the
Adapter is to adapt the interface of the existing object Adaptee to a matching interface to
the Client. Using the Adapter class the Client class and the Adaptee class are completely
decoupled from each other and legacy software shown as the Adaptee class can be
encapsulated.

The basic procedure described previously is that the Client calls methods on an

Adapter instance and, in turn, the Adapter calls Adaptee methods that carry out the
request. One of the advantages of using an Adapter is that a single Adapter can work with
the Adaptee itself and all of its subclasses and thus the Adapter can add functionality to
all Adaptees at once. On the other hand, using an Adapter makes the overriding of an
Adaptee behavior, that is allowing a subclass of the Adaptee to handle a request instead of
the Adaptee, more difficult, since this would require making Adapter refer to the subclass
rather than the Adaptee itself.

In the Cascading Outage Analyzer the Adapter design pattern is utilized in order to

reuse previously implemented power flow software. As already stated the outage
checkers play an essential role in the implemented Cascading Outage Analyzer, since
they determine if further outages will occur after some disturbances. To determine the
sequence of equilibrium states for checking if further outages will occur, a power flow
algorithm is necessary. The implemented outage checkers utilize an independent AC
power flow module, PFlow, which has been developed by Commonwealth Associates
Inc. and is licensed to The University of Texas. The structure diagram of the Adapter
design pattern application to the implemented outage checkers is given in figure 2.8. This
Figure is a specialization of figure 2.7, where the Adaptee is the previously implemented
power flow module PFlow.

12

Pflow

OutageChecker

PflowAdapter

PowerFlow

Figure 2.8 Adapter design pattern application class diagram to utilize PFlow

Flexible expandability

The need for flexible expandability is driven foremost by one of the traditional
requirements of power systems software, which is high computational efficiency. As
described previously there is an ongoing development of new computational models and
algorithms. In order to meet the permanent demand on computational performance the
existing software must provide the capability of including these new models and
algorithms. Hence, the existing and newly developed power systems software must
present flexible expandability. This need is growing bigger under the current deregulation
of electricity markets, since the deregulation will pose frequent and sometimes big
changes in the system and market operation regimes.

A solution to this challenge can again be provided by using design patterns. The
relevant design patterns used in the implemented Cascading Outage Analyzer are
Strategy, Factory Method, and Abstract Factory.

The main purpose of the Strategy design pattern, also known as policy, is to define a
family of algorithms, encapsulate each one of them and make them interchangeable.
Strategy lets the algorithm vary independently from clients that use it.

The Strategy pattern can be used in the following circumstances:

• there are many related classes, which differ only in their behavior, i.e. in the
methods their objects can perform,

• there is a need for different variations on one algorithm,
• there is desire to avoid exposing complex algorithm-specific data structures to

clients,
• there are many behaviors defined by a class, which appear as multiple conditional

statements in its methods.

The class diagram of a Strategy design pattern is given in figure 2.9. The
participants of the Strategy design pattern class are:

13

• Strategy: declares an interface common to all supported algorithms, which
Context uses to call the algorithm defined by a ConcreteStrategy.

• ConcreteStrategy: implements the algorithm using the Strategy interface.
• Context: is configured with a ConcreteStrategy object, maintains a reference to a

Strategy object

Strategy

+algorithmInterface()

ConcretetrategyB

+algorithmInterface()

ConcreteStrategyA

+algorithmInterface()

Context

+contextInterface()

Figure 2.9 Strategy design pattern class diagram

One of the most frequent uses of Strategy pattern is when it is necessary to

interchange the algorithms used in an application. This is more than often the case in
power systems analysis applications, where there can be various algorithms playing
essentially the same role. The choice of the algorithm to be used is affected by many
factors, such as the purpose of the algorithm, the specific conditions under which it will
be used and the model representation. The Strategy pattern is extremely useful when the
purposes or conditions for selecting appropriate algorithms are determined dynamically.
As can be seen from the structure diagram in figure 2.9, the contextInterface method of
the Context class calls the algorithmInterface method of the Strategy class which will be
determined dynamically between those of the ConcreteStrategyA and the
ConcreteStrategyB classes.

In the Cascading Outage Analyzer the Strategy design pattern is utilized in order to

dynamically swap between two power flow algorithms. The previously implemented
Pflow program offers two solution algorithms, the fast decoupled power flow and the full
AC power flow. In the Cascading Outage Analyzer application, the specific choice of
power flow algorithm is determined at run time as a user input.

The structure diagram of the Strategy design pattern application to the implemented

Cascading Outage Analyzer is given in figure 2.10. This Figure is a specialization of
figure 2.9, where the PowerFlowStrategy class is applied to select one of the two existing
algorithms, ACPowerFlow and DecoupledPowerFlow. The aggregation association
between the PowerFlowContext class and the PowerFlowStrategy class enables the
runPowerFlow method of the PowerFlowContext class to call the powerFlow method of
the PowerFlowStrategy class which will be replaced by either the ACPowerFlow class or
the DecoupledPowerFlow class at run time.

14

DecoupledPowerFlow

+powerFlow()

PowerFlowContext

+runPowerFlow()

PowerFlowStrategy

+powerFlow()

ACPowerFlow

+powerFlow()

Figure 2.10 Strategy design pattern application class diagram to dynamically swap
between the two power flow algorithms, ACPowerFlow and DecoupledPowerFlow.

The main purpose of the Factory Method design pattern, also known as virtual

constructor, is to define an interface for creating an object, but let subclasses decide
which class to instantiate. Factory Method lets a class defer instantiation to subclasses.

The Factory Method pattern can be used in the following circumstances:

• the class of objects that must be created by a class cannot be predicted,
• there is desire to let the subclasses specify the class of objects a class creates,
• there is delegation of a class responsibilities to one or more helper subclasses.

The class diagram of a Factory Method design pattern is given in figure 2.11. The

participants of the Factory Method design pattern class are:
• Product: defines the interface of objects that the Factory Method creates.
• Creator: declares the Factory Method, which returns an object of type Product.
• ConcreteCreator: overrides the Factory Method to return an instance of a Product.

ConcreteCreator

+factoryMethod()

Creator

+factoryMethod()

Product

Figure 2.11 Factory Method design pattern class diagram

As described previously constant advances of computational models and algorithms

result in a permanent need for the ability to add new algorithms into the existing power
system software. The Factory Method design pattern can provide a solution to this
challenge, since it allows for adding new algorithms while minimizing the disturbance to
the existing code. When there is need to create objects without specifying the exact class

15

of object that will be created the Factory Method can be applied and the problem is
resolved by defining a separate method for creating the objects. The main attribute of this
pattern is that it helps to model an interface for creating an object, which at creation time
delegates decision of which class to instantiate to its subclasses. By utilizing the Creator
class whenever Product objects are created, as shown in figure 2.11, all that is needed to
add a new algorithm into the existing code is to modify the Creator and add a new
ConcreteCreator class.

The Factory Method design pattern has been used in the implemented Cascading

Outage Analyzer in order to provide the ability to add new power flow algorithms to the
system, as shown in figure 2.12, which is a specialization of figure 2.13. By utilizing the
Factory Method design pattern only the PowerFlowFactory class among the existing code
needs to be modified whenever a new algorithm needs to be added to the system, since
the other part of code communicates with the PowerFlowStrategy class (product) without
knowing the corresponding concrete class. The combined class diagram displaying the
Adapter, Strategy and Factory Method design patterns applied to the power flow
application in the implemented Cascading Outage Analyzer is given in figure 2.13.

DecoupledPowerFlow

+powerFlow()

ACPowerFlow

+powerFlow()

PowerFlowStrategy

+powerFlow()

PowerFlowFactory

+createPowerFlow()

Figure 2.12 Factory Method design pattern application class diagram

DecoupledPowerFlowAdapter

+powerFlow()

ACPowerFlowAdapter

+powerFlow()

+runPowerFlow()

PowerFlowContext PowerFlowFactory

+createPowerFlow()

PowerFlowStrategy

+powerFlow()

Pflow

Figure 2.13: Three design pattern (Adapter, Strategy, Factory Method) class

diagram utilized for the power flow application

16

The main purpose of the Abstract Factory design pattern, also known as kit, is to
provide an interface for creating families of related or dependent objects without
specifying their concrete classes.

