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1 Introduction 
 
 
1.1 Project Overview 
 

This project (‘Reducing the Vulnerability of Electric Power Grids to Terrorist 
Attacks’) is collaborative research with the Naval Postgraduate School (NPS), under the 
sponsorship of the U.S. Department of Energy. The research at The University of Texas 
focuses on analyzing cascading outages in large-scale electricity grids, both as a 
standalone tool and also as a component to eventually be added to the Vulnerability of 
Electric Grids Analyzer (VEGA) [1]. 

 
We refer to the proposal (Wood, Salmeron and Baldick 2003), and references therein, 

for detailed background on the problem of electric power-grid vulnerability. In that 
document, goals were established for this research and its critical importance. One aspect 
of that research, conducted primarily at University of Texas at Austin (UT), is the 
development of a cascading analysis tool, building on the experiences of a prototype tool 
developed by Commonwealth Associates and described in a white paper [2].  

 
This development is aimed at including the short-term effects of cascading outages 

into the analysis of network vulnerability. In addition to integrating representation of 
cascading outages into VEGA, informal feedback from industry suggested that it was also 
important that for this research to develop a standalone cascading analysis tool. 
Development as a standalone tool has also facilitated the division of activities between 
NPS and UT.  This report details the development of the prototype standalone tool.  
Future work includes extending the types of initial disturbances that can be considered 
and integration of the tool with VEGA. 
 
 
1.2 Overview of Cascading Outage Analyzer 
 

 
UT has had the primary responsibility for developing a cascading outage tool that has 

its own graphical user interface (GUI). The work has concentrated on developing the 
simulation algorithm and the GUI, both in a windows-based environment. Before 
beginning the cascading outage analysis, we need to specify the initial disturbances to be 
investigated for their progression to cascading outages. In the current algorithm, line 
outage type is considered as an initial disturbance.  The extension to other types of 
outages such as generator outages, bus outages, and substation outages remains future 
work.  
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Following the initial disturbance, the Cascading Outage Analyzer software has three 
outage checking algorithms, namely ‘Frequency Checker’, ‘Line Overload Checker’, and 
‘Under Voltage Checker’, that determine the status of the resulting operating state, or 
‘equilibrium’.  Some resulting operating states would result in protection equipment 
removing more elements from the system and therefore potentially precipitating further 
outages. Among the three checkers, the ‘Line Overload Checker’ and ‘Under Voltage 
Checker’ use the AC power flow as a basic simulation engine. In the case of the 
frequency checker, we use the System Frequency Response (SFR) model as a frequency 
change model. 
 

The Cascading Outage Analyzer (COA) program is PC-based Windows software. 
COA simulation engine is written on the Microsoft .NET common language runtime 
(CLR). The Microsoft .NET Framework (ver. 1.1 higher) must be installed on the 
computer before running COA software. The following table shows the summarized 
specifications of Cascading Outage Analyzer.  
 

Table 1.1 Specification of COA program 
 

Cascading Outage Analyzer Specifications 

Operating System Window 32 bit System 
(Wind XP OS system) 

Input Database Microsoft Access DB 
(MS Access 2003 higher) 

Load Flow program 
AC power flow 

Decoupled power flow 
(Commonwealth Associates Inc.) 

Platform MS .NET Framework  

Development Languages 
Visual Basic .NET (MMI) 

Visual C# (Algorithms) 

 
 
As indicated in the table, the Cascading Outage Analyzer (COA) uses MS Access as a 

database. When running COA program, users can select either of two load flow 
programs: Full AC power flow or Decoupled power flow, both provided by 
Commonwealth Associates Inc. That means that COA program requires the hardware 
lock key for running these load flow programs. 

 
 
 
 
The following sections of this report will be organized as follows. In section II, 

design specification of COA software; design patterns will be introduced. In section III, 
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Functional specification for developing COA software focusing on data workflows, 
operating algorithm and implementation of outage checkers will be presented. A 
conclusion and future extension of COA software are given in section IV. In addition to 
the technical report, the user manual of COA software is provided in the Appendix. 
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2 Design Patterns of COA software 
 
 
2.1 Introduction 
 

Computers and specially designed software have been used extensively in the past 
decades in the power system industry, mainly for simulation analysis so as to assess the 
system’s future performance and reliability. The increase in size and complexity of inter-
connected power systems and the automation of their operation has led to more computer 
applications with large and complicated software, most of which has been based on 
procedural programming languages. However, the liberalization of the electricity markets 
imposes great needs for more accessible, flexible, and expandable power system software, 
since there are many differences in market and system operations between regions and 
the deregulated environment brings along frequent and sometimes drastic changes of 
these operations. For these reasons the power system industry has started viewing object-
oriented programming techniques as a good alternative to procedural programming 
languages, because they allow for more flexibility and expandability. Most recently, a 
further step has been taken and design patterns have been deployed in power system 
software to successfully address issues as flexibility, expandability, and the reusing of 
legacy systems. 

 
Design patterns are part of the cutting edge of object-oriented programming (OOP) in 

software development. A design pattern is ‘a generalized solution to a commonly 
occurring problem’, meaning that a design pattern is specific to the problem at hand, yet 
general enough to address future problems and requirements. Essentially, a design pattern 
is a combination of two things: a description of a problem and a description of its solution. 
Design patterns make it easier to reuse successful software designs and architectures and 
the use of proven techniques like design patterns enhances their accessibility to 
developers of new systems. In addition, design patterns allow developers to communicate 
using well-known, well understood names for software interactions.  
 

Design patterns arose from architecture and anthropology. A great architect named 
Christopher Alexander defined a pattern as ‘a solution to a problem in a context’. Though 
many people had already been working on design patterns in the early 1990s, trying to 
establish the connections between design patterns in architecture and software design, the 
book that had the greatest influence on this emerging issue was Design Patterns: 
Elements of Reusable Object-Oriented Software, by Gamma, Helm, Johnson and 
Vlissides, also known as the Gang of Four in recognition of their contribution to the field.  

 
Design patterns are composed of four essential parts: a pattern name, a problem 

context, a generalized approach to a solution, and a set of consequences. The pattern 
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name is used to describe the design problem, its solutions, and consequences in a word or 
two. The problem describes when the pattern is applicable. The solution describes the 
elements of which the design is composed along with their relationships, responsibilities, 
and collaborations. Finally, the consequences are the results and trade-offs of applying 
the pattern, including its impact on a system's flexibility and expandability. Design 
patterns are most commonly described using graphical notations. However, apart from 
the design pattern’s name and structure other parameters should also be recorded in order 
to facilitate its reusability. These parameters include, but are not limited to, participants, 
collaborations and consequences. Participants are the classes and/or objects participating 
in the design pattern and their responsibilities, while collaborations are the ways the 
participants collaborate to carry out their responsibilities. 

 
Following Gamma et al. [3] design patterns can be classified by two criteria: purpose 

and scope. According to the purpose classification, which reflects what a pattern does, 
patterns can be grouped into three general categories which are creational, structural 
and behavioral. Creational patterns concern the process of object creation. Structural 
patterns deal with the composition of classes or objects. Behavioral patterns characterize 
the ways in which classes or objects interact and distribute responsibility. The scope 
classification of a design pattern specifies whether the pattern applies primarily to classes 
or to objects. Class patterns deal with relationships between classes and their subclasses, 
which are established through inheritance and are static—fixed at compile-time. Object 
patterns deal with object relationships, which can be changed at run-time and are more 
dynamic. Almost all patterns use inheritance to some extent but most design patterns are 
object patterns. 

 
Prior to presenting the design patterns used specifically in the outage checkers of the 

implemented cascading outage analyzer some important definitions and parameters of 
object-oriented programming will be given along with some clarifications on notations 
used in design pattern diagrams (which follow the standard UML notation).  
 

Object-oriented programs are made up of objects, which package both data and the 
procedures, typically called methods or operations, which operate on that data. An object 
performs an operation when it receives a request (or message) from a client. The 
operation’s signature consists of the operation's name, the objects it takes as parameters, 
and the operation's return value. The set of all signatures defined by the operations of an 
object is called the interface to the object. A type is a name used to denote a particular 
interface. A class defines an object's implementation. The class specifies the object's 
internal data and representation and defines the operations the object can perform. It is 
important to understand the difference between an object's class and its type. An object's 
class defines how the object is implemented, while an object's type only refers to its 
interface—the set of requests to which it can respond.  
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In the following a class will be depicted as a rectangle with the class name in bold. 
Operations appear in normal type below the class name. Any data that the class defines 
comes after the operations. Horizontal lines separate the class name from the operations 
and the operations from the data. 

 

ClassName
Operation1()
Type Operation2()
...

instanceVariable1()
Type instanceVariable2()
...()

 
Figure 2.1 Class diagram 

 
The object is considered an instance of a class, thus objects are created by 

instantiating a class. The process of instantiating a class allocates storage for the object's 
internal data (made up of instance variables) and associates the operations with these data. 
A dashed arrowhead line indicates a class that instantiates objects of another class. The 
arrow points to the class of the instantiated objects. 

 

Instantiator Instantiatee

 
Figure 2.2 Class instantiating objects of another class 

 
Class inheritance allows the definition of new classes in terms of existing classes. 

Objects that are instances of the subclass contain all data defined by the subclass and its 
parent classes, and are able to perform all methods defined by this subclass and its parent 
classes. Overriding refers to a subclass handling a request instead of its parent class, in 
which case the subclass overrides a method defined by its parent class. The subclass 
relationship is indicated with a vertical line and a triangle: 

 

ParentClass

Operation()

Subclass

 
Figure 2.3 Class inheritance – Subclass and parent class relationship 

 
Classes can be concrete or abstract. The main purpose of an abstract class is to 

define a common interface for its subclasses. An abstract class cannot be instantiated, 
because some or all of its implementations come from operations defined in subclasses. 
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The operations that an abstract class declares but does not implement are called abstract 
operations. Classes that are not abstract are called concrete classes. To distinguish them 
from concrete classes the names of abstract classes appear in italics.  

