
1

Data-Efficient Bayesian Optimization with
Constraints for Power Amplifier Design

Nicolas Knudde∗, Ivo Couckuyt∗, Domenico Spina∗, Konstanty Łukasik†‡,
Paweł Barmuta†‡, Dominique Schreurs† and Tom Dhaene∗

∗Ghent University - imec, Department of Information Technology, 9052 Ghent, Belgium
†KU Leuven, Department of Electrical Engineering, 3000 Leuven, Belgium

‡Warsaw University of Technology, Faculty of Electronics and Information Technology, 00-665 Warsaw, Poland
Email: nicolas.knudde@ugent.be

Abstract—Finding the optimal working conditions for non-
linear electrical components under large signal stimuli can be
challenging, mainly due to the high number of input dimensions
and multiple local minima of the goal function. In this paper
a Bayesian optimization method is applied in order to limit
the number of evaluations by a commercial harmonic balance
simulator. The method is applied to amplifier optimization utiliz-
ing Wolfspeed CGH40010F GaN HEMT, for which input power,
bias voltages and load at fundamental harmonic frequencies are
changed in order to maximize for combined efficiency, gain, and
output power. The optimum is found already after 80 iterations.

Index Terms—Bayesian optimization, Gaussian process, har-
monic balance, load-pull, transistor

I. INTRODUCTION

Modern microwave power amplifiers have to fulfill multiple
very stringent requirements, e.g., high output power, high
Power Added Efficiency (PAE), etc. This makes the design
process very cumbersome, and often leads to extensive use
of optimization tools in the design process. Unfortunately, the
commercial CAD environments lack efficient optimizers, es-
pecially when the objective function has a highly-dimensional
parameter space and multiple local minima, which is the
typical case for power amplifier design. This problem has been
addressed in [1], [2], in which Bayesian Optimization (BO) is
applied to the design of high-efficiency power amplifiers [3].
The optimal Large Signal Operating Point (LSOP), i.e., set of
input variables’ values, was found already within only a few
tens of simulations.

Due to its efficiency, BO is also used in this work. How-
ever, the efficiency is further increased by employing a re-
cently introduced sampling strategy, called Max-Value Entropy
search [4]. We also incorporate the constraints, e.g., power
dissipation or breakdown voltage, in the optimization process
through so-called Probability of Feasibility (PoF) [5]. The
work is organized as follows. In Sec. II, Bayesian optimization
is explained with a particular focus on sampling strategies.
Next, in Sec. III, the optimization results of the transistor’s
large signal operating point are shown and discussed, which
leads to the conclusions drawn in Sec. IV.
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Fig. 1. Flowchart of the Bayesian optimization algorithm.

II. METHODOLOGY

The idea behind BO is to perform optimization on surrogate
models, which mimic the real optimization problem, but
contrary to the latter, are very cheap to evaluate [6]. The
flowchart of BO algorithm is shown in Fig. 1. First, the
objective function is evaluated over an initial set of values
of the design parameters [xk]

K
k=1 via simulation of the device

under test. This allows to extract the first surrogate model
of the objective function f(x). Since the surrogate model is
very cheap to evaluate, it is used by the optimizer to find
the global minimum. This optimum is then evaluated via a
new simulation, and when none of the stop criteria is met,
the surrogate model is updated. Therefore, each additional
simulation refines the surrogate model, which increases the
chance of finding the global optimum of the true problem by
using surrogate models.

As one can see, BO is very general and several mathematical
techniques can be adopted to build the desired surrogate
model, such as Random Forest [7] or Bayesian neural network
[8]. In this paper, we have chosen Gaussian Processes (GPs)
[9], thanks to their accuracy and modeling power. A GP
represents a distribution over functions f : X → R, that is
completely defined by a suitable mean function m : X → R78-1-5386-5204-6/18/$31.00 c©2018 IEEE
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and covariance function k : X × X → R, where the type
of mean and covariance functions depends on the particular
problem under study.

A sampling strategy is defined based on the surrogate
model that is computed so far, which is called acquisition
function. Typical acquisition functions include Expected Im-
provement (EI) [3] and Probability of Improvement (POI)
[10]. In this work, the recently introduced Max-Value Entropy
Search (MES) is adopted [4], which automatically balances
exploration and exploitation. In particular, the MES aims to
maximize the information gain about the minimum value fmin,
which is quantified by the differential entropy:

αMES(x) = H(p(fGP |D,x))− E(H(p(fGP |D,x, fmin))),
(1)

where D represents the already observed data {xi, yi}Ni=1, H
denotes the entropy and the expectation E is computed over the
random variable fmin. Note that the distribution of fmin cannot
be calculated analytically, but can be sampled via Gumbel
sampling [11]. Furthermore, p(fGP |D,x, fmin) is a truncated
Gaussian, since all y values have to be greater then fmin.

However, in many engineering problems it is not sufficient
to find a global maximum of the objective, but some physical
constraints must be satisfied as well. Hence, the acquisition
function has to be modified accordingly. In practice, this is
done through the Probability of Feasibility (PoF) [5], where
each constraint is often formulated as a suitable function c :
X → R that has to be negative.

In our problem setting, the constraints depend on the phys-
ical characteristics of the transistor considered and, typically,
include limitations on the power balance and the maximum
DC currents of the device. Unfortunately, it is not possible
to know upfront (before simulating the device) if a particular
combination of design parameters will lead to a constraints
violation. Hence, first a suitable GP-based surrogate model
is built for each function ci for i = 1, . . . , N , where N is
the total number of constraints, then the corresponding PoF is
calculated:

αPoF,i(x) = p(cGP
i (x) < 0). (2)

Note that αPoF,i is equal to the probability that the i−th
constraint is satisfied and such probability is estimated with
increasing precision as the number of iterations of the opti-
mization algorithm increases.