The Abstract Factory pattern can be used in the following circumstances:

• the way in which products are created, composed and represented should be
independent of the system,

• there are multiple families of products and the system should be configured with
one of them,

• to enforce the constraint of a family of related product objects being used
together,

• there is desire to reveal just the interfaces and not the implementations of a class
library of products.

The class diagram of an Abstract Factory design pattern is given in figure 2.14.

The participants of the Abstract Factory design pattern class are:

• AbstractFactory: declares an interface for methods that create abstract product
objects.

• ConcreteFactory: implements the methods to create concrete product objects.
• AbstractProduct: declares an interface for a type of product object.
• ConcreteProduct: defines a product object to be created by the corresponding

concrete factory and implements the AbstractProduct interface.
• Client: uses only interfaces declared by AbstractFactory and AbstractProduct

classes.

As shown in the class diagram of figure 2.14, AbstractProductA and
AbstractProductB objects are created by a Client object through either a
ConcreteFactory1 object or a ConcreteFactory2 object which inherit the AbstractFactory
class. The AbstractProductA and the AbstractProductB classes associate the relevant
product class group and encapsulate a group of algorithms which are relevant to each
other. Thus, the ProductA1 from the ConcreteFactory1 and the productA2 from
ConcreteFactory2 classes are grouped in the AbstractProductA class, and the ProductB1
from ConcreteFactory1 and the productB2 from ConcreteFactory2 classes are grouped in
the AbstractProductB class.

17

AbstractFactory

+createProductA()
+createProductB()

ConcreteFactory1

+createProductA()
+createProductB()

ConcreteFactory2

+createProductA()
+createProductB()

AbstractProductBAbstractProductA

ProductA1 ProductB2ProductB1 ProductA2

Client

Figure 2.14 Abstract Factory design pattern class diagram

In the implemented Cascading Outage Analyzer there are three outage checkers,

LineOverload, UnderVoltage, and Frequency, all of which use the power flow algorithm.
The Pflow program offers two power flow algorithms, the fast decoupled power flow and
the AC power flow, and the specific power flow algorithm is chosen dynamically, thus
each outage checker might, in principle, utilize a different power flow algorithm. To
ensure that all the outage checkers use the same power flow algorithm to assess system
equilibrium in a consistent manner the Abstract Factory design pattern is applied and the
class diagram representation of this is shown in figure 2.15.

As shown in the diagram, the implemented Cascading Outage Analyzer uses either

the OutageCheckerConcreteFactory1 object or the OutageCheckerConcreteFactory2
object to create the corresponding sets (indices 1 and 2) of three outage checker objects,
namely LineOverloadChecker, UndervoltageChecker and FrequencyChecker. The indices
1 and 2 refer to the two different power flow algorithms. Using the AbstractFactory
design pattern prevents mingling of inconsistent outage checker objects with each other,
e.g. a combination of LineOverloadChecker1 – UndervoltageChecker2 –
FrequencyChecker2 is not allowed.

18

+createLineOverloadChecker()
+createUndervoltageChecker()
+createFrequencyChecker()

OutageCheckerConcreteFactory2

+createLineOverloadChecker()
+createUndervoltageChecker()
+createFrequencyChecker()

OutageCheckerConcreteFactory2

OutageCheckerAbstractFactory

+createLineOverloadChecker()
+createUndervoltageChecker()
+createFrequencyChecker()

UndervoltageChecker
AbstractProduct

LineOverloadChecker
AbstractProduct

FrequencyChecker
AbstractProduct

Undervoltage
Checker2

Frequency
Checker2

Frequency
Checker1

Undervoltage
Checker1

LineOverload
Checker2

LineOverload
Checker1

Figure 2.15 Abstract Factory design pattern application class diagram

The Abstract Factory design pattern enables flexible expandability of the program.
The addition of new outage checkers into the existing Cascading Outage Analyzer is
simplified using the same mechanism as that of the Factory Method design pattern. If a
new outage checker for a distance relay needs to be added then the code change for the
new outage checker will be limited to the OutageChecker factory part (Abstract and
Concrete), by including a createDistanceChecker method.

19

3 Development of COA software

In this section, the functional specification of COA software will be described on a
basis of operation workflow and implementation of cascading outage checkers
considering the adopted design patterns.

3.1 Data workflows

The cascading outage analyzer (COA) program is built around the windows-
based .NET framework 2.0 in order to support various distributed computing
environments. The user interface and the cascading outage analysis algorithm have been
implemented by visual basic .NET [4] and visual C# [5] respectively. To provide
flexibility and extensibility, the application design follows the object-oriented design
principle using Microsoft Visual Studio 2005.

The following figure shows the data flow of COA software. After setting input data in

the system database, cascading outage checkers are activated according to the determined
initial disturbance. Simulation results will be displayed by message trees based on
graphic user interface (GUI).

Figure 3.1 Data flows of COA software

20

From figure 3.1, the system database has two input database: Input database
(‘Datainput.mdb’) for power flow calculations, and Simulation option database
(‘COChecker’) for implementing cascading outage scenarios, which are stored in
Microsoft Access format. MS Access program (MS access 2003 higher) should be
installed to user’s PC. These input files should be located at the following folder
(directory):

C:\project\Dataset

In order to run the power flow module, which has been provided by Commonwealth

Associates Inc., the user must create a temporary file (temp.mdb) by renaming the input
load flow file to the following folder (directory).

C:\project\implementation\source\temp.mdb

If users want to make new scenarios (cases), we recommend that users should modify
the existing case files (Datainput.mdb and COChecker.mdb). Although ‘Datainput.mdb’
file has many tables, typical modifications involve four main tables relevant to power
flow calculation:

· Bus
· Generator
· Load
· Line

The power flow module determines sequential equilibrium states for checking further
outages. The cascading outage analysis program utilizes an independent AC power flow
module, ‘PFlow’, which has been developed by Commonwealth Associates Inc. and
licensed to The University of Texas.

Under and over frequency checker module obtains information for calculating time
duration of relay from Frequency checker database (COChecker.mdb). This database
includes some tables as follows.

 FOChecker table; It includes frequency checker information. This table has

the following columns:

- Bus: Bus number of power system
- BusType: Type of bus (1: Generation bus and 2: Load bus)
- Threshold: Input value for threshold frequency
- Delay: Input value for setting time duration of relay

21

 FOChecker_org table; It has structure that corresponds to the ‘FOChecker’
table and it also acts as a source table during calculation.

 CTDOutput table; Simulation results of frequency checker will be recorded to
this table. This table has the following columns:

- BusNum: Input value for bus number of network configuration
- CTD_Under: Output value of the calculated Time duration for

Under-frequency
- CTD_Over: Output value of the calculated Time duration for Over-

frequency

In order to reuse this previously implemented module and provide flexibility to

switch to or add different power flow modules and determine a specific module to run at
run-time, three design patterns, the Adapter, Strategy, and Factory Method design patterns,
have been adopted as described in the previous section.

22

3.2 Operational algorithm

After initiating the disturbance events, the developed checkers will be operated as
user pre-defined the orders and types of three outage checkers. The following figure
shows the operating logic (algorithm) of the developed Cascading Outage Analyzer
(COA) software.

Figure 3.2 Operation logic of Cascading Outage Analyzer

23

Initial Disturbance

In order to begin cascading outage simulation, we need to specify the initial
disturbances to be investigated for their progression to cascading outages. Line outage
type can be considered as an initial disturbance and the extension to other types of
outages can be considered including not only line outages but also generator outages, bus
outages, and substation outages. Initial disturbances that could occur in simulating
cascading outages include:

- Line outage (implemented in current COA algorithm),
- Multiple initial disturbances (future work),
- Additional initial disturbance types (future work):

· Generator outage

· Substation outage

· Load bus trip

Outage Checkers & Update Topology

Following the initial disturbance, the outage checkers such as ‘Frequency Checker’,
‘Line Overload Checker’ and ‘Under Voltage Checker’, determine the status of the
resulting operating state, or ‘equilibrium’, which would result in protection equipment
removing more elements from the system and therefore potentially precipitating further
outages.

If there are several protection actions (or violations) identified by the outage checkers,

then timing information from the outage checkers will determine which element would be,
in fact, first disconnected. This element is removed from the power flow model using the
‘Update topology’ blocks. As shown in figure 3.1, the process then repeats until either a
complete system blackout occurs (indicated by failure to solve remaining system) or no
more protection actions (no violations) are predicted to occur.