 

AbstractClass

Operation()

ConcreteSubclass

Operation() implementation
pseudocode

 
Figure 2.4 Abstract class and concrete subclass diagram 

 
Apart from the difference between an object’s class and its type it is also important to 

understand the difference between class inheritance and interface inheritance. Class 
inheritance defines an object's implementation in terms of another object's 
implementation while interface inheritance (or subtyping) describes when an object can 
be used in place of another. Many of the design patterns depend on this distinction. 

 
Class inheritance is one of the two most common techniques for reusing functionality 

in object-oriented systems. The other one is object composition. In class inheritance an 
implementation of a class is defined in terms of the implementation of another class. 
Reuse by subclassing is called white-box reuse, where the term ‘white box’ refers to 
visibility, since with inheritance the internals of parent classes are often visible to 
subclasses. In object composition objects are composed to achieve more complex 
functionality. Reuse by composition is called black-box reuse, because no internal 
details of objects are visible. Objects appear only as ‘black boxes’. 

 
Composition is made into a reuse tool that is as powerful as inheritance with delegation, 
which allows two objects to be involved in handling a request with a receiving object 
delegating operations to its delegate. In the following diagram the Window class is 
depicted delegating its Area operation to a Rectangle instance. Class Window is not a 
subclass of Rectangle but it reuses the behavior of Rectangle by keeping a Rectangle 
instance variable and delegating Rectangle-specific behavior to it. Window must now 
forward requests to its Rectangle instance explicitly, whereas with class inheritance it 
would have inherited those operations. A plain arrowhead line indicates that a class keeps 
a reference to an instance of another class. The reference has an optional name, 
‘rectangle’ in this case. Delegation shows that class inheritance can always be replaced by 
object composition for code reuse. Though delegation enables the composition of 
behaviors at run-time, it is very dynamic and thus harder to understand than more static 
reuse techniques. 
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Rectangle
width
height

Area()

Window
Area()

return rectangle->Area()

return width * height

rectangle

 
Figure 2.5 Delegation representation 

 
 

Finally, two important notions are object aggregation and acquaintance. Object 
aggregation is used to denote that an object owns or is responsible for another object, 
while acquaintance implies that the two objects merely know each other, they are able to 
request operations from each other but are not responsible for each other. Acquaintance is 
a weaker relationship than aggregation and suggests much looser coupling between 
objects. Aggregation relationships are fewer but permanent while acquaintances are more 
frequent and more dynamic. In the design pattern diagrams a plain arrowhead is used to 
denote acquaintance, while an arrowhead line with a diamond at its base denotes 
aggregation. 

 

Aggregator Aggregatee
aggregateInstance

 
Figure 2.6 Aggregation representation 

 
 
2.2 Design Patterns used in the implemented COA 
 

The design of an application program should cover three main priorities: internal 
reuse, maintainability and extension. Design patterns can help address all of these 
priorities, since they provide dependency reduction. Using design patterns that loosen 
coupling between classes and reduce algorithmic and representational dependencies can 
increase the internal reuse. Reduced coupling along with class hierarchy extension can 
also increase extensibility. When platform dependencies are limited the maintainability of 
the application is increased. 

 
Reusing legacy systems 

 
It has already been pointed out that the increase in size and complexity of the power 

systems and the automation of their operation has led to an increase in computer 
applications used in power systems and maintains the need for new power systems 
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application and simulation software. Financial constraints on development effort together 
with frequent changes in the system operation schemes result in limited development 
time. Under these constraints, reusing previously developed software is very useful. 

 
As mentioned previously there are two fundamental techniques for reusing 

functionality in object-oriented systems: white-box reuse, which refers to class 
inheritance, and black-box reuse, which refers to object composition. When a white-box 
approach for reusing legacy systems is adopted the code of the inner structure of the 
legacy system is studied and reengineered. The size and complexity of the power systems 
software often results in a white-box approach requiring more effort than completely 
rebuilding the software. Moreover, the source code or the inner structure of the legacy 
system may not be available. In these cases a black-box approach can be applied instead. 
Under a black-box approach the legacy system is wrapped with a software layer that 
hides the unwanted complexity of the old system and exports a modern interface. The two 
most frequently design patterns used for this purpose are Adapter and Decorator. 

 
The main purpose of the Adapter design pattern, also known as wrapper, is to 

convert the interface of a class into another interface that clients expect. Using the 
Adapter allows classes to work together, which could not otherwise because of 
incompatible interfaces. The Adapter design pattern can be used in the following 
circumstances: 

 
• there is desire to use an existing class, which has an incompatible interface to the 

client’s class, 
• a reusable class needs to be created which should cooperate with classes that do 

not necessarily have compatible interfaces, and 
• several existing subclasses need to be used, but subclassing every one of them so 

as to adapt their interface is impractical.  
 

The class diagram of an object Adapter design pattern is given in figure 2.7. The 
participants of the Adapter design pattern class are: 

• Target:  defines the domain-specific interface that Client uses. 
• Client: collaborates with objects conforming to the Target interface. 
• Adaptee: defines an existing interface that needs adapting. 
• Adapter: adapts the interface of Adaptee to the Target interface. 
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Adaptee

+specificRequest()

Target

+request()

Adapter

+request()

Client

+doWork()

 
Figure 2.7 Adapter design pattern class diagram 

 
As can be seen from the above structure diagram the Adapter class inherits the Target 

class, so the main purpose of the Target class is to provide a compatible interface with 
which the Client class can communicate with the Adapter class. The Client class, through 
the doWork method, calls the request method on the Adapter class, which in turn calls the 
corresponding specificRequest method on the Adaptee class. So the purpose of the 
Adapter is to adapt the interface of the existing object Adaptee to a matching interface to 
the Client. Using the Adapter class the Client class and the Adaptee class are completely 
decoupled from each other and legacy software shown as the Adaptee class can be 
encapsulated.  

 
The basic procedure described previously is that the Client calls methods on an 

Adapter instance and, in turn, the Adapter calls Adaptee methods that carry out the 
request. One of the advantages of using an Adapter is that a single Adapter can work with 
the Adaptee itself and all of its subclasses and thus the Adapter can add functionality to 
all Adaptees at once. On the other hand, using an Adapter makes the overriding of an 
Adaptee behavior, that is allowing a subclass of the Adaptee to handle a request instead of 
the Adaptee, more difficult, since this would require making Adapter refer to the subclass 
rather than the Adaptee itself. 

 
In the Cascading Outage Analyzer the Adapter design pattern is utilized in order to 

reuse previously implemented power flow software. As already stated the outage 
checkers play an essential role in the implemented Cascading Outage Analyzer, since 
they determine if further outages will occur after some disturbances. To determine the 
sequence of equilibrium states for checking if further outages will occur, a power flow 
algorithm is necessary. The implemented outage checkers utilize an independent AC 
power flow module, PFlow, which has been developed by Commonwealth Associates 
Inc. and is licensed to The University of Texas. The structure diagram of the Adapter 
design pattern application to the implemented outage checkers is given in figure 2.8. This 
Figure is a specialization of figure 2.7, where the Adaptee is the previously implemented 
power flow module PFlow. 
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Pflow

OutageChecker

PflowAdapter

PowerFlow

 
Figure 2.8 Adapter design pattern application class diagram to utilize PFlow 

 
 

Flexible expandability 
 

The need for flexible expandability is driven foremost by one of the traditional 
requirements of power systems software, which is high computational efficiency. As 
described previously there is an ongoing development of new computational models and 
algorithms. In order to meet the permanent demand on computational performance the 
existing software must provide the capability of including these new models and 
algorithms. Hence, the existing and newly developed power systems software must 
present flexible expandability. This need is growing bigger under the current deregulation 
of electricity markets, since the deregulation will pose frequent and sometimes big 
changes in the system and market operation regimes.  
 

A solution to this challenge can again be provided by using design patterns. The 
relevant design patterns used in the implemented Cascading Outage Analyzer are 
Strategy, Factory Method, and Abstract Factory. 
 

The main purpose of the Strategy design pattern, also known as policy, is to define a 
family of algorithms, encapsulate each one of them and make them interchangeable. 
Strategy lets the algorithm vary independently from clients that use it.  
 

The Strategy pattern can be used in the following circumstances: 
 

• there are many related classes, which differ only in their behavior, i.e. in the 
methods their objects can perform, 

• there is a need for different variations on one algorithm, 
• there is desire to avoid exposing complex algorithm-specific data structures to 

clients, 
• there are many behaviors defined by a class, which appear as multiple conditional 

statements in its methods. 
 

The class diagram of a Strategy design pattern is given in figure 2.9. The 
participants of the Strategy design pattern class are: 
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• Strategy: declares an interface common to all supported algorithms, which 
Context uses to call the algorithm defined by a ConcreteStrategy. 

• ConcreteStrategy: implements the algorithm using the Strategy interface. 
• Context: is configured with a ConcreteStrategy object, maintains a reference to a 

Strategy object 
 

Strategy

+algorithmInterface()

ConcretetrategyB

+algorithmInterface()

ConcreteStrategyA

+algorithmInterface()

Context

+contextInterface()

 
Figure 2.9 Strategy design pattern class diagram 

 
One of the most frequent uses of Strategy pattern is when it is necessary to 

interchange the algorithms used in an application. This is more than often the case in 
power systems analysis applications, where there can be various algorithms playing 
essentially the same role. The choice of the algorithm to be used is affected by many 
factors, such as the purpose of the algorithm, the specific conditions under which it will 
be used and the model representation. The Strategy pattern is extremely useful when the 
purposes or conditions for selecting appropriate algorithms are determined dynamically. 
As can be seen from the structure diagram in figure 2.9, the contextInterface method of 
the Context class calls the algorithmInterface method of the Strategy class which will be 
determined dynamically between those of the ConcreteStrategyA and the 
ConcreteStrategyB classes.  

 
In the Cascading Outage Analyzer the Strategy design pattern is utilized in order to 

dynamically swap between two power flow algorithms. The previously implemented 
Pflow program offers two solution algorithms, the fast decoupled power flow and the full 
AC power flow. In the Cascading Outage Analyzer application, the specific choice of 
power flow algorithm is determined at run time as a user input.  