Finally, in order to combine the ability of selecting feasible
design points via PoF and the capability of the MES to find
the optimum, the overall acquisition function is given by

α(x) = αMES(x)

N∏
i

αPoF,i(x) (3)

III. RESULTS AND DISCUSSION

The device under test is the GaN HEMT transistor
CGH40010F 10 W from Wolfspeed, which is simulated in
ADS1. The gate VG ∈ [−2, 0] V and drain voltage VD ∈
[16, 42] V, the input power Pin ∈ [0.01, 1] W and the complex
load impedance ZL constitute LSOP x. Furthermore, the load

1Advanced Design System (ADS), Keysight Technologies, Santa Rosa, CA.

reflection coefficient ΓL must have a magnitude less than
one and it is parameterized in polar coordinates to efficiently
enforce this constraint. A typical design objective is to have the
gain G, PAE, and output power Pout as high as possible. Since
these quantities are highly correlated, in order to reach this
goal it is sufficient to minimize a suitable objective function
f , defined as:

f(x) = −G(x)PAE(x)Pout(x), (4)

where the vector x is LSOP. Additionally, the following
constraints must hold:

Pdc − Pout + Pin − 14 W ≤ 0, , (5)
Idsi − 4.5 A ≤ 0, , (6)
Igsi − 4 mA ≤ 0., (7)

where Pdc and Pin are the DC and input power, respectively,
and Idsi, Igsi are the maximum instantaneous drain and gate
currents, respectively. Note that all these conditions can be
expressed as ci < 0.

The constraints and the objective f are modeled separately.
In particular, a periodic kernel is used to model the phase
of ΓL, indicated as φ, which is a periodic function. For the
remaining design parameters x̃, a Matérn 3/2 kernel is used
to compute the GP model:

k(x,x′) = kM (x̃, x̃′)kP (φ, φ′) (8)

kM (x̃, x̃′) = σ2

(
1 +

√
3‖x̃− x̃′‖

`

)
exp

(
−
√

3‖x̃− x̃′‖
`

)
(9)

kP (φ, φ′) = exp

(
− sin(φ− φ′)2

λ

)
(10)

where the mean function is considered equal to zero. The
initial set of values of the design parameters (needed to
compute the GP models) are generated by a minimax Latin
hypercube of 10 points. The kernel (9) is adopted to model the
constraints as well. Next, the acquisition function is optimized
by evaluating the GP models for 500 randomly sampled
points and by considering the best result as starting point
of the Limited-memory Broyden–Fletcher–Goldfarb–Shannon
optimizer (L-BFGS). Finally, the Bayesian optimization was
performed by GPflowOpt, a Bayesian optimization package in
Python [12].

Furthermore, the proposed method is compared with a regu-
lar gradient optimizer (the Sequential Least Squares Program-
ming (SLSQP)) and two Bayesian optimization approaches
based on acquisition functions computed via EI and POI, used
in [1]. Note that, in order to show statistically relevant results,
each optimization algorithm was executed ten times and the
mean results are shown in Figs. 2 and 3.

In particular, Fig. 2 shows that the proposed MES-based
technique has superior performance with respect to similar
Bayesian optimization approaches, thanks to its trade-off be-
tween exploration and exploitation; while the SLSQP gradient
optimizer is unable to find a feasible minimum of the objective
function. For the Bayesian optimization methods considered,
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Fig. 2. Feasible minimum of the objective function with respect to the
number of iterations. The thick lines are the means of ten runs of the methods
surrounded by their 98% confidence interval, calculated by bootstrapping.
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Fig. 3. Fraction of infeasible samples with respect to the number of iterations.
The thick lines are the means of ten runs of the methods surrounded by their
98% confidence interval, calculated by bootstrapping.

the number of evaluations on design points resulting in con-
straint violations is shown in Fig. 3: as expected, the number
of infeasible points decreases with respect to the number of
iterations and drops to a fraction of approximately 0.4 fairly
quick after 40 samples. As can be seen EI and MES have
overlapping confidence intervals, but on average, MES still
performs better.

TABLE I
OPTIMAL LARGE-SIGNAL OPERATING POINT WITH CORRESPONDING

PERFORMANCE AND CONSTRAINT METRICS.

Transistor Characteristics
G 1810.55
PAE 0.43
Pout 0.053 W

Design parameters
VG 0.16 V
VD 0.22 V
Pin 0.16 W
ΓL 0.053

Constraints
c1 -0.056 W
c2 -2.25 A
c3 -0 mA

Finally, the overall minimum value of the objective f is
summarized in Table I, where c1, c2 and c3 correspond to
equations (5), (6) and (7), respectively.

IV. CONCLUSIONS

In this work, a Bayesian optimization strategy was used
for the optimization of a simulated device. The Max-Value
Entropy search shows good results in combination with the
Probability of Feasibility to take into account constraints.
Using this combination allowed to achieve lower values of the
objective function despite the number of algorithm iterations
in comparison to Probability of Improvement and Expected
Improvement. It also has to be noted that the ratio of infeasible
samples with respect to the number of iterations drops very
quickly to around 0.4 for already 40 samples, and is expected
to decrease further as more LSOPs are evaluated.
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