24

3.3 Implementation of outage checkers

With the initial disturbance determined, we need to set up the type and order of
cascading outage checkers that will be considered. An ‘outage checker’ is a module that
tests the state of the power system to see if additional outages will be precipitated due to a
particular protection criterion. The developed outage analysis tool is designed to have
three types of outage checkers; line overload, under-voltage checkers, and over/under
frequency checkers that model the behavior of line overload, under-voltage protections,
and system frequency, respectively.

3.3.1 Line overload and under voltage checkers

The ‘Line Overload Checker’ and the ‘Under Voltage Checker’ use the power flow as
a basic simulation engine and users can select load flow program, either Full AC power
flow or Decoupled power flow, which are provided by Commonwealth Associates Inc [6].

In order to choose the specific power flow module from multiple power flow modules

dynamically in a consistent manner and to flexibly expand the outage checkers, the
Abstract Factory design pattern was utilized as mentioned in section 2.

25

3.3.2 Under/Over frequency checker

In addition to the steady-state analysis based approach, an outage checker is
developed for protection against system over/under-frequency events. The following
figure shows the data flow of frequency checker.

Figure 3.3 Data flow of frequency checker

From figure 3.3, the main logic of the frequency checker inquires about threshold

frequencies and time duration for generator and load frequency relays from the database
interface.

Using these data, the engine of the main logic block calculates the time duration for

the given under and over frequency threshold interfacing sub-program (time duration
calculation module). If the violations for under or over frequency checker occur then the
checker moves to another checker, either the Line overloading checker or Under-Over
voltage checker.

26

The following figure shows the algorithm of frequency checker.

Figure 3.4 Frequency checker algorithm

27

Step1: Load threshold frequency from GEN buses

From system database, ‘FOChecker’ table from COChecker.mdb has threshold

frequency information. The following figure illustrates the example of ‘FOChecker’ table.

Figure 3.5 FOChekcer table

After loading the threshold frequencies, the frequency checker module sorts the
generation buses on the basis of frequency threshold values from high to low and
determines under frequency and over frequency with system frequency criteria (60.0 Hz).

Step 2: Calculate time duration to determine the violated GEN bus

In this step, frequency checker module calculates times the duration for the selected

bus in order to determine whether the Calculated Time Duration (CTD) of frequency
violation exceeds the Set Time Duration (STD). The algorithm for calculating time
duration will be described in the next section.

Step 3: Move to other checkers

If the violated bus is detected In the previous step (step 2), the system topology would

be updated and a new round of outage checking would occur.

In the following subsections, details about the algorithm will be described.

28

3.2.2.1 Model of the Frequency Outage

(1) Frequency Function

For frequency change model, we use the System Frequency Response (SFR) model
introduced in ‘A Low-Order System Frequency Response Model’ by Anderson and
Mirheydar (1990) [7]. The idea of uniform or average frequency is the basic concept of
representing SFR model, where synchronizing oscillations between generators are filtered
out, but the average frequency behavior is retained.

The example of synchronizing oscillations is illustrated in figure 3.6, taken from the

Florida simulations of reference. We seek to average these individual machine responses
with a smooth curve that can be used to represent the average frequency for the system.
As a result, the solid curve shows the trend of overall system frequency in figure 3.6.

Figure 3.6 Simplified SFR Model with disturbance input1

The basic SFR model averages the machine dynamic behavior in a large system into

an equivalent single machine and it is a representation of only the average system
dynamics, while ignoring the inter-machine oscillations shown in figure 3.6.

According to this model, we have the frequency change function in frequency domain

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

++

+
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
=Δ

)2(

)1(
22

2

nn

stepR

m

n

sss

PsT
KDR

R
ωςω

ω
ω

1 A. N. Darlington, "Response of under-frequency Relays on the Peninsular Florida Electric System for
Loss of Generation," A paper presented at the Georgia Institute of Technology Relay Conference, May
4,1978

29

where,
· Δω = Incremental speed, per unit
· TR = Reheat time constant, seconds
· Pstep = Disturbance magnitude in per unit (based on the system voltage base SSB)
· D = Damping Factor
· R = Governors droop
· Km = Mechanical Power Gain Factor
· FH = Fraction of total power generated by the HP turbine

After transforming this into time domain and simplifying some parameters, we have

[])sin(1)(φωαω ςω ++
+

=Δ − te
KDR

RP
t r

t

m

step n

where,

· R

m
n HRT

KDR
2

2 +
=ω

·
n

m

RHm

KDR
TFKDRHR

ως ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
++

=
)(2

)(2

·
2

22

1
21

ς
ωςω

α
−
+−

= nRnR TT

·
21 ςωω −= nr

·
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−
−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=−= −−

ς
ς

ςω
ω

φφφ
2

11
21

1
tan

1
tan

Rn

Rr

T
T

·

We have an example of frequency change curve as in figure 3.7 if we use the typical
parameters below from the paper ‘A Low-Order System Frequency Response Model’ by
Anderson and Mirheydar (1990).

· R = 0.05
· H = 4.0s
· Km = 0.95
· FH = 0.3
· TR = 8.0s
· D = 1.0

30

Figure 3.7 Example of Under Frequency Curve

(2) Definition of a Frequency Outage

In this report, we will use the frequency outage standard from ERCOT as the
definition of a frequency outage. According to this standard, when the system frequency
is out of a certain range for a certain amount of time, we define this as a frequency outage.
Table 3.1 below demonstrates the characteristic of the under frequency outages.

Table 3.1 Standard of a Frequency Outage

Frequency Range (Hz) Time Delay (Sec)

Above 59.4 Infinite

58.4 to 59.4 270

58.0 to 58.4 30

57.5 to 58.0 2

Below 57.5 0

In table 3.1, the left column is the frequency range, and the right column is the time

length threshold that the frequency in the left column must last in order to initiate a trip.
For example, if the frequency drops under 59.0 Hz, which falls into the second frequency
range, for more than 270 seconds, an under-frequency trip will be initiated in the system.
In the extreme case, there is no frequency outage in the system as long as the frequency is
higher than 59.4 Hz, like 59.6, no matter how long the 59.6 value will last. In the other

0 5 10 15 20 25 30
59.985

59.99

59.995

60

31

extreme case, as soon as the frequency drops below than 57.5, a frequency outage will be
defined immediately.

32

3.2.2.2 Description of the Algorithm

(1) Output and Input of the frequency outage checker

According to the definition of a frequency outage, we need to know two parameters to
define an under-frequency trip: lowest frequency value ‘min_f’, and the time that the
frequency is below the provided frequency threshold ‘time_delay’. If min_f is lower than
57.5, or time_delay is longer than the time delay in table 3.1, we will decide there is a
frequency trip in the system. Therefore, we have the output: min_f, and time_delay.

The input of the checker comes from the database of the analysis tool. We need to

have disturbance power Pstep in the frequency response function. And also, we need to
provide the frequency threshold to get time_delay when the frequency is below the
threshold. We call this frequency threshold ‘f_given’. So the input parameters are
disturbance power ‘Pstep’, and frequency threshold ‘f_given’. The output parameters are
lowest frequency value ‘min_f’, and the below-the-threshold time ‘time_delay’.

(2) Main task of algorithm

As described in the last section, we are given a frequency response function

[] 60)sin(1
2)(

)(+++
+

= − φωα
π

ςω te
KDR

RP
tf r

t

m

step n and a horizontal curve

givenftf _)(= . What we need to calculate are min_f and time_delay, as shown in
figure 3.8 below.

33

Figure 3.8 Parameters to calculate in the Frequency Function

The lowest point of frequency value should be the first local minimizer of the

frequency curve, since the curve is a damped sine wave and the following local
minimizers will involve frequencies that are closer to 60 Hz.

In an optimization problem like calculating min_f, we can apply the first order

condition to find the local minimizer. That is to say, if the Jacobian of the function at one
point is zero, then this point is a local minimizer. In this problem, we need to find a point
t which satisfies the equation 0)(=∇ tf in the first cycle of the curve. Now we have
converted the optimization problem into solving the equation

0)(=∇ tf

To calculate time_delay, we can first find the time when the frequency first drops
under the frequency threshold ‘t1’, and the time when the frequency first rises up to the
threshold again ‘t2’. Apparently, t1 and t2 are two intersections of two functions:

[] 60)sin(1
2)(

)(+++
+

= − φωα
π

ςω te
KDR

RP
tf r

t

m

step n

givenftf _)(= .