 
The structure diagram of the Strategy design pattern application to the implemented 

Cascading Outage Analyzer is given in figure 2.10. This Figure is a specialization of 
figure 2.9, where the PowerFlowStrategy class is applied to select one of the two existing 
algorithms, ACPowerFlow and DecoupledPowerFlow. The aggregation association 
between the PowerFlowContext class and the PowerFlowStrategy class enables the 
runPowerFlow method of the PowerFlowContext class to call the powerFlow method of 
the PowerFlowStrategy class which will be replaced by either the ACPowerFlow class or 
the DecoupledPowerFlow class at run time. 
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DecoupledPowerFlow

+powerFlow()

PowerFlowContext

+runPowerFlow()

PowerFlowStrategy

+powerFlow()

ACPowerFlow

+powerFlow()
 

Figure 2.10 Strategy design pattern application class diagram to dynamically swap 
between the two power flow algorithms, ACPowerFlow and DecoupledPowerFlow. 

 
The main purpose of the Factory Method design pattern, also known as virtual 

constructor, is to define an interface for creating an object, but let subclasses decide 
which class to instantiate. Factory Method lets a class defer instantiation to subclasses.  

 
The Factory Method pattern can be used in the following circumstances: 

• the class of objects that must be created by a class cannot be predicted, 
• there is desire to let the subclasses specify the class of objects a class creates, 
• there is delegation of a class responsibilities to one or more helper subclasses. 

  
The class diagram of a Factory Method design pattern is given in figure 2.11. The 

participants of the Factory Method design pattern class are: 
• Product: defines the interface of objects that the Factory Method creates. 
• Creator: declares the Factory Method, which returns an object of type Product. 
• ConcreteCreator: overrides the Factory Method to return an instance of a Product. 

 

ConcreteCreator

+factoryMethod()

Creator

+factoryMethod()

Product

 
Figure 2.11 Factory Method design pattern class diagram 

 
As described previously constant advances of computational models and algorithms 

result in a permanent need for the ability to add new algorithms into the existing power 
system software. The Factory Method design pattern can provide a solution to this 
challenge, since it allows for adding new algorithms while minimizing the disturbance to 
the existing code. When there is need to create objects without specifying the exact class 
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of object that will be created the Factory Method can be applied and the problem is 
resolved by defining a separate method for creating the objects. The main attribute of this 
pattern is that it helps to model an interface for creating an object, which at creation time 
delegates decision of which class to instantiate to its subclasses. By utilizing the Creator 
class whenever Product objects are created, as shown in figure 2.11, all that is needed to 
add a new algorithm into the existing code is to modify the Creator and add a new 
ConcreteCreator class.  

 
The Factory Method design pattern has been used in the implemented Cascading 

Outage Analyzer in order to provide the ability to add new power flow algorithms to the 
system, as shown in figure 2.12, which is a specialization of figure 2.13. By utilizing the 
Factory Method design pattern only the PowerFlowFactory class among the existing code 
needs to be modified whenever a new algorithm needs to be added to the system, since 
the other part of code communicates with the PowerFlowStrategy class (product) without 
knowing the corresponding concrete class. The combined class diagram displaying the 
Adapter, Strategy and Factory Method design patterns applied to the power flow 
application in the implemented Cascading Outage Analyzer is given in figure 2.13. 

 

DecoupledPowerFlow

+powerFlow()

ACPowerFlow

+powerFlow()

PowerFlowStrategy

+powerFlow()

PowerFlowFactory

+createPowerFlow()

 
Figure 2.12 Factory Method design pattern application class diagram 

 

DecoupledPowerFlowAdapter

+powerFlow()

ACPowerFlowAdapter

+powerFlow()

+runPowerFlow()

PowerFlowContext PowerFlowFactory

+createPowerFlow()

PowerFlowStrategy

+powerFlow()

Pflow

 
Figure 2.13: Three design pattern (Adapter, Strategy, Factory Method) class 

diagram utilized for the power flow application 
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The main purpose of the Abstract Factory design pattern, also known as kit, is to 
provide an interface for creating families of related or dependent objects without 
specifying their concrete classes.  

 
The Abstract Factory pattern can be used in the following circumstances: 
 

• the way in which products are created, composed and represented should be 
independent of the system, 

• there are multiple families of products and the system should be configured with 
one of them, 

• to enforce the constraint of a family of related product objects being used 
together, 

• there is desire to reveal just the interfaces and not the implementations of a class 
library of products. 
 
The class diagram of an Abstract Factory design pattern is given in figure 2.14. 

The participants of the Abstract Factory design pattern class are: 
 

• AbstractFactory: declares an interface for methods that create abstract product 
objects. 

• ConcreteFactory: implements the methods to create concrete product objects. 
• AbstractProduct: declares an interface for a type of product object. 
• ConcreteProduct: defines a product object to be created by the corresponding 

concrete factory and implements the AbstractProduct interface. 
• Client: uses only interfaces declared by AbstractFactory and AbstractProduct 

classes. 
 

As shown in the class diagram of figure 2.14, AbstractProductA and 
AbstractProductB objects are created by a Client object through either a 
ConcreteFactory1 object or a ConcreteFactory2 object which inherit the AbstractFactory 
class. The AbstractProductA and the AbstractProductB classes associate the relevant 
product class group and encapsulate a group of algorithms which are relevant to each 
other. Thus, the ProductA1 from the ConcreteFactory1 and the productA2 from 
ConcreteFactory2 classes are grouped in the AbstractProductA class, and the ProductB1 
from ConcreteFactory1 and the productB2 from ConcreteFactory2 classes are grouped in 
the AbstractProductB class. 
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AbstractFactory

+createProductA()
+createProductB()

ConcreteFactory1

+createProductA()
+createProductB()

ConcreteFactory2

+createProductA()
+createProductB()

AbstractProductBAbstractProductA

ProductA1 ProductB2ProductB1 ProductA2

Client

 
Figure 2.14 Abstract Factory design pattern class diagram 

 
In the implemented Cascading Outage Analyzer there are three outage checkers, 

LineOverload, UnderVoltage, and Frequency, all of which use the power flow algorithm. 
The Pflow program offers two power flow algorithms, the fast decoupled power flow and 
the AC power flow, and the specific power flow algorithm is chosen dynamically, thus 
each outage checker might, in principle, utilize a different power flow algorithm. To 
ensure that all the outage checkers use the same power flow algorithm to assess system 
equilibrium in a consistent manner the Abstract Factory design pattern is applied and the 
class diagram representation of this is shown in figure 2.15.  

 
As shown in the diagram, the implemented Cascading Outage Analyzer uses either 

the OutageCheckerConcreteFactory1 object or the OutageCheckerConcreteFactory2 
object to create the corresponding sets (indices 1 and 2) of three outage checker objects, 
namely LineOverloadChecker, UndervoltageChecker and FrequencyChecker. The indices 
1 and 2 refer to the two different power flow algorithms. Using the AbstractFactory 
design pattern prevents mingling of inconsistent outage checker objects with each other, 
e.g. a combination of LineOverloadChecker1 – UndervoltageChecker2 – 
FrequencyChecker2 is not allowed.  
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+createLineOverloadChecker()
+createUndervoltageChecker()
+createFrequencyChecker()

OutageCheckerConcreteFactory2

+createLineOverloadChecker()
+createUndervoltageChecker()
+createFrequencyChecker()

OutageCheckerConcreteFactory2

OutageCheckerAbstractFactory

+createLineOverloadChecker()
+createUndervoltageChecker()
+createFrequencyChecker()

UndervoltageChecker
AbstractProduct

LineOverloadChecker
AbstractProduct

FrequencyChecker
AbstractProduct

Undervoltage
Checker2

Frequency
Checker2

Frequency
Checker1

Undervoltage
Checker1

LineOverload
Checker2

LineOverload
Checker1

 
Figure 2.15 Abstract Factory design pattern application class diagram 

 
 

The Abstract Factory design pattern enables flexible expandability of the program. 
The addition of new outage checkers into the existing Cascading Outage Analyzer is 
simplified using the same mechanism as that of the Factory Method design pattern. If a 
new outage checker for a distance relay needs to be added then the code change for the 
new outage checker will be limited to the OutageChecker factory part (Abstract and 
Concrete), by including a createDistanceChecker method.  
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3 Development of COA software 
 
 

In this section, the functional specification of COA software will be described on a 
basis of operation workflow and implementation of cascading outage checkers 
considering the adopted design patterns. 
 
 
3.1 Data workflows 
 

The cascading outage analyzer (COA) program is built around the windows-
based .NET framework 2.0 in order to support various distributed computing 
environments. The user interface and the cascading outage analysis algorithm have been 
implemented by visual basic .NET [4] and visual C# [5] respectively. To provide 
flexibility and extensibility, the application design follows the object-oriented design 
principle using Microsoft Visual Studio 2005.  

 
The following figure shows the data flow of COA software. After setting input data in 

the system database, cascading outage checkers are activated according to the determined 
initial disturbance. Simulation results will be displayed by message trees based on 
graphic user interface (GUI). 
 

 
Figure 3.1 Data flows of COA software 
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From figure 3.1, the system database has two input database: Input database 
(‘Datainput.mdb’) for power flow calculations, and Simulation option database 
(‘COChecker’) for implementing cascading outage scenarios, which are stored in 
Microsoft Access format. MS Access program (MS access 2003 higher) should be 
installed to user’s PC. These input files should be located at the following folder 
(directory): 
 

C:\project\Dataset 
 
In order to run the power flow module, which has been provided by Commonwealth 

Associates Inc., the user must create a temporary file (temp.mdb) by renaming the input 
load flow file to the following folder (directory). 
 

C:\project\implementation\source\temp.mdb 
 

If users want to make new scenarios (cases), we recommend that users should modify 
the existing case files (Datainput.mdb and COChecker.mdb). Although ‘Datainput.mdb’ 
file has many tables, typical modifications involve four main tables relevant to power 
flow calculation: 

 
· Bus 
· Generator 
· Load 
· Line 

 
 

The power flow module determines sequential equilibrium states for checking further 
outages. The cascading outage analysis program utilizes an independent AC power flow 
module, ‘PFlow’, which has been developed by Commonwealth Associates Inc. and 
licensed to The University of Texas.  
 

Under and over frequency checker module obtains information for calculating time 
duration of relay from Frequency checker database (COChecker.mdb). This database 
includes some tables as follows. 

 
 FOChecker table; It includes frequency checker information. This table has 

the following columns: 
 

- Bus: Bus number of power system 
- BusType: Type of bus (1: Generation bus and 2: Load bus) 
- Threshold: Input value for threshold frequency 
- Delay: Input value for setting time duration of relay 
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 FOChecker_org table; It has structure that corresponds to the ‘FOChecker’ 
table and it also acts as a source table during calculation. 
 

 CTDOutput table; Simulation results of frequency checker will be recorded to 
this table. This table has the following columns: 

 
 

- BusNum: Input value for bus number of network configuration 
- CTD_Under: Output value of the calculated Time duration for 

Under-frequency 
- CTD_Over: Output value of the calculated Time duration for Over-

frequency 
 
 
In order to reuse this previously implemented module and provide flexibility to 

switch to or add different power flow modules and determine a specific module to run at 
run-time, three design patterns, the Adapter, Strategy, and Factory Method design patterns, 
have been adopted as described in the previous section.  
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3.2 Operational algorithm 
 

After initiating the disturbance events, the developed checkers will be operated as 
user pre-defined the orders and types of three outage checkers. The following figure 
shows the operating logic (algorithm) of the developed Cascading Outage Analyzer 
(COA) software. 
 
 

 
 

Figure 3.2 Operation logic of Cascading Outage Analyzer 
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Initial Disturbance 
 

In order to begin cascading outage simulation, we need to specify the initial 
disturbances to be investigated for their progression to cascading outages. Line outage 
type can be considered as an initial disturbance and the extension to other types of 
outages can be considered including not only line outages but also generator outages, bus 
outages, and substation outages. Initial disturbances that could occur in simulating 
cascading outages include: 

 
- Line outage (implemented in current COA algorithm), 
- Multiple initial disturbances (future work), 
- Additional initial disturbance types (future work): 

· Generator outage 

· Substation outage 

· Load bus trip 
 
 
 
 

Outage Checkers & Update Topology 
 

Following the initial disturbance, the outage checkers such as ‘Frequency Checker’, 
‘Line Overload Checker’ and ‘Under Voltage Checker’, determine the status of the 
resulting operating state, or ‘equilibrium’, which would result in protection equipment 
removing more elements from the system and therefore potentially precipitating further 
outages. 

 
If there are several protection actions (or violations) identified by the outage checkers, 

then timing information from the outage checkers will determine which element would be, 
in fact, first disconnected. This element is removed from the power flow model using the 
‘Update topology’ blocks. As shown in figure 3.1, the process then repeats until either a 
complete system blackout occurs (indicated by failure to solve remaining system) or no 
more protection actions (no violations) are predicted to occur. 

 
 
 



 

24 
 

 
3.3 Implementation of outage checkers 
 
 

With the initial disturbance determined, we need to set up the type and order of 
cascading outage checkers that will be considered. An ‘outage checker’ is a module that 
tests the state of the power system to see if additional outages will be precipitated due to a 
particular protection criterion. The developed outage analysis tool is designed to have 
three types of outage checkers; line overload, under-voltage checkers, and over/under 
frequency checkers that model the behavior of line overload, under-voltage protections, 
and system frequency, respectively.  
 
 
3.3.1 Line overload and under voltage checkers 
 

The ‘Line Overload Checker’ and the ‘Under Voltage Checker’ use the power flow as 
a basic simulation engine and users can select load flow program, either Full AC power 
flow or Decoupled power flow, which are provided by Commonwealth Associates Inc [6]. 

 
In order to choose the specific power flow module from multiple power flow modules 

dynamically in a consistent manner and to flexibly expand the outage checkers, the 
Abstract Factory design pattern was utilized as mentioned in section 2.  
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3.3.2 Under/Over frequency checker 
 

In addition to the steady-state analysis based approach, an outage checker is 
developed for protection against system over/under-frequency events. The following 
figure shows the data flow of frequency checker. 

 
Figure 3.3 Data flow of frequency checker 

 
 
From figure 3.3, the main logic of the frequency checker inquires about threshold 

frequencies and time duration for generator and load frequency relays from the database 
interface.  

 
Using these data, the engine of the main logic block calculates the time duration for 

the given under and over frequency threshold interfacing sub-program (time duration 
calculation module). If the violations for under or over frequency checker occur then the 
checker moves to another checker, either the Line overloading checker or Under-Over 
voltage checker.  
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The following figure shows the algorithm of frequency checker. 
 

 
 

Figure 3.4 Frequency checker algorithm 
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Step1: Load threshold frequency from GEN buses 
 
From system database, ‘FOChecker’ table from COChecker.mdb has threshold 

frequency information. The following figure illustrates the example of ‘FOChecker’ table. 
 

 
Figure 3.5 FOChekcer table 

 

After loading the threshold frequencies, the frequency checker module sorts the 
generation buses on the basis of frequency threshold values from high to low and 
determines under frequency and over frequency with system frequency criteria (60.0 Hz). 

 
 
Step 2: Calculate time duration to determine the violated GEN bus 
 
In this step, frequency checker module calculates times the duration for the selected 

bus in order to determine whether the Calculated Time Duration (CTD) of frequency 
violation exceeds the Set Time Duration (STD). The algorithm for calculating time 
duration will be described in the next section. 

 
 
Step 3: Move to other checkers 
 
If the violated bus is detected In the previous step (step 2), the system topology would 

be updated and a new round of outage checking would occur. 
 
 
 
 
In the following subsections, details about the algorithm will be described. 
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3.2.2.1 Model of the Frequency Outage 
 
(1) Frequency Function 
 

For frequency change model, we use the System Frequency Response (SFR) model 
introduced in ‘A Low-Order System Frequency Response Model’ by Anderson and 
Mirheydar (1990) [7]. The idea of uniform or average frequency is the basic concept of 
representing SFR model, where synchronizing oscillations between generators are filtered 
out, but the average frequency behavior is retained.  

 
The example of synchronizing oscillations is illustrated in figure 3.6, taken from the 

Florida simulations of reference. We seek to average these individual machine responses 
with a smooth curve that can be used to represent the average frequency for the system. 
As a result, the solid curve shows the trend of overall system frequency in figure 3.6. 

 

 
Figure 3.6 Simplified SFR Model with disturbance input1 

 
The basic SFR model averages the machine dynamic behavior in a large system into 

an equivalent single machine and it is a representation of only the average system 
dynamics, while ignoring the inter-machine oscillations shown in figure 3.6.  

 
According to this model, we have the frequency change function in frequency domain 
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1 A. N. Darlington, "Response of under-frequency Relays on the Peninsular Florida Electric System for 
Loss of Generation," A paper presented at the Georgia Institute of Technology Relay Conference, May 
4,1978 
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where, 
· Δω = Incremental speed, per unit 
· TR = Reheat time constant, seconds 
· Pstep = Disturbance magnitude in per unit (based on the system voltage base SSB) 
· D = Damping Factor 
· R = Governors droop 
· Km = Mechanical Power Gain Factor 
· FH = Fraction of total power generated by the HP turbine 

 
 

After transforming this into time domain and simplifying some parameters, we have 
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We have an example of frequency change curve as in figure 3.7 if we use the typical 
parameters below from the paper ‘A Low-Order System Frequency Response Model’ by 
Anderson and Mirheydar (1990). 
 

· R = 0.05       
· H = 4.0s       
· Km = 0.95 
· FH = 0.3       
· TR = 8.0s       
· D = 1.0 
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Figure 3.7 Example of Under Frequency Curve 

 
(2) Definition of a Frequency Outage 
 

In this report, we will use the frequency outage standard from ERCOT as the 
definition of a frequency outage. According to this standard, when the system frequency 
is out of a certain range for a certain amount of time, we define this as a frequency outage. 
Table 3.1 below demonstrates the characteristic of the under frequency outages. 
 
 

Table 3.1 Standard of a Frequency Outage 

Frequency Range (Hz) Time Delay (Sec) 

Above 59.4 Infinite 

58.4 to 59.4 270 

58.0 to 58.4 30 

57.5 to 58.0 2 

Below 57.5 0 

 
In table 3.1, the left column is the frequency range, and the right column is the time 

length threshold that the frequency in the left column must last in order to initiate a trip. 
For example, if the frequency drops under 59.0 Hz, which falls into the second frequency 
range, for more than 270 seconds, an under-frequency trip will be initiated in the system. 
In the extreme case, there is no frequency outage in the system as long as the frequency is 
higher than 59.4 Hz, like 59.6, no matter how long the 59.6 value will last. In the other 

0 5 10 15 20 25 30
59.985

59.99

59.995

60
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extreme case, as soon as the frequency drops below than 57.5, a frequency outage will be 
defined immediately. 
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3.2.2.2 Description of the Algorithm 
 
(1) Output and Input of the frequency outage checker 
 

According to the definition of a frequency outage, we need to know two parameters to 
define an under-frequency trip: lowest frequency value ‘min_f’, and the time that the 
frequency is below the provided frequency threshold ‘time_delay’. If min_f is lower than 
57.5, or time_delay is longer than the time delay in table 3.1, we will decide there is a 
frequency trip in the system. Therefore, we have the output: min_f, and time_delay. 

 
The input of the checker comes from the database of the analysis tool. We need to 

have disturbance power Pstep in the frequency response function. And also, we need to 
provide the frequency threshold to get time_delay when the frequency is below the 
threshold. We call this frequency threshold ‘f_given’. So the input parameters are 
disturbance power ‘Pstep’, and frequency threshold ‘f_given’. The output parameters are 
lowest frequency value ‘min_f’, and the below-the-threshold time ‘time_delay’.  
 