To calculate the intersection of two functions, we can simply solve the equation

34

[] givenfte
KDR

RP
r

t

m

step n _60)sin(1
2)(

=+++
+

− φωα
π

ςω

Hence, we can conclude that to calculate min_f and time_delay, our main task is to
solve equations.

35

3.2.2.3 Descriptions of the Steps of Algorithm

(1) Main steps of the algorithm

Before writing the code, we need to work out the main steps of the algorithm. There
are two parameters that need to be calculated: lowest frequency value ‘min_f’, and the
below-the-threshold time ‘time_delay’. Below is the flow chart of the main steps of the
algorithm.

Figure 3.9 Flow Chart of the Code

Following figure 3.9 above, we can see that the first step is to find point t and min_f,

and we can calculate them using Newton-Raphson Method, which will be presented in
detail in the next section.

Then, before we calculate the two intersection points t1 and t2, we need to make sure

that there will actually be more than one intersection of the frequency function and the
horizontal function. So we find the first local maximizer tt after t, and the frequency value
of this point. As shown in figure 3.10, between min_f and max_f is the ‘two-intersections

36

range’ for the given frequency threshold f_given.

If the f_given is between min_f and max_f, it is obvious that we can find two

intersections between t and tt point. But if f_given is larger than max_f, there will only be
one intersection t1. If f_given is smaller than min_f, there will be no intersection. So only
when fgivenff max__min_ << can we get an actual value of time_delay.

Figure 3.10 ‘Two-intersections range’ for f_given

So from the flow chart, if the given frequency threshold is in the range from min_f to

max_f, we can find t1 and t2, and time_delay, which is t2-t1.

(2) Find t for min_f

According to the flow chart of the code in Figure 3.9, the first step is to find t and
min_f. Since we already have the frequency response function, as long as we have t, we
can calculate min_f immediately after inserting t into the frequency function. So we need
to calculate the first local minimizer t first. We know that to seek t, we just have to take
the derivative of the frequency function and set to zero. The derivative of the frequency
function is

37

[]))sin()cos(
2)(

)(φωςωφωω
π

α ςω +−+
+

=′ − tte
KDR

RP
tf rnrr

t

m

step n

Now our problem is solve the equation

[] 0))sin()cos(
2)(

=+−+
+

− φωςωφωω
π

α ςω tte
KDR

RP
rnrr

t

m

step n

,

and solution should be the first minimizer from 0=t .

We can use Newton-Raphson method and Armijo rule to solve equations. Figure 3.11
below is the flow chart to solve this problem.

Figure 3.11 Flow Chart of Calculating min_f

The first step is to ‘set initial start for t’. We need to find a point which is closer to the

solution, not only to decrease the number of iterations to make the checker more efficient,

38

also to make sure the solution is the first minimizer from 0=t . Since the frequency
response function is a damped sine curve, the local minimizer of the function should be
close to the local minimizer of the sine curve.

Furthermore, we will use Armijo rule to make sure each iteration will only move

closer to the solution. So by choosing the local minimizer of the sine curve as an initial
start for t, we can exclude the possibility that the t we find is a minimizer of other cycles
of the curve. Therefore, we calculate the first minimizer of)sin(φω +− tr , which is

2
πφω =+tr , and we have the initial start

r

t
ω

φπ)
2

(−
= .

The second step is to ‘check stopping criteria’ to see if the checker has found the
solution. If the slope of some point of the frequency curve is very small, we can stop the
iteration and call this point as solution to finding the time of minimum frequency.

Figure 3.12 Parameters in Stopping Criteria for t

In this problem, we define the slope is ‘very small’ when h , the projection of the

tangent angle on the vertical line at next maximizer, is smaller than 0.01 fΔ , as shown in
figure 3.12 above, where fΔ is the absolute value of the frequency drop at time t.

60)(−=Δ tff . That is to say if fh Δ≥ 01.0 , then the checker will go to the next

iteration, until fh Δ< 01.0 .

39

As presented in figure 3.12, here is how we get h . Firstly, since the curve is the

damped sine wave, we can approximately find the first maximizer tt after t. By setting

πφω =+tr , we can get the approximate maximizer tt, which is
rω
φπ − . Secondly, we

compare the distance from t to zero and the distance from t to
rω
φπ − . Then we choose

whichever is the larger and multiply by the slope of point t. In the case of figure 3.12, for

example, the distance from t to
rω
φπ − is larger than the distance from t to zero.

ttt
rr

−
−

=−
−

ω
φπ

ω
φπ),max(Then we will get h by multiplying the larger distance by

the slope of point t, which is)tan(θ .

)tan(),max(θ
ω
φπ tth

r

−
−

=

)tan()(θ
ω
φπ th

r

−
−

=

And we can tell that)tan(θ is the derivative of the frequency function at point t,

which is)(tf ′ .
So, we have the expression of h

)()(tfth
r

′−
−

=
ω
φπ

where,

[]))sin()cos(

2)(
)(φωςωφωω

π
α ςω +−+

+
=′ − tte

KDR
RP

tf rnrr
t

m

step n

As defined above, if fh Δ≥ 01.0 , then the checker will go to the next iteration, until

fh Δ< 01.0 . So according to the flow chart, if 60)(01.0)()(−<′−
− tftft

rω
φπ , we

check Armijo step size rule before we update the solution and go to the next iteration .

40

We begin checking Armijo rule by ‘setting Armijo start’. As discussed in 5.3.2, we
start from setting 1)(=να . If)()1()()()()()()(ννννν δαα xgxxg −≥Δ+ , we multiply the

step size)(να by 0.5, and we check again until

)()1()()()()()()(ννννν δαα xgxxg −<Δ+ is satisfied.

After checking Armijo rule, and the step size being decided, we can move to update

the iteration by ttt Δ+=)(να . Then we go back to the top of the flow chart and check the
stopping criteria again.

After the iteration stops, we can get the solution of t. Then by plugging it into the

frequency response function, we will have the minimum frequency value min_f.

(3) Find tt for max_f

To find the first local maximizer tt after t, we can use the same method as in 6.2.1. We
have the derivative of the frequency function

[]))sin()cos(
2)(

)(φωςωφωω
π

α ςω +−+
+

=′ − tte
KDR

RP
tf rnrr

t

m

step n

,

and set it to zero.

Now we need to solve the equation

[] 0))sin()cos(
2)(

=+−+
+

− φωςωφωω
π

α ςω tte
KDR

RP
rnrr

t

m

step n

,

and the solution should be the first maximizer after the first minimizer t.

41

Figure 3.13 Flow Chart of Calculating tt and max_f

Similarly, we will use Newton-Raphson method and Armijo rule to solve this

equation. figure 3.13 is the flow chart, which is very similar to figure 3.11, except that the
initial start and stopping criteria are different. Two problems are seeking the solutions in
different ranges with the same equation.

According to the flow chart in figure 3.13, we start with setting initial start for tt,

similar to setting initial start for t. We already know that the local maximizer of the
frequency curve should be very close to the local maximizer of the sine wave function

)sin(φω +− tr . So we can use the first maximizer after t of the sine function as the initial
start for tt. The Armijo rule can ensure each iteration moves closer to the solution. So by
choosing the first maximizer after t of the sine function, we can exclude the possibility
that the tt we find is some maximizer of other cycles of the curve. Therefore, we calculate

the first maximizer after t in the first cycle of)sin(φω +− tr , which is
2

3πφω =+tr , and

42

we have the initial start
r

t
ω

φπ

2

)
2

(3 −
= .

As in flow chart of figure 3.13, we should then check for stopping criteria for tt. We

use the similar criteria, which is if the slope of some point of the frequency curve is very
small, we can stop the iteration and call this point as solution.

We define the slope is ‘very small’ when h , the projection of the tangent angle on the
vertical line at next minimizer, is smaller than 0.01 fΔ , as shown in figure 3.14 below,

where fΔ is the absolute value of the frequency drop at time tt. 60)(−=Δ ttff . That

is to say if fh Δ≥ 01.0 , then the checker will go to the next iteration, until fh Δ< 01.0 .