 
(2) Main task of algorithm 
 

As described in the last section, we are given a frequency response function 
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givenftf _)( = . What we need to calculate are min_f and time_delay, as shown in 
figure 3.8 below. 
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Figure 3.8 Parameters to calculate in the Frequency Function 

 
The lowest point of frequency value should be the first local minimizer of the 

frequency curve, since the curve is a damped sine wave and the following local 
minimizers will involve frequencies that are closer to 60 Hz.  

 
In an optimization problem like calculating min_f, we can apply the first order 

condition to find the local minimizer. That is to say, if the Jacobian of the function at one 
point is zero, then this point is a local minimizer. In this problem, we need to find a point 
t which satisfies the equation 0)( =∇ tf in the first cycle of the curve. Now we have 
converted the optimization problem into solving the equation 
 

0)( =∇ tf  
 

To calculate time_delay, we can first find the time when the frequency first drops 
under the frequency threshold ‘t1’, and the time when the frequency first rises up to the 
threshold again ‘t2’. Apparently, t1 and t2 are two intersections of two functions:  
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To calculate the intersection of two functions, we can simply solve the equation 
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Hence, we can conclude that to calculate min_f and time_delay, our main task is to 
solve equations.  
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3.2.2.3 Descriptions of the Steps of Algorithm 
 
(1) Main steps of the algorithm 
 

Before writing the code, we need to work out the main steps of the algorithm. There 
are two parameters that need to be calculated: lowest frequency value ‘min_f’, and the 
below-the-threshold time ‘time_delay’. Below is the flow chart of the main steps of the 
algorithm.  

 

 
Figure 3.9 Flow Chart of the Code 

 
Following figure 3.9 above, we can see that the first step is to find point t and min_f, 

and we can calculate them using Newton-Raphson Method, which will be presented in 
detail in the next section.  

 
Then, before we calculate the two intersection points t1 and t2, we need to make sure 

that there will actually be more than one intersection of the frequency function and the 
horizontal function. So we find the first local maximizer tt after t, and the frequency value 
of this point. As shown in figure 3.10, between min_f and max_f is the ‘two-intersections 
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range’ for the given frequency threshold f_given.   
 
If the f_given is between min_f and max_f, it is obvious that we can find two 

intersections between t and tt point. But if f_given is larger than max_f, there will only be 
one intersection t1. If f_given is smaller than min_f, there will be no intersection. So only 
when fgivenff max__min_ <<   can we get an actual value of time_delay. 
 

 
Figure 3.10 ‘Two-intersections range’ for f_given 

 
So from the flow chart, if the given frequency threshold is in the range from min_f to 

max_f, we can find t1 and t2, and time_delay, which is t2-t1. 
 
 
(2) Find t for min_f 
 

According to the flow chart of the code in Figure 3.9, the first step is to find t and 
min_f. Since we already have the frequency response function, as long as we have t, we 
can calculate min_f immediately after inserting t into the frequency function. So we need 
to calculate the first local minimizer t first. We know that to seek t, we just have to take 
the derivative of the frequency function and set to zero. The derivative of the frequency 
function is 
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Now our problem is solve the equation 
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and solution should be the first minimizer from 0=t . 
 

We can use Newton-Raphson method and Armijo rule to solve equations. Figure 3.11 
below is the flow chart to solve this problem. 
 

 
Figure 3.11 Flow Chart of Calculating min_f 

 
The first step is to ‘set initial start for t’. We need to find a point which is closer to the 

solution, not only to decrease the number of iterations to make the checker more efficient, 
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also to make sure the solution is the first minimizer from 0=t . Since the frequency 
response function is a damped sine curve, the local minimizer of the function should be 
close to the local minimizer of the sine curve.  

 
Furthermore, we will use Armijo rule to make sure each iteration will only move 

closer to the solution. So by choosing the local minimizer of the sine curve as an initial 
start for t, we can exclude the possibility that the t we find is a minimizer of other cycles 
of the curve. Therefore, we calculate the first minimizer of )sin( φω +− tr , which is 

2
πφω =+tr , and we have the initial start 

r

t
ω

φπ )
2

( −
= . 

 
 

The second step is to ‘check stopping criteria’ to see if the checker has found the 
solution. If the slope of some point of the frequency curve is very small, we can stop the 
iteration and call this point as solution to finding the time of minimum frequency.  

 

 
Figure 3.12 Parameters in Stopping Criteria for t 

 
In this problem, we define the slope is ‘very small’ when h , the projection of the 

tangent angle on the vertical line at next maximizer, is smaller than 0.01 fΔ , as shown in 
figure 3.12 above, where fΔ  is the absolute value of the frequency drop at time t. 

60)( −=Δ tff . That is to say if fh Δ≥ 01.0 , then the checker will go to the next 

iteration, until fh Δ< 01.0 . 
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As presented in figure 3.12, here is how we get h . Firstly, since the curve is the 

damped sine wave, we can approximately find the first maximizer tt after t. By setting 

πφω =+tr , we can get the approximate maximizer tt, which is 
rω
φπ − . Secondly, we 

compare the distance from t to zero and the distance from t to 
rω
φπ − . Then we choose 

whichever is the larger and multiply by the slope of point t. In the case of figure 3.12, for 

example, the distance from t to 
rω
φπ −  is larger than the distance from t to zero. 

ttt
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φπ ),max(  Then we will get h  by multiplying the larger distance by 

the slope of point t, which is )tan(θ . 
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And we can tell that )tan(θ  is the derivative of the frequency function at point t, 

which is )(tf ′ .  
So, we have the expression of h  
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As defined above, if fh Δ≥ 01.0 , then the checker will go to the next iteration, until 

fh Δ< 01.0 . So according to the flow chart, if  60)(01.0)()( −<′−
− tftft

rω
φπ , we 

check Armijo step size rule before we update the solution and go to the next iteration .  
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We begin checking Armijo rule by ‘setting Armijo start’. As discussed in 5.3.2, we 
start from setting 1)( =να . If )()1()( )()()()()( ννννν δαα xgxxg −≥Δ+ , we multiply the 

step size )(να  by 0.5, and we check again until 

)()1()( )()()()()( ννννν δαα xgxxg −<Δ+  is satisfied.  

 
After checking Armijo rule, and the step size being decided, we can move to update 

the iteration by ttt Δ+= )(να . Then we go back to the top of the flow chart and check the 
stopping criteria again.  

 
After the iteration stops, we can get the solution of t. Then by plugging it into the 

frequency response function, we will have the minimum frequency value min_f. 
 
 
 
 
(3) Find tt for max_f 
 

To find the first local maximizer tt after t, we can use the same method as in 6.2.1. We 
have the derivative of the frequency function 
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and set it to zero.  
 

Now we need to solve the equation 
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and the solution should be the first maximizer after the first minimizer t. 
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Figure 3.13 Flow Chart of Calculating tt and max_f 

 
Similarly, we will use Newton-Raphson method and Armijo rule to solve this 

equation. figure 3.13 is the flow chart, which is very similar to figure 3.11, except that the 
initial start and stopping criteria are different. Two problems are seeking the solutions in 
different ranges with the same equation. 

 
According to the flow chart in figure 3.13, we start with setting initial start for tt, 

similar to setting initial start for t. We already know that the local maximizer of the 
frequency curve should be very close to the local maximizer of the sine wave function 

)sin( φω +− tr . So we can use the first maximizer after t of the sine function as the initial 
start for tt. The Armijo rule can ensure each iteration moves closer to the solution. So by 
choosing the first maximizer after t of the sine function, we can exclude the possibility 
that the tt we find is some maximizer of other cycles of the curve. Therefore, we calculate 

the first maximizer after t in the first cycle of )sin( φω +− tr , which is 
2

3πφω =+tr , and 
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we have the initial start 
r
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2

)
2

(3 −
= . 

 
As in flow chart of figure 3.13, we should then check for stopping criteria for tt. We 

use the similar criteria, which is if the slope of some point of the frequency curve is very 
small, we can stop the iteration and call this point as solution.  
 

We define the slope is ‘very small’ when h , the projection of the tangent angle on the 
vertical line at next minimizer, is smaller than 0.01 fΔ , as shown in figure 3.14 below, 

where fΔ  is the absolute value of the frequency drop at time tt. 60)( −=Δ ttff . That 

is to say if fh Δ≥ 01.0 , then the checker will go to the next iteration, until fh Δ< 01.0 . 
 

 
Figure 3.14 Parameters in Stopping Criteria for tt 

 
This figure is based on an example with less damping where 05.0=HF . Firstly, we 

calculate the nearest minimizers on both sides of the solution of tt. The one on the left is t, 
which we already worked out. The one on the right is close to the first minimizer of 
function )sin( φω +− tr  after tt. We can approximately find the first minimizer after tt by 

setting πφω
2
3

=+tr , and we get 
rω
φπ

2
)(3 − . Secondly, we compare the distance from tt 
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to the left minimizer and the right minimizer. Then we choose whichever is the larger in 

these two distances, ttt −  and tt
r
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)(3 .  And then we multiply the larger distance 
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Therefore, we have the stopping criteria the same as 6.2.1: stop until fh Δ< 01.0 ,  
where, 
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After checking the stopping criteria of iteration, we can get the first maximizer tt after 

t and the frequency value at this point.  
 
(4) Find t1 
 

As discussed in the previous sections, to find the first intersections of the frequency 
response curve and the horizontal frequency threshold curve, we need to solve the 
equation  
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The smallest solution is t1, and the second smaller solution is t2. We will also use 

Newton-Raphson method and Armijo step size rule to solve the equation. Figure 3.15 
below is the flow chart to get t1. 
 

 
Figure 3.15 Flow Chart of Calculating t1 

 
First, we need to set an initial start for t1. From figure 3.15, we know that t1 is 

between zero and the first local minimizer t. So we set the initial start from one-tenth of t 
left from t. 
 

ttt 1.01 −=  
 

Then we check the stopping criteria for the Newton-Raphson iteration: if t1 is so 
close to the solution that the distance from t1 to the given frequency threshold line is 
smaller than the absolute value of the frequency drop at this point, we can stop iterating 
and call t1 a solution.  
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Figure 3.16 shows the parameters of the stopping criteria. fΔ  is the absolute value 

of the frequency drop of t1, which is 60)1( −=Δ tff . h  is the distance from point t1 

to the given frequency threshold line. The iteration will continue until fh Δ< 01.0 . 

 
Figure 3.16 Parameters in Stopping Criteria for t1 

 
Before we go on with the Newton-Raphson method, we check to make sure t1 does 

not run to the right side of t. Because if the system seeks the solution at the right side of t, 
it will end up at t2, the second intersection of the two functions. To avoid this, the system 
will first check if t1 is at the right side of t. If tt >1 , t1 will be moved one-tenth t to the 
left, 
 

ttt 1.011 −=  for t1 is moved to the left side of t 
 

Then we continue the Newton-Raphson method like in 6.2.1, and we will find t1, the 
time when the frequency first drops under the frequency threshold. 
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(5) Find t2 
 

The steps and methods to find t2 are very similar to that of find t1, shown in figure 
3.17. 
 

 
Figure 3.17 Flow Chart of Calculating t2 

 
Similarly to keeping the estimates of t1 to the left of t, the value of the iteration of t2 

should be kept at the right side of t. If tt <2 , the iteration t2 will be moved one-tenth to 
the right of t. 

ttt 1.022 +=  
 

This will make sure that the solution does not end up at t1. When the system is 
checking the stopping criteria of the iteration, there is another limit on t before it updates 
the iteration. In a situation where fgivenf max__ > , there will be no more 
intersections other than t1. So we have to set a limit to the iteration of t2 to prevent the 
system from keeping seeking t2 in vain. If the number of iterations is larger than 50, but 
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is still not close the solution then the system will stop searching and decide that t2 is 
infinite. Then same steps are followed to find the second intersection t2. And time_delay 
can be calculated by 12 tt − . 
 
3.2.2.4 Results of the frequency outage checker 

 
Two examples are listed below to show the results of running the code. In the first 

example, we use the typical parameters from the previous section; 
  

· R = 0.05 
· H = 4.0s 
· Km = 0.95 
· FH = 0.3 
· TR = 8.0s 
· D = 1.0 

 
and input:  
 

· 4.0−=stepP  

· 9883.59_ =finput  
 
 
 

After running the code, we have the result: 
 

· t = 4.2045 
· min_f = 59.9871 
· t1 = 2.5339 
· t2 = 6.8077 
· time_delay = 4.2737 
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Figure 3.18 Result of running the code (1) 

 
 
 
We can see in figure 3.18, it took 4.2045 seconds for the frequency to first drop to the 

minimum value of 59.9871 Hz, and the time duration when the frequency is below 
59.9883 Hz is 4.2737 s. 

 
Here is a second example with less damping where FH = 0.1. The other parameters 

and inputs are the same. 

· R = 0.05       
· H = 4.0s       
· Km = 0.95 
· FH = 0.1       
· TR = 8.0s       
· D = 1.0 

· 4.0−=stepP  

· 9883.59_ =finput  
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After running the code, we have the result: 

· t = 4.4055 
· min_f = 59.9835 
· t1 =1.9174 
· t2 =9.5382 
· time_delay =7.6208 

 
 

 
Figure 3.19 Result of running the code (2) 

 
 
 
We can see in figure 3.19, it took 4.4055 seconds for the frequency to first drop to the 

minimum value of 59.9835 Hz, and the time duration when the frequency is below 
59.9883 Hz is 7.6208 s. 
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4 Conclusion 
 
 

In this project, UT has had the primary responsibility for developing a cascading 
outage analysis tool that has its own graphical user interface (GUI). This work has 
concentrated on developing the simulation algorithm for the cascading outage checkers 
and the GUI, both in a windows-based environment. 

 
We developed version 1.0 of the Cascading Outage Analyzer (COA) software as PC-

based Windows software. The Cascading Outage Analyzer (COA) uses MS Access as a 
database. In order to reuse a previously implemented power flow module and provide 
flexibility to switch to or add different power flow modules and determine a specific 
module to run at run-time, three design patterns, the Adapter, Strategy, and Factory 
Method design patterns, have been adopted. 

 
Following the initial disturbance, the Cascading Outage Analyzer software has three 

outage checking algorithms namely the ‘Frequency Checker’, ‘Line Overload Checker’ 
and ‘Under Voltage Checker’. Among the three checkers, the line overload and bus 
under-voltage checkers use the power flow algorithms and users can select between two 
variations of the load flow program: Full AC power flow and Decoupled power flow, 
which are provided by Commonwealth Associates Inc. On the other hand, we use the 
System Frequency Response (SFR) model as a frequency change model in the frequency 
checker algorithm. 
 

 The developed COA software is verified with a 9 bus system and this system is 
presented in ‘Power System Control and Stability’ [8] by Anderson and Fouad. The 
scenario simulation of 9 bus system for understanding the developed software will be 
presented in the Appendix of this report. 

 
In future, the developed Cascading Outage Analyzer (COA) will be enhanced with 

new version and the following issues will be upgraded in the next version. 
 

· Enhance Input DB system 

· Upgrade simulation engines and algorithms 

· Implement simulation output files (for example, *.CSV) 
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Appendix A: User’s Manual 
 
Cascading Outage Analyzer V1.0 Jan 2009 System Manual 

- Instructions for the Cascading Outage Analyzer User Interface - 
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Introduction to the system manual 
 

Installation and start 

System requirements 
Minimum hardware requirements 

 PC or notebook 
 CPU: x86 compatible 
 RAM: 256 MB 
 Hard disk Space: 16 MB 

  
Software requirements 

 MS Windows XP 32 bit 
 MS Access 2003 
 MS .NET Framework (1.1) 
 PFlow (Commonwealth Associates Inc.) 

 
Installing COA 
To install the Cascading Outage Analyzer (v 1.0) the following steps are required:  

 The folder COA_v1.0 from the installation disk must be copied to the hard disk 
C:\ 

 A folder named Dataset with the following destination must be created 
C:\project\Dataset 

 A folder named source with the following destination must be created 
C:\project\implementation\source 

 The files COChecker.mdb and Datainput.mdb from the installation disk must 
be copied to the Dataset folder specified above 

 The file temp.mdb from the installation disk must be copied to the source folder 
specified above 

 
Starting COA 
Clicking on the Cascading Outage Analyzer.sln file located in the folder COA_v1.0 op
ens the Microsoft Visual Studio application. To start the COA the user must then p
ress CTRL+F5 or click the PLAY button (see Fig.A1). 
 

 
Figure A.1: PLAY button on Microsoft Visual Studio toolbar to start the COA. 
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User interface 
 
After opening the COA application the user views the configuration of the COA system:  
 

 

Figure A.2: COA User Interface 
 

User interface elements 
The user interface elements include the following: 

 Menu Bar 
 Toolbar 
 System Information Bar 
 Workspace 

 
Menu Bar 
COA’s menu bar is an important element because it accesses all functions of the COA 
application. 
  

 

Figure A.3: COA’s Menu Bar. 
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The menu bar contents are: 
 File 

The File menu contains basic functions of the COA which include opening power 
system data files and exiting the application. 

 Power System Data 
The Power System Data menu is used to view the data of the basic components 
of the power system, which include buses, generators, loads and lines. 

 Set Up COA-sys 
The Set Up COA-sys menu is used to set the simulation options, such as choosing 
the disturbance or the cascading outage checkers.  

 Simulate COA–Sys 
The Simulate COA-Sys menu contains the run and report functions. 

 Help 
The Help menu contains general information about the application . 
  

Toolbar 
The icons of the toolbar allow access to all common functions of the program, which can 
also be selected from menus. 
 

 

Figure A.4: COA’s Toolbar 
 
The elements of the toolbar are: 

 Open 
 Disturbance 
 Checker 
 Frequency 
 Run 
 Report 
 Exit  

 

System Information Bar 
The System Information Bar contains the system title and the basic description of the 
loaded power system. 
 

 

Figure A.5: COA’s System Information Bar 
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Workspace 

The Workspace takes up most of the window. This area is used to view the input and 
output data. The input data include the power system information data handled by 
Access DB and the simulation options. The output data are contained in the Simulation 
Report. The message boxes are also displayed in the Workspace area. 
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Basic functions 
 
The basic functions of the COA application are opening a power system and exiting the 
application. Both these functions are contained in the File menu of the COA’s Menu bar. 
 

 
Figure A.6: COA’s File menu. 

Open Power System Data 
To load the input data of an existing power system, the user must click File – Open 
Power System Data or click the OPEN icon on the toolbar. This action opens the 
following dialog box: 
 

 
 Figure A.7: Selecting Power System input data dialog box. 
 
By selecting Datainput.mdb and clicking Open at the above dialog box the user views the 
following message, which declares the successful loading of the input data on the COA 
application.  
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Figure A.8: Successful upload of the system input data message. 

 

By clicking OK in the above message box the System Title and System Description of the 
loaded power system appear on the System Information Bar (see Fig.A.5). 

 

Exit 

To exit the COA application the user can either select File – Exit or click on the EXIT 
icon on the toolbar. 
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Power System Data 
 
The user can view the data of the basic components of the power system with the Power 
System Data menu of the Main menu.  
 

 
Figure A.9: Power System Data menu. 
 

Buses 
The user can view the power system buses data by clicking Power System Data – Buses 
from the Main menu and then View Bus Data - + - Table on the Buses Window in the 
Workspace. The user can exit the Buses Window by clicking on the Exit button next to the 
View Bus Data button. 
 

 
Figure A.10: Power system buses data (Buses Window). 
 

Generators 
The user can view the power system generators data by clicking Power System Data – 
Generators from the Main menu and then View GEN Data on the GeneratorForm 
Window in the Workspace. The user can exit the GeneratorForm Window by clicking on the 
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Exit button next to the View GEN Data button. 
 

 
Figure A.11: Power system generator data (GeneratorForm Window). 
 