Figure 3.14 Parameters in Stopping Criteria for tt

This figure is based on an example with less damping where 05.0=HF . Firstly, we

calculate the nearest minimizers on both sides of the solution of tt. The one on the left is t,
which we already worked out. The one on the right is close to the first minimizer of
function)sin(φω +− tr after tt. We can approximately find the first minimizer after tt by

setting πφω
2
3

=+tr , and we get
rω
φπ

2
)(3 − . Secondly, we compare the distance from tt

43

to the left minimizer and the right minimizer. Then we choose whichever is the larger in

these two distances, ttt − and tt
r

−
−
ω
φπ

2
)(3 . And then we multiply the larger distance

by the slope of point tt. Like in figure 3.14, for example, ttttt
r

−
−

<−
ω
φπ

2
)(3 , so we

multiply tt
r

−
−
ω
φπ

2
)(3 by)tan(θ .

)tan()
2

)(3,max(θ
ω
φπ ttttth

r

−
−

−=

)tan(
2

)(3 θ
ω
φπ

⎥
⎦

⎤
⎢
⎣

⎡
−

−
= tth

r

And)tan(θ is the derivative of the frequency function at point tt, which is)(ttf ′ . So,

)(
2

)(3 ttftth
r

′⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

ω
φπ

where,

[]))sin()cos(
2)(

)(φωςωφωω
π

α ςω +−+
+

=′ − tttte
KDR

RP
ttf rnrr

tt

m

step n

.

Therefore, we have the stopping criteria the same as 6.2.1: stop until fh Δ< 01.0 ,
where,

)(
2

)(3 ttftth
r

′⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

ω
φπ

60)(−=Δ ttff

After checking the stopping criteria of iteration, we can get the first maximizer tt after

t and the frequency value at this point.

(4) Find t1

As discussed in the previous sections, to find the first intersections of the frequency
response curve and the horizontal frequency threshold curve, we need to solve the
equation

[] givenfte
KDR

RP
r

t

m

step n _60)sin(1
2)(

=+++
+

− φωα
π

ςω

.

44

The smallest solution is t1, and the second smaller solution is t2. We will also use

Newton-Raphson method and Armijo step size rule to solve the equation. Figure 3.15
below is the flow chart to get t1.

Figure 3.15 Flow Chart of Calculating t1

First, we need to set an initial start for t1. From figure 3.15, we know that t1 is

between zero and the first local minimizer t. So we set the initial start from one-tenth of t
left from t.

ttt 1.01 −=

Then we check the stopping criteria for the Newton-Raphson iteration: if t1 is so
close to the solution that the distance from t1 to the given frequency threshold line is
smaller than the absolute value of the frequency drop at this point, we can stop iterating
and call t1 a solution.

45

Figure 3.16 shows the parameters of the stopping criteria. fΔ is the absolute value

of the frequency drop of t1, which is 60)1(−=Δ tff . h is the distance from point t1

to the given frequency threshold line. The iteration will continue until fh Δ< 01.0 .

Figure 3.16 Parameters in Stopping Criteria for t1

Before we go on with the Newton-Raphson method, we check to make sure t1 does

not run to the right side of t. Because if the system seeks the solution at the right side of t,
it will end up at t2, the second intersection of the two functions. To avoid this, the system
will first check if t1 is at the right side of t. If tt >1 , t1 will be moved one-tenth t to the
left,

ttt 1.011 −= for t1 is moved to the left side of t

Then we continue the Newton-Raphson method like in 6.2.1, and we will find t1, the
time when the frequency first drops under the frequency threshold.

46

(5) Find t2

The steps and methods to find t2 are very similar to that of find t1, shown in figure
3.17.

Figure 3.17 Flow Chart of Calculating t2

Similarly to keeping the estimates of t1 to the left of t, the value of the iteration of t2

should be kept at the right side of t. If tt <2 , the iteration t2 will be moved one-tenth to
the right of t.

ttt 1.022 +=

This will make sure that the solution does not end up at t1. When the system is
checking the stopping criteria of the iteration, there is another limit on t before it updates
the iteration. In a situation where fgivenf max__ > , there will be no more
intersections other than t1. So we have to set a limit to the iteration of t2 to prevent the
system from keeping seeking t2 in vain. If the number of iterations is larger than 50, but

47

is still not close the solution then the system will stop searching and decide that t2 is
infinite. Then same steps are followed to find the second intersection t2. And time_delay
can be calculated by 12 tt − .

3.2.2.4 Results of the frequency outage checker

Two examples are listed below to show the results of running the code. In the first

example, we use the typical parameters from the previous section;

· R = 0.05
· H = 4.0s
· Km = 0.95
· FH = 0.3
· TR = 8.0s
· D = 1.0

and input:

· 4.0−=stepP

· 9883.59_ =finput

After running the code, we have the result:

· t = 4.2045
· min_f = 59.9871
· t1 = 2.5339
· t2 = 6.8077
· time_delay = 4.2737

48

Figure 3.18 Result of running the code (1)

We can see in figure 3.18, it took 4.2045 seconds for the frequency to first drop to the

minimum value of 59.9871 Hz, and the time duration when the frequency is below
59.9883 Hz is 4.2737 s.

Here is a second example with less damping where FH = 0.1. The other parameters

and inputs are the same.

· R = 0.05
· H = 4.0s
· Km = 0.95
· FH = 0.1
· TR = 8.0s
· D = 1.0

· 4.0−=stepP

· 9883.59_ =finput

49

After running the code, we have the result:

· t = 4.4055
· min_f = 59.9835
· t1 =1.9174
· t2 =9.5382
· time_delay =7.6208

Figure 3.19 Result of running the code (2)

We can see in figure 3.19, it took 4.4055 seconds for the frequency to first drop to the

minimum value of 59.9835 Hz, and the time duration when the frequency is below
59.9883 Hz is 7.6208 s.

50

4 Conclusion

In this project, UT has had the primary responsibility for developing a cascading
outage analysis tool that has its own graphical user interface (GUI). This work has
concentrated on developing the simulation algorithm for the cascading outage checkers
and the GUI, both in a windows-based environment.

We developed version 1.0 of the Cascading Outage Analyzer (COA) software as PC-

based Windows software. The Cascading Outage Analyzer (COA) uses MS Access as a
database. In order to reuse a previously implemented power flow module and provide
flexibility to switch to or add different power flow modules and determine a specific
module to run at run-time, three design patterns, the Adapter, Strategy, and Factory
Method design patterns, have been adopted.

Following the initial disturbance, the Cascading Outage Analyzer software has three

outage checking algorithms namely the ‘Frequency Checker’, ‘Line Overload Checker’
and ‘Under Voltage Checker’. Among the three checkers, the line overload and bus
under-voltage checkers use the power flow algorithms and users can select between two
variations of the load flow program: Full AC power flow and Decoupled power flow,
which are provided by Commonwealth Associates Inc. On the other hand, we use the
System Frequency Response (SFR) model as a frequency change model in the frequency
checker algorithm.

 The developed COA software is verified with a 9 bus system and this system is
presented in ‘Power System Control and Stability’ [8] by Anderson and Fouad. The
scenario simulation of 9 bus system for understanding the developed software will be
presented in the Appendix of this report.

In future, the developed Cascading Outage Analyzer (COA) will be enhanced with

new version and the following issues will be upgraded in the next version.

· Enhance Input DB system

· Upgrade simulation engines and algorithms

· Implement simulation output files (for example, *.CSV)

51

Appendix A: User’s Manual

Cascading Outage Analyzer V1.0 Jan 2009 System Manual

- Instructions for the Cascading Outage Analyzer User Interface -

52

Contents

Introduction to the system manual .. 53

Installation and start ... 53
System requirements ... 53
Installing COA ... 53
Starting COA.. 53

User interface .. 54
User interface elements ... 54

Menu Bar .. 54
Toolbar ... 55
System Information Bar... 55
Workspace .. 56

Basic functions.. 57
Open Power System Data .. 57
Exit .. 58

Power System Data... 59
Buses... 59
Generators .. 59
Lines ... 60
Load .. 61

Set Up COA-sys .. 62
Disturbance .. 62
Cascading Outage Checker.. 63
Frequency Checker... 64

Simulate COA-sys .. 65
Run Checker... 65
Simulation Report.. 66

Help... 68
About COA... 68

Example... 69
Opening a power system network.. 69
Viewing the power system network data... 71
First Disturbance: Calculations and results ... 72
Second Disturbance: Calculations and results... 77

User’s Manual Index... 83

53

Introduction to the system manual

Installation and start

System requirements
Minimum hardware requirements

 PC or notebook
 CPU: x86 compatible
 RAM: 256 MB
 Hard disk Space: 16 MB

Software requirements

 MS Windows XP 32 bit
 MS Access 2003
 MS .NET Framework (1.1)
 PFlow (Commonwealth Associates Inc.)