Lines 
The user can view the power system lines data by clicking Power System Data – Lines 
from the Main menu and then View LINE Data on the LineForm Window in the 
Workspace. The user can exit the LineForm Window by clicking on the Exit button next to 
the View LINE Data button. 
 

 
Figure A.12: Power system line data (LineForm Window). 



 

61 
 

Load 
The user can view the power system load data by clicking Power System Data – Load 
from the Main menu and then View Load Data on the LoadForm Window in the 
Workspace. The user can exit the LoadForm Window by clicking on the Exit button next to 
the View Load Data button. 
 

 
Figure A.13: Power system load data (LoadForm Window). 
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Set Up COA-sys 
 
From the Set Up COA-sys menu of the Main menu the user can set-up the simulation 
scenarios and define the options for the used outage checkers. 
 

  
Figure A.14: Set Up COA-sys menu. 
 

Disturbance 
By clicking Set Up COA-sys – Disturbance from the Main menu or the DISTURBANCE 
icon on the toolbar the user can view the Disturbance Editor Window in the Workspace 
area. This Window displays the information regarding the selected initial disturbance in 
the power system. Only one disturbance at a time can be handled and only of the Line 
Outage form (this disturbance applies for a line or any branch device outage).  
 
The Reload button at the bottom of this Window can be used to load the current data 
stored in the Disturbance table in the corresponding database (make modifications 
without saving them), while the Update button actually updates the data of the 
Disturbance table in the corresponding database (make modifications and save them). 
The user can exit the Disturbance Editor Window by clicking on the Close button on this 
Window. 
 
When the user modifies the entries in the Disturbance Editor Window the user must also 
make the same modifications in the Disturbance table in the database located at 
C:\project\Dataset\Datainput.mdb. 
 

 
Figure A.15: Disturbance Editor Window displaying the initial disturbance. 
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Cascading Outage Checker 
By clicking Set Up COA-sys – Cascading Outage Checker from the Main menu or the 
CHECKER icon on the toolbar the user can view the Overload and Voltage Editor Window 
in the Workspace area. This Window displays the types of the outage checkers that will 
be used and their usage priority.  
There are three types of outage checkers: 

⎯ Line Overload 
⎯ Under Voltage 
⎯ Frequency Checker 

and their order of usage can be determined by varying the entries in the Time_Span 
column (smallest number in Time_Span corresponds to the outage checker that will be 
used first). 
 
The Reload button at the bottom of this Window can be used to load the current data 
stored in the Outage Checker table in the corresponding database (make modifications 
without saving them), while the Update button actually updates the data of the Outage 
Checker table in the corresponding database (make modifications and save them). The 
user can exit the Overload and Voltage Editor Window by clicking on the Close button on 
this Window. 
 
When the user modifies the entries in the Overload and Voltage Editor Window the user 
must also make the same modifications in the Outage Checker table in the database 
located at C:\project\Dataset\Datainput.mdb. 
 

 
Figure A.16: Overload and Voltage Editor Window displaying the Outage Checkers used. 
 
 



 

64 
 

 

Frequency Checker 
By clicking Set Up COA-sys – Frequency Checker from the Main menu or the 
FREQUENCY icon on the toolbar the user can view the Frequency Editor Window in the 
Workspace area. This Window displays the characteristics of the frequency outage 
checkers that will be used.  
The columns of this table provide the following information: 

⎯ Bus:   The bus number of the power system 
⎯ BusType:  The type of the bus (1: Generation bus, 2: Load bus) 
⎯ Threshold:  Input value for the frequency threshold 
⎯ Delay:   Input value for setting the time delay of the frequency relay. 

 
The Reload button at the bottom of this Window can be used to load the current data 
stored in the FOChecker table in the corresponding database (make modifications 
without saving them), while the Update button actually updates the data of the 
FOChecker table in the corresponding database (make modifications and save them). The 
user can exit the Frequency Editor Window by clicking on the Close button on this 
Window. 
 

 
Figure A.17: Frequency Editor Window.
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Simulate COA-sys 
 
After setting the options and the parameters of the simulation the user can simulate a 
disturbance and view the results of the simulation from the Simulate COA-Sys menu.  

 
Figure A.18: Simulate COA-Sys menu. 
 

Run Checker 
By clicking Simulate COA-Sys – Run Checker from the Main menu or the RUN icon on 
the toolbar the user views the Select Power Flow Algorithm Window in the Workspace area. 
This Window prompts the user to choose the desired power flow method to be used in 
the simulation: 

⎯ AC Power Flow 
⎯ Decoupled Power Flow 

  

 
Figure A.19: Selecting the desired Power Flow Algorithm Window. 
 
After ticking the corresponding box in the Window a message box appears in the 
Workspace area declaring the chosen Power Flow Algorithm. After first clicking OK in 
the message box and then clicking Run in the Select Power Flow Algorithm Window the 
simulation starts. 
 
Several windows open in the Workspace area before the simulation stops (see Fig. A.20). 
The user should wait until the end of the simulation, which is declared by a message box 
(see Fig. A.21) displaying either: 

⎯ Result: 1 – Successful run of the simulation scenario or 
⎯ Result: 0 – Failure to run the simulation scenario. 
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Figure A.20: The running process. 
 

 
Figure A.21: End of simulation. 
 
After the end of the simulation process the user should click OK in the message box and 
Close in the Select Power Flow Algorithm Window. 
 

Simulation Report 
By clicking Simulate COA-Sys – Simulation Report from the Main menu or the 
REPORT icon on the toolbar the user views the Cascading Outage Report Window in the 
Workspace area. This window presents the resulting outages including the initial 
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disturbance in tree view (Cascading Outage Tree View tab). 
 

 
Figure A.22: Cascading Outage Report Window. 
 
The user must click successively the + sign in order to view the results of the simulation. 
The results are displayed in chronological order, thus the first line under Cascading 
Outage is the initial disturbance.  
 

 
Figure A.23: Cascading outage results displayed in tree view format. 
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Help 

About COA 
The user can view the current version number and general information about the COA 
application in the HelpInfo Window by clicking Help – About Cascading Outage 
Analyzer (COA). 
 

 
Figure A.24: COA’s Help menu. 
 

 
Figure A.25: HelpInfo Window with general information about the COA application. 
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Example 
 
The function of the COA application will be illustrated with an example. 
 
For this example the following power system is considered and two simulation scenarios are 
presented.  
 

 
Figure A.26: One line diagram of the Example power system network [8]. 
 

Opening a power system network 
 
In the COA application previously implemented power flow software is used to deter
mine sequential equilibrium states for checking if further outages will occur following 
an initial disturbance. The implemented outage checkers utilize an independent power
 flow module, PFlow, which has been developed by Commonwealth Associates Inc. a
nd is licensed to The University of Texas.  
 
For this reason the components of the example power system depicted in Fig. A.26 an
d their associated data are stored in a database, in compliance with the reused softwa
re. The database for the example power system Datainput.mdb is contained in the appl
ication installation disk. To utilize the COA application this database must be copied t
o the location C:\project\Dataset\Datainput.mdb. 
 
If the user wants to test simulation scenarios on a new power system the format of the given 
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Datainput.mdb database must be maintained. For this reason the developers of the COA 
application recommend that the given database is copied and then modified accordingly. 
Although the database contains many tables the user has to modify only the following tables 
for the power flow calculation: 

⎯ BUS: contains the bus data of the network, 

⎯ GENERATOR: contains the generator data of the network, 

⎯ LINE: contains the line data of the network, 

⎯ LOAD: contains the load data of the network. 

However, regardless of the power system network the database used must be named Datainp
ut.mdb and copied to the location C:\project\Dataset\Datainput.mdb. 
 
To view the configuration of the COA application the user must click on the Cascading Outag
e Analyzer.sln file located in the folder COA_v1.0 and then press CTRL+F5 or click the 
PLAY button. To load the input data of the example power system, the user must click File – 
Open Power System Data or click the OPEN icon on the toolbar (see Fig. A.27). 
 

 
Figure A.27: Opening the example power system. 
 

By selecting Datainput.mdb and clicking Open at the above dialog box the user views a 
message box declaring the successful loading of the input data on the COA application. After 
clicking OK the System Title and System Description of the loaded example power system 
appear on the System Information Bar (see Fig.A.28). 
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Figure A.28: Example power system description shown at the COA’s System Information Bar 
 

Viewing the power system network data 
 
The example power system is a nine-bus power system with three generators, three 
transformers, three loads and six lines. The user can view the data of this network using the 
Power System Data menu of the Main menu of the COA application. 
 
For example, to view the example power system buses data the user must click Power 
System Data – Buses from the Main menu and then View Bus Data - + - Table on the Buses 
Window in the Workspace. 
 

 
Figure A.29: Power system buses data for the nine bus example power system. 
 
To view the example power system lines data the user must first exit the Buses Window 
above and then click Power System Data – Lines from the Main menu and then View LINE 
Data on the LineForm Window in the Workspace. The user can exit the LineForm Window by 
clicking on the Exit button next to the View LINE Data button. 
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Figure A.30: Power system line data for the nine bus example power system. 
 
The described procedure is similar for viewing the example power system generator or load 
data.  
 

First Disturbance: Calculations and results 
 
The first initial disturbance to be applied to the example power system is the line outage of 
the Line 6 between Buses 7 and 8, which is equivalent to opening the circuit breakers CB 15 
and CB 16, as shown in Fig. A.31. 
 

 
Figure A.31: First initial disturbance applied to the example power system. 

First initial disturbance 
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By clicking Set Up COA-sys – Disturbance from the Main menu or the DISTURBANCE 
icon on the toolbar the user can view the Disturbance Editor Window in the Workspace area. 
This Window displays the information regarding the initial disturbance in the power system, 
as shown in Fig. A.32. 
 

 
Figure A.32: Disturbance Window displaying the first disturbance for the example power system. 
 