Installing COA
To install the Cascading Outage Analyzer (v 1.0) the following steps are required:

 The folder COA_v1.0 from the installation disk must be copied to the hard disk
C:\

 A folder named Dataset with the following destination must be created
C:\project\Dataset

 A folder named source with the following destination must be created
C:\project\implementation\source

 The files COChecker.mdb and Datainput.mdb from the installation disk must
be copied to the Dataset folder specified above

 The file temp.mdb from the installation disk must be copied to the source folder
specified above

Starting COA
Clicking on the Cascading Outage Analyzer.sln file located in the folder COA_v1.0 op
ens the Microsoft Visual Studio application. To start the COA the user must then p
ress CTRL+F5 or click the PLAY button (see Fig.A1).

Figure A.1: PLAY button on Microsoft Visual Studio toolbar to start the COA.

54

User interface

After opening the COA application the user views the configuration of the COA system:

Figure A.2: COA User Interface

User interface elements
The user interface elements include the following:

 Menu Bar
 Toolbar
 System Information Bar
 Workspace

Menu Bar
COA’s menu bar is an important element because it accesses all functions of the COA
application.

Figure A.3: COA’s Menu Bar.

55

The menu bar contents are:
 File

The File menu contains basic functions of the COA which include opening power
system data files and exiting the application.

 Power System Data
The Power System Data menu is used to view the data of the basic components
of the power system, which include buses, generators, loads and lines.

 Set Up COA-sys
The Set Up COA-sys menu is used to set the simulation options, such as choosing
the disturbance or the cascading outage checkers.

 Simulate COA–Sys
The Simulate COA-Sys menu contains the run and report functions.

 Help
The Help menu contains general information about the application .

Toolbar
The icons of the toolbar allow access to all common functions of the program, which can
also be selected from menus.

Figure A.4: COA’s Toolbar

The elements of the toolbar are:

 Open
 Disturbance
 Checker
 Frequency
 Run
 Report
 Exit

System Information Bar
The System Information Bar contains the system title and the basic description of the
loaded power system.

Figure A.5: COA’s System Information Bar

56

Workspace

The Workspace takes up most of the window. This area is used to view the input and
output data. The input data include the power system information data handled by
Access DB and the simulation options. The output data are contained in the Simulation
Report. The message boxes are also displayed in the Workspace area.

57

Basic functions

The basic functions of the COA application are opening a power system and exiting the
application. Both these functions are contained in the File menu of the COA’s Menu bar.

Figure A.6: COA’s File menu.

Open Power System Data
To load the input data of an existing power system, the user must click File – Open
Power System Data or click the OPEN icon on the toolbar. This action opens the
following dialog box:

 Figure A.7: Selecting Power System input data dialog box.

By selecting Datainput.mdb and clicking Open at the above dialog box the user views the
following message, which declares the successful loading of the input data on the COA
application.

58

Figure A.8: Successful upload of the system input data message.

By clicking OK in the above message box the System Title and System Description of the
loaded power system appear on the System Information Bar (see Fig.A.5).

Exit

To exit the COA application the user can either select File – Exit or click on the EXIT
icon on the toolbar.

59

Power System Data

The user can view the data of the basic components of the power system with the Power
System Data menu of the Main menu.

Figure A.9: Power System Data menu.

Buses
The user can view the power system buses data by clicking Power System Data – Buses
from the Main menu and then View Bus Data - + - Table on the Buses Window in the
Workspace. The user can exit the Buses Window by clicking on the Exit button next to the
View Bus Data button.

Figure A.10: Power system buses data (Buses Window).

Generators
The user can view the power system generators data by clicking Power System Data –
Generators from the Main menu and then View GEN Data on the GeneratorForm
Window in the Workspace. The user can exit the GeneratorForm Window by clicking on the

60

Exit button next to the View GEN Data button.

Figure A.11: Power system generator data (GeneratorForm Window).

Lines
The user can view the power system lines data by clicking Power System Data – Lines
from the Main menu and then View LINE Data on the LineForm Window in the
Workspace. The user can exit the LineForm Window by clicking on the Exit button next to
the View LINE Data button.

Figure A.12: Power system line data (LineForm Window).

61

Load
The user can view the power system load data by clicking Power System Data – Load
from the Main menu and then View Load Data on the LoadForm Window in the
Workspace. The user can exit the LoadForm Window by clicking on the Exit button next to
the View Load Data button.

Figure A.13: Power system load data (LoadForm Window).

62

Set Up COA-sys

From the Set Up COA-sys menu of the Main menu the user can set-up the simulation
scenarios and define the options for the used outage checkers.

Figure A.14: Set Up COA-sys menu.

Disturbance
By clicking Set Up COA-sys – Disturbance from the Main menu or the DISTURBANCE
icon on the toolbar the user can view the Disturbance Editor Window in the Workspace
area. This Window displays the information regarding the selected initial disturbance in
the power system. Only one disturbance at a time can be handled and only of the Line
Outage form (this disturbance applies for a line or any branch device outage).

The Reload button at the bottom of this Window can be used to load the current data
stored in the Disturbance table in the corresponding database (make modifications
without saving them), while the Update button actually updates the data of the
Disturbance table in the corresponding database (make modifications and save them).
The user can exit the Disturbance Editor Window by clicking on the Close button on this
Window.

When the user modifies the entries in the Disturbance Editor Window the user must also
make the same modifications in the Disturbance table in the database located at
C:\project\Dataset\Datainput.mdb.

Figure A.15: Disturbance Editor Window displaying the initial disturbance.

63

Cascading Outage Checker
By clicking Set Up COA-sys – Cascading Outage Checker from the Main menu or the
CHECKER icon on the toolbar the user can view the Overload and Voltage Editor Window
in the Workspace area. This Window displays the types of the outage checkers that will
be used and their usage priority.
There are three types of outage checkers:

⎯ Line Overload
⎯ Under Voltage
⎯ Frequency Checker

and their order of usage can be determined by varying the entries in the Time_Span
column (smallest number in Time_Span corresponds to the outage checker that will be
used first).

The Reload button at the bottom of this Window can be used to load the current data
stored in the Outage Checker table in the corresponding database (make modifications
without saving them), while the Update button actually updates the data of the Outage
Checker table in the corresponding database (make modifications and save them). The
user can exit the Overload and Voltage Editor Window by clicking on the Close button on
this Window.

When the user modifies the entries in the Overload and Voltage Editor Window the user
must also make the same modifications in the Outage Checker table in the database
located at C:\project\Dataset\Datainput.mdb.

Figure A.16: Overload and Voltage Editor Window displaying the Outage Checkers used.

64

Frequency Checker
By clicking Set Up COA-sys – Frequency Checker from the Main menu or the
FREQUENCY icon on the toolbar the user can view the Frequency Editor Window in the
Workspace area. This Window displays the characteristics of the frequency outage
checkers that will be used.
The columns of this table provide the following information:

⎯ Bus: The bus number of the power system
⎯ BusType: The type of the bus (1: Generation bus, 2: Load bus)
⎯ Threshold: Input value for the frequency threshold
⎯ Delay: Input value for setting the time delay of the frequency relay.

The Reload button at the bottom of this Window can be used to load the current data
stored in the FOChecker table in the corresponding database (make modifications
without saving them), while the Update button actually updates the data of the
FOChecker table in the corresponding database (make modifications and save them). The
user can exit the Frequency Editor Window by clicking on the Close button on this
Window.

Figure A.17: Frequency Editor Window.

65

Simulate COA-sys

After setting the options and the parameters of the simulation the user can simulate a
disturbance and view the results of the simulation from the Simulate COA-Sys menu.

Figure A.18: Simulate COA-Sys menu.

Run Checker
By clicking Simulate COA-Sys – Run Checker from the Main menu or the RUN icon on
the toolbar the user views the Select Power Flow Algorithm Window in the Workspace area.
This Window prompts the user to choose the desired power flow method to be used in
the simulation:

⎯ AC Power Flow
⎯ Decoupled Power Flow

Figure A.19: Selecting the desired Power Flow Algorithm Window.