By clicking Set Up COA-sys – Cascading Outage Checker from the Main menu or the 
CHECKER icon on the toolbar the user can view the Overload and Voltage Editor Window in 
the Workspace area. For the first initial disturbance all the available outage checkers will be 
used, in the following order: 

⎯ Frequency Checker 
⎯ Line Overload 
⎯ Under Voltage 

as is denoted by the respective value in the Time_Span column and shown in Fig. A.33. 
 

 
Figure A.33: Window displaying the outage checkers used in the first initial disturbance. 
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By clicking Set Up COA-sys – Frequency Checker from the Main menu or the FREQUENCY 
icon on the toolbar the user can view the Frequency Editor Window in the Workspace area. The 
window displaying the characteristics of the frequency outage checkers that are used in the 
first initial disturbance applied to the example power system is shown in Fig. A.34. These 
characteristics include the bus number and type, the frequency threshold and the time delay 
for the frequency relays. As can be seen from Fig. A.34 the frequency checkers have under-
frequency relays. The frequency checkers at load buses have greater values for the time delay 
of their under-frequency relays than the ones used at generator buses. Moreover, the 
frequency checker at bus 3 has the highest under-frequency threshold. 
 

 
Figure A.34: The characteristics of the frequency checkers used in the first initial disturbance. 
 
Having set the options and the parameters of the simulation the user can now simulate the 
initial disturbance and view the results of the simulation.  
 
By clicking Simulate COA-Sys – Run Checker from the Main menu or the RUN icon on the 
toolbar the user views the Select Power Flow Algorithm Window in the Workspace area. For the 
first initial disturbance applied to the example power system the selected power flow 
method is the AC Power Flow, as shown in Fig. A.35.  
 
After first clicking OK in the message box and then clicking Run in the Select Power Flow 
Algorithm Window the simulation starts. At the end of the simulation a message box 
displaying ‘Result: 1’ appears in the Workspace area declaring the successful end of the 
simulation. 
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Figure A.35: Power Flow Algorithm Window for the first initial disturbance. 
 
The user can view the results of the first simulation by clicking Simulate COA-Sys – 
Simulation Report from the Main menu or the REPORT icon on the toolbar. The Cascading 
Outage Report Window appears in the Workspace area displaying the resulting outages 
including the initial disturbance in tree view format, as shown in Fig. A.36. 
 

 
Figure A.36: Simulation Report for the first initial disturbance. 
 
The results of the simulation are presented in chronological order and must be interpreted as 
follows: 

⎯ Line Outage from bus 7 to bus 8 
This is the initial disturbance applied to the example power system. 

⎯ Frequency at bus 3 
This is the first cascading outage resulting from the initial disturbance. The 
information displayed means that the settings of the frequency checker at the 
(generator) Bus 3 are violated causing the opening of the circuit breaker CB 3 and the 
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outage of generator G3. 

⎯ Line Outage from bus 4 to bus 5 
This is the second cascading outage resulting from the initial disturbance. The 
information displayed means that the settings of the line overload checker at the line 
between Buses 4 and 5 (Line 1) are violated causing the opening of circuit breakers CB 
5 and CB 7. 

⎯ Under Voltage at bus 5 
This is the third cascading outage resulting from the initial disturbance. The 
information displayed means that the settings of the under-voltage checker at Bus 5 
are violated causing the opening of the circuit breaker CB 9 and the loss of Load A. 

 
The above results are in compliance with the chosen simulation options regarding the order 
of the outage checkers used. First the settings of the frequency checkers are checked for 
violation, then the settings of the line overload checkers and finally the settings of the under-
voltage checkers. Moreover, the frequency checker whose settings are violated is the one 
with the highest under-frequency threshold, resulting in the outage of generator G3. The 
tripping of the overload checkers at Line 1 is also easy to interpret, since this line has the 
smallest thermal limit. Finally, the outage of Line 1 causes excessive power flow on Line 3 for 
the supply of Load A, which results in the under-voltage settings at Bus 5 to be violated. The 
simulation of the events resulting from the first initial disturbance is presented graphically in 
Fig. A.37. 
 

 
Figure A.37: Graphical representation of the first simulation scenario. 
 

Initial disturbance 
 

First cascading outage: 
Frequency checker settings are 
violated at Bus 3 resulting in the 
loss of generator G3 

Second cascading outage: 
Line overload checker  
settings are violated  
resulting in the loss of Line 1 

Third cascading outage: 
Under voltage checker  
settings are violated at Bus 5 
resulting in the loss of Load A 
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Second Disturbance: Calculations and results 
 
Before the user can simulate a new scenario (even if no changes will be made to the 
simulation parameters and settings) the following actions must be taken: 

⎯ The entries of the table Disturbance in the database Datainput.mdb located at 
C:\project\Dataset\Datainput.mdb with Disturbance ID 100 and higher must be 
deleted (all the entries but the first, see Fig. A.38). These entries correspond to the 
simulation results of the previous simulation which are recorded in this table. 

⎯ The table FOChecker in the database COChecker.mdb located at 
C:\project\Dataset\COChecker.mdb must be deleted. 

⎯ The table FOChecker_org in the database COChecker.mdb located at 
C:\project\Dataset\COChecker.mdb must be copied to the same location and renamed 
to table FOChecker. 

⎯ The entries of the table CTDOutput in the database COChecker.mdb located at 
C:\project\Dataset\COChecker.mdb must be deleted (see Fig. A.39). The simulation 
results of the frequency checkers are recorded in this table. The entries in the BusNum 
column correspond to the buses of the power system. The entries in the STD column 
display the time-delay settings for each frequency checker while the entries in the 
CTD_Under column show the calculated time duration of the under-frequency below 
the frequency threshold value. (The frequency checkers can also have over-frequency 
relays in which case the calculated duration of the over-frequency at any frequency 
checker will be displayed in the column CTD_Over). 

 

 
Figure A.38: Lines to be cleared in the Disturbance table before running a new simulation. 
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Figure A.39: Lines to be cleared in the CTDOutput table before running a new simulation. 
 
After performing the above actions the second scenario can be started. The second initial 
disturbance to be applied to the example power system simulates the outage of the 
transformer T3 between Buses 3 and 9, which is equivalent to opening the circuit breakers CB 
20 and CB 21, as shown in Fig. A.40. 

 

 
Figure A.40: Second initial disturbance applied to the example power system. 
 

Second initial disturbance 
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By clicking Set Up COA-sys – Disturbance from the Main menu or the DISTURBANCE 
icon on the toolbar the user can view the Disturbance Editor Window in the Workspace area. In 
this Window the user will view the information regarding the previous initial disturbance in 
the power system. To implement the new scenario the user has to modify the entries in the 
From_Bus_Number and To_Bus_Number columns, according to Fig. A.41, by typing in the new 
values and clicking the Update button. It is reminded to the user that the same modifications 
must be made in the Disturbance table in the database located at 
C:\project\Dataset\Datainput.mdb. 
 

 
Figure A.41: Window displaying the second initial disturbance for the example power system. 
 
By clicking Set Up COA-sys – Cascading Outage Checker from the Main menu or the 
CHECKER icon on the toolbar the user can view the Overload and Voltage Editor Window in 
the Workspace area. For the second initial disturbance two outage checkers will be used, in 
the following order: 

⎯ Line Overload 
⎯ Under Voltage. 

 
To implement the new scenario the user has to make the necessary modifications to the 
entries in the Overload and Voltage Editor Window, according to Fig. A.42, by deleting the third 
row and by clicking the Update button. It is reminded to the user that the same modifications 
must be made in the Outage Checker table in the database located at 
C:\project\Dataset\Datainput.mdb. 
 
Since the frequency checker will not be used there is no necessary action regarding the 
parameters of this type of checker (Set Up COA-sys – Frequency Checker from the Main 
menu or FREQUENCY icon on the toolbar).  
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Figure A.43: Window displaying the outage checkers used in the second initial disturbance. 
 
By clicking Simulate COA-Sys – Run Checker from the Main menu or the RUN icon on the 
toolbar the user views the Select Power Flow Algorithm Window in the Workspace area. For the 
second initial disturbance applied to the example power system the selected power flow 
method is the Decoupled Power Flow, as shown in Fig. A.44.  
 
After first clicking OK in the message box and then clicking Run in the Select Power Flow 
Algorithm Window the simulation starts. At the end of the simulation a message box 
displaying ‘Result: 1’ appears in the Workspace area declaring the successful end of the 
simulation. 
 

 
Figure A.44: Power Flow Algorithm Window for the second initial disturbance. 
 
The user can view the results of the first simulation by clicking Simulate COA-Sys – 
Simulation Report from the Main menu or the REPORT icon on the toolbar. The Cascading 
Outage Report Window appears in the Workspace area displaying the resulting outages 
including the initial disturbance in tree view format, as shown in Fig. A.45. 
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Figure A.45: Simulation Report for the second initial disturbance. 
 
The results of the simulation are presented in chronological order and must be interpreted as 
follows: 

⎯ Line Outage from bus 3 to bus 9 
This is the initial disturbance applied to the example power system, representing the 
outage of a transformer. 

⎯ Line Outage from bus 4 to bus 5 
This is the first cascading outage resulting from the initial disturbance, which is the 
outage of Line 1. 

⎯ Under Voltage at bus 5 
This is the second cascading outage resulting from the initial disturbance, which 
results in the loss of Load A. 
 

 
Figure A.46: Graphical representation of the second simulation scenario. 

First cascading outage: 
Line overload checker  
settings are violated  
resulting in the loss of Line 1 

Second cascading outage: 
Under voltage checker  
settings are violated at Bus 5 
resulting in the loss of Load A 

Initial disturbance 
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Again, the above results are in compliance with the chosen simulation options regarding the 
order of the outage checkers used. First the settings of the line overload checkers are checked 
for violation and then the settings of the under-voltage checkers. The tripping of the overload 
checkers at Line 1 is due to the fact that this line has the smallest thermal limit. The outage of 
Line 1 causes again excessive power flow on Line 3 for the supply of Load A, which results in 
the under-voltage settings at Bus 5 to be violated, and in the loss of Load A. The simulation 
of the events resulting from the second initial disturbance is presented graphically in Fig. 
A.46. 
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