After ticking the corresponding box in the Window a message box appears in the
Workspace area declaring the chosen Power Flow Algorithm. After first clicking OK in
the message box and then clicking Run in the Select Power Flow Algorithm Window the
simulation starts.

Several windows open in the Workspace area before the simulation stops (see Fig. A.20).
The user should wait until the end of the simulation, which is declared by a message box
(see Fig. A.21) displaying either:

⎯ Result: 1 – Successful run of the simulation scenario or
⎯ Result: 0 – Failure to run the simulation scenario.

66

Figure A.20: The running process.

Figure A.21: End of simulation.

After the end of the simulation process the user should click OK in the message box and
Close in the Select Power Flow Algorithm Window.

Simulation Report
By clicking Simulate COA-Sys – Simulation Report from the Main menu or the
REPORT icon on the toolbar the user views the Cascading Outage Report Window in the
Workspace area. This window presents the resulting outages including the initial

67

disturbance in tree view (Cascading Outage Tree View tab).

Figure A.22: Cascading Outage Report Window.

The user must click successively the + sign in order to view the results of the simulation.
The results are displayed in chronological order, thus the first line under Cascading
Outage is the initial disturbance.

Figure A.23: Cascading outage results displayed in tree view format.

68

Help

About COA
The user can view the current version number and general information about the COA
application in the HelpInfo Window by clicking Help – About Cascading Outage
Analyzer (COA).

Figure A.24: COA’s Help menu.

Figure A.25: HelpInfo Window with general information about the COA application.

69

Example

The function of the COA application will be illustrated with an example.

For this example the following power system is considered and two simulation scenarios are
presented.

Figure A.26: One line diagram of the Example power system network [8].

Opening a power system network

In the COA application previously implemented power flow software is used to deter
mine sequential equilibrium states for checking if further outages will occur following
an initial disturbance. The implemented outage checkers utilize an independent power
 flow module, PFlow, which has been developed by Commonwealth Associates Inc. a
nd is licensed to The University of Texas.

For this reason the components of the example power system depicted in Fig. A.26 an
d their associated data are stored in a database, in compliance with the reused softwa
re. The database for the example power system Datainput.mdb is contained in the appl
ication installation disk. To utilize the COA application this database must be copied t
o the location C:\project\Dataset\Datainput.mdb.

If the user wants to test simulation scenarios on a new power system the format of the given

70

Datainput.mdb database must be maintained. For this reason the developers of the COA
application recommend that the given database is copied and then modified accordingly.
Although the database contains many tables the user has to modify only the following tables
for the power flow calculation:

⎯ BUS: contains the bus data of the network,

⎯ GENERATOR: contains the generator data of the network,

⎯ LINE: contains the line data of the network,

⎯ LOAD: contains the load data of the network.

However, regardless of the power system network the database used must be named Datainp
ut.mdb and copied to the location C:\project\Dataset\Datainput.mdb.

To view the configuration of the COA application the user must click on the Cascading Outag
e Analyzer.sln file located in the folder COA_v1.0 and then press CTRL+F5 or click the
PLAY button. To load the input data of the example power system, the user must click File –
Open Power System Data or click the OPEN icon on the toolbar (see Fig. A.27).

Figure A.27: Opening the example power system.

By selecting Datainput.mdb and clicking Open at the above dialog box the user views a
message box declaring the successful loading of the input data on the COA application. After
clicking OK the System Title and System Description of the loaded example power system
appear on the System Information Bar (see Fig.A.28).

71

Figure A.28: Example power system description shown at the COA’s System Information Bar

Viewing the power system network data

The example power system is a nine-bus power system with three generators, three
transformers, three loads and six lines. The user can view the data of this network using the
Power System Data menu of the Main menu of the COA application.

For example, to view the example power system buses data the user must click Power
System Data – Buses from the Main menu and then View Bus Data - + - Table on the Buses
Window in the Workspace.

Figure A.29: Power system buses data for the nine bus example power system.

To view the example power system lines data the user must first exit the Buses Window
above and then click Power System Data – Lines from the Main menu and then View LINE
Data on the LineForm Window in the Workspace. The user can exit the LineForm Window by
clicking on the Exit button next to the View LINE Data button.

72

Figure A.30: Power system line data for the nine bus example power system.

The described procedure is similar for viewing the example power system generator or load
data.

First Disturbance: Calculations and results

The first initial disturbance to be applied to the example power system is the line outage of
the Line 6 between Buses 7 and 8, which is equivalent to opening the circuit breakers CB 15
and CB 16, as shown in Fig. A.31.

Figure A.31: First initial disturbance applied to the example power system.

First initial disturbance

73

By clicking Set Up COA-sys – Disturbance from the Main menu or the DISTURBANCE
icon on the toolbar the user can view the Disturbance Editor Window in the Workspace area.
This Window displays the information regarding the initial disturbance in the power system,
as shown in Fig. A.32.

Figure A.32: Disturbance Window displaying the first disturbance for the example power system.

By clicking Set Up COA-sys – Cascading Outage Checker from the Main menu or the
CHECKER icon on the toolbar the user can view the Overload and Voltage Editor Window in
the Workspace area. For the first initial disturbance all the available outage checkers will be
used, in the following order:

⎯ Frequency Checker
⎯ Line Overload
⎯ Under Voltage

as is denoted by the respective value in the Time_Span column and shown in Fig. A.33.

Figure A.33: Window displaying the outage checkers used in the first initial disturbance.

74

By clicking Set Up COA-sys – Frequency Checker from the Main menu or the FREQUENCY
icon on the toolbar the user can view the Frequency Editor Window in the Workspace area. The
window displaying the characteristics of the frequency outage checkers that are used in the
first initial disturbance applied to the example power system is shown in Fig. A.34. These
characteristics include the bus number and type, the frequency threshold and the time delay
for the frequency relays. As can be seen from Fig. A.34 the frequency checkers have under-
frequency relays. The frequency checkers at load buses have greater values for the time delay
of their under-frequency relays than the ones used at generator buses. Moreover, the
frequency checker at bus 3 has the highest under-frequency threshold.

Figure A.34: The characteristics of the frequency checkers used in the first initial disturbance.

Having set the options and the parameters of the simulation the user can now simulate the
initial disturbance and view the results of the simulation.

By clicking Simulate COA-Sys – Run Checker from the Main menu or the RUN icon on the
toolbar the user views the Select Power Flow Algorithm Window in the Workspace area. For the
first initial disturbance applied to the example power system the selected power flow
method is the AC Power Flow, as shown in Fig. A.35.

After first clicking OK in the message box and then clicking Run in the Select Power Flow
Algorithm Window the simulation starts. At the end of the simulation a message box
displaying ‘Result: 1’ appears in the Workspace area declaring the successful end of the
simulation.

75

Figure A.35: Power Flow Algorithm Window for the first initial disturbance.

The user can view the results of the first simulation by clicking Simulate COA-Sys –
Simulation Report from the Main menu or the REPORT icon on the toolbar. The Cascading
Outage Report Window appears in the Workspace area displaying the resulting outages
including the initial disturbance in tree view format, as shown in Fig. A.36.

Figure A.36: Simulation Report for the first initial disturbance.

The results of the simulation are presented in chronological order and must be interpreted as
follows:

⎯ Line Outage from bus 7 to bus 8
This is the initial disturbance applied to the example power system.

⎯ Frequency at bus 3
This is the first cascading outage resulting from the initial disturbance. The
information displayed means that the settings of the frequency checker at the
(generator) Bus 3 are violated causing the opening of the circuit breaker CB 3 and the

76

outage of generator G3.

⎯ Line Outage from bus 4 to bus 5
This is the second cascading outage resulting from the initial disturbance. The
information displayed means that the settings of the line overload checker at the line
between Buses 4 and 5 (Line 1) are violated causing the opening of circuit breakers CB
5 and CB 7.

⎯ Under Voltage at bus 5
This is the third cascading outage resulting from the initial disturbance. The
information displayed means that the settings of the under-voltage checker at Bus 5
are violated causing the opening of the circuit breaker CB 9 and the loss of Load A.

The above results are in compliance with the chosen simulation options regarding the order
of the outage checkers used. First the settings of the frequency checkers are checked for
violation, then the settings of the line overload checkers and finally the settings of the under-
voltage checkers. Moreover, the frequency checker whose settings are violated is the one
with the highest under-frequency threshold, resulting in the outage of generator G3. The
tripping of the overload checkers at Line 1 is also easy to interpret, since this line has the
smallest thermal limit. Finally, the outage of Line 1 causes excessive power flow on Line 3 for
the supply of Load A, which results in the under-voltage settings at Bus 5 to be violated. The
simulation of the events resulting from the first initial disturbance is presented graphically in
Fig. A.37.

Figure A.37: Graphical representation of the first simulation scenario.

Initial disturbance

First cascading outage:
Frequency checker settings are
violated at Bus 3 resulting in the
loss of generator G3

Second cascading outage:
Line overload checker
settings are violated
resulting in the loss of Line 1

Third cascading outage:
Under voltage checker
settings are violated at Bus 5
resulting in the loss of Load A

77

Second Disturbance: Calculations and results

Before the user can simulate a new scenario (even if no changes will be made to the
simulation parameters and settings) the following actions must be taken:

⎯ The entries of the table Disturbance in the database Datainput.mdb located at
C:\project\Dataset\Datainput.mdb with Disturbance ID 100 and higher must be
deleted (all the entries but the first, see Fig. A.38). These entries correspond to the
simulation results of the previous simulation which are recorded in this table.

⎯ The table FOChecker in the database COChecker.mdb located at
C:\project\Dataset\COChecker.mdb must be deleted.

⎯ The table FOChecker_org in the database COChecker.mdb located at
C:\project\Dataset\COChecker.mdb must be copied to the same location and renamed
to table FOChecker.

⎯ The entries of the table CTDOutput in the database COChecker.mdb located at
C:\project\Dataset\COChecker.mdb must be deleted (see Fig. A.39). The simulation
results of the frequency checkers are recorded in this table. The entries in the BusNum
column correspond to the buses of the power system. The entries in the STD column
display the time-delay settings for each frequency checker while the entries in the
CTD_Under column show the calculated time duration of the under-frequency below
the frequency threshold value. (The frequency checkers can also have over-frequency
relays in which case the calculated duration of the over-frequency at any frequency
checker will be displayed in the column CTD_Over).

Figure A.38: Lines to be cleared in the Disturbance table before running a new simulation.

78

Figure A.39: Lines to be cleared in the CTDOutput table before running a new simulation.

After performing the above actions the second scenario can be started. The second initial
disturbance to be applied to the example power system simulates the outage of the
transformer T3 between Buses 3 and 9, which is equivalent to opening the circuit breakers CB
20 and CB 21, as shown in Fig. A.40.

Figure A.40: Second initial disturbance applied to the example power system.

Second initial disturbance

79

By clicking Set Up COA-sys – Disturbance from the Main menu or the DISTURBANCE
icon on the toolbar the user can view the Disturbance Editor Window in the Workspace area. In
this Window the user will view the information regarding the previous initial disturbance in
the power system. To implement the new scenario the user has to modify the entries in the
From_Bus_Number and To_Bus_Number columns, according to Fig. A.41, by typing in the new
values and clicking the Update button. It is reminded to the user that the same modifications
must be made in the Disturbance table in the database located at
C:\project\Dataset\Datainput.mdb.

Figure A.41: Window displaying the second initial disturbance for the example power system.

By clicking Set Up COA-sys – Cascading Outage Checker from the Main menu or the
CHECKER icon on the toolbar the user can view the Overload and Voltage Editor Window in
the Workspace area. For the second initial disturbance two outage checkers will be used, in
the following order:

⎯ Line Overload
⎯ Under Voltage.

To implement the new scenario the user has to make the necessary modifications to the
entries in the Overload and Voltage Editor Window, according to Fig. A.42, by deleting the third
row and by clicking the Update button. It is reminded to the user that the same modifications
must be made in the Outage Checker table in the database located at
C:\project\Dataset\Datainput.mdb.

Since the frequency checker will not be used there is no necessary action regarding the
parameters of this type of checker (Set Up COA-sys – Frequency Checker from the Main
menu or FREQUENCY icon on the toolbar).

80

Figure A.43: Window displaying the outage checkers used in the second initial disturbance.

By clicking Simulate COA-Sys – Run Checker from the Main menu or the RUN icon on the
toolbar the user views the Select Power Flow Algorithm Window in the Workspace area. For the
second initial disturbance applied to the example power system the selected power flow
method is the Decoupled Power Flow, as shown in Fig. A.44.

After first clicking OK in the message box and then clicking Run in the Select Power Flow
Algorithm Window the simulation starts. At the end of the simulation a message box
displaying ‘Result: 1’ appears in the Workspace area declaring the successful end of the
simulation.

Figure A.44: Power Flow Algorithm Window for the second initial disturbance.

The user can view the results of the first simulation by clicking Simulate COA-Sys –
Simulation Report from the Main menu or the REPORT icon on the toolbar. The Cascading
Outage Report Window appears in the Workspace area displaying the resulting outages
including the initial disturbance in tree view format, as shown in Fig. A.45.

81

Figure A.45: Simulation Report for the second initial disturbance.

The results of the simulation are presented in chronological order and must be interpreted as
follows:

⎯ Line Outage from bus 3 to bus 9
This is the initial disturbance applied to the example power system, representing the
outage of a transformer.

⎯ Line Outage from bus 4 to bus 5
This is the first cascading outage resulting from the initial disturbance, which is the
outage of Line 1.

⎯ Under Voltage at bus 5
This is the second cascading outage resulting from the initial disturbance, which
results in the loss of Load A.

Figure A.46: Graphical representation of the second simulation scenario.

First cascading outage:
Line overload checker
settings are violated
resulting in the loss of Line 1

Second cascading outage:
Under voltage checker
settings are violated at Bus 5
resulting in the loss of Load A

Initial disturbance

82

Again, the above results are in compliance with the chosen simulation options regarding the
order of the outage checkers used. First the settings of the line overload checkers are checked
for violation and then the settings of the under-voltage checkers. The tripping of the overload
checkers at Line 1 is due to the fact that this line has the smallest thermal limit. The outage of
Line 1 causes again excessive power flow on Line 3 for the supply of Load A, which results in
the under-voltage settings at Bus 5 to be violated, and in the loss of Load A. The simulation
of the events resulting from the second initial disturbance is presented graphically in Fig.
A.46.

83

User’s Manual Index

bus data
exit... 61
view ... 61

COA application
exit.. 60
installation 55
start ... 55
user interface................................. 56

data
buses... 61
generators...................................... 61
lines .. 62
loads... 63

disturbance
edit .. 64
exit... 64
view ... 64

frequency checker
edit .. 66
exit... 66
view ... 66

generator data
exit... 62
view ... 61

line data
exit... 62
view ... 62

load data
exit... 63
view ... 63

menu bar..56

options
disturbance.................................... 64
frequency checker 66
outage checkers............................. 65
power flow algorithm...................... 67

outage checker
edit .. 65
exit... 65
view ... 65

power system
data .. 61
new .. 71
open .. 59

report
interpretation (first simulation) 77
interpretation (second simulation).. 83

requirements
hardware ... 55
software... 55

simulation
end... 68
new .. 79
options... 64
report (tree view) 68
run .. 67

system information bar.........................57

toolbar ..57

workspace area58

84

References

[1] R. Baldick and M. H. Joung, “Progress Report on DOE Research Project DE-AI02-05ER256:

“Reducing the Vulnerability of Electric Power Grids to Terrorist Attacks, December 2006

[2] Commonwealth Associates, Inc. “White Paper: A Scenario Describing the August 14, 2003

Blackout,” September 9, 2003

[3] E. Gamma, R. Helm, R. Johnson, J. Vlissides “Design Patterns: Elements of Reusable

Object-Oriented Software”, Addison-Wesley Longman Publishing Co., Inc., 1995

[4] J. Keogh, “Visual Basic 2005: your visual blueprint for writing dynamic applications”, Wiley

Publication Inc., 2006

[5] A. Stellman and J. Greene, “Head First C#: A Brain-Friendly Guide”, O’Reilly Media Inc.,

2008

[6] Commonwealth Associates, Inc. “Transmission 2000 Power Flow Program, Power flow

Version 5.10 Package”, April 2008

[7] P. M. Anderson and M. Mirheydar “A Low-Order System Frequency Response Model”, IEEE

Transactions on Power Systems, Vol. 5, No. 3, August 1990

[8] P. M. Anderson and A. A. Fouad, “Power System Control and Stability”, Vol. 1, The IOWA

state University Press, Ames, USA, 1977

