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Abstract: A current goal for microactuators is to extend their usually small working ranges, which
typically result from mechanical connections and restoring forces imposed by cantilevers. In order to
overcome this, we present a bistable levitation setup to realise free vertical motion of a magnetic proof
mass. By superimposing permanent magnetic fields, we imprint two equilibrium positions, namely
on the ground plate and levitating at a predefined height. Energy-efficient switching between both
resting positions is achieved by the cooperation of a piezoelectric stack actuator, initially accelerating
the proof mass, and subsequent electromagnetic control. A trade-off between robust equilibrium
positions and energy-efficient transitions is found by simultaneously optimising the controller and
design parameters in a co-design. A flatness-based controller is then proposed for tracking the
obtained trajectories. Simulation results demonstrate the effectiveness of the combined optimisation.

Keywords: cooperative microactuators; multistability; co-design; control

1. Introduction

Microsystem technology has become an increasingly important research field over the past
40 years. Besides microelectronic circuits and miniaturised sensors, microactuators belong to
an indispensable sub-branch with applications, e.g., in the automotive industry, medicine and
energy harvesting fields. The versatile applicability originates from their ability to produce precise
mechanical movements on a micrometer scale. However, the range of motion is in general limited
by their design. In order to overcome this, various approaches have been proposed. Breguet et al.
presented a piezoelectric stick and slip actuator that achieves accurate linear movements up to several
centimetres [1]. In the study of Mita et al., an internally suspended mass was electrostatically driven,
such that the actuator was moved by the impact between the mass and a stopper [2]. Since friction
is a key element in such concepts, a modelling approach for stick and slip actuators was given by
Edeler et al. [3]. Large working ranges can also be achieved by electromagnetic levitation. This
principle is used for the design of a linear microactuator, in which a platform is levitated and able
to move in the longitudinal direction [4,5]. The stability of levitation by inductive suspensions was
proven by Poletkin et al. [6]. In general, the presented approaches suffer from various drawbacks, e.g.,
permanent energy consumption for creating any stable equilibrium position in case of electromagnetic
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levitation or the high dependence on friction. The latter corresponds to a loss of energy due to the
undesirable conversion from kinetic energy into dissipated heat. Moreover, the performance heavily
depends on the surface condition. In case of predefined resting positions and unidirectional motion,
pseudo-levitation as in magnetic bearings [7] can be applied by using permanent magnetic fields.

Besides a suitable choice of the working principle, a controlled motion is essential for precision and
effectiveness. For small displacements, a common choice is to linearise the system at an operating point
to describe the local behaviour. In this case, linear control strategies can give satisfactory results [8].
For enlarged working ranges, however, nonlinearities can in general not be neglected. Advanced
control methods such as flatness-based control [9,10] or backstepping [11] can be used to obtain precise
motion. The overall efficiency of the controlled state trajectory, however, can strongly depend on the
chosen actuator design. For an optimal outcome, both the design and controller should therefore be
optimised simultaneously in a co-design, as shown in [12] for an electrostatically-driven actuator.

In this work, we introduce a cooperative, bistable microactuator setup, using both magnetic
and piezoelectric actuation. The goal is to achieve stable equilibrium positions without the need for
permanent energy input. The transition between the two imprinted resting positions is accomplished
by an efficient control strategy that exploits the cooperation of the two single actuators, namely a
piezoelectric stack actuator and an electromagnetic solenoid. To ensure an optimal trade-off between
low energy consumption and the robustness of the resting positions, both the actuator design and
controller are optimised simultaneously in a co-design.

2. Methods

We consider the cooperative microactuator system shown in Figure 1, where a magnetic proof
mass within a glass tube can move between two equilibrium positions, namely resting on top of
a piezoelectric stack actuator and levitating at a predefined upper position. This corresponds to
the design presented by Schütz et al. [13], but with the extension of a second permanent magnet
and the stack actuator. Starting at the lower equilibrium, the inverse piezoelectric effect is used to
apply an impulse-like acceleration, i.e., a kick, to the proof mass. This is followed by a controlled
electromagnetic catch at an upper equilibrium position, where the mass is stably suspended by the
permanent magnetic field.

Permanent ring
magnets

Piezoelectric stack
actuator

Electromagnetic
solenoid

Glass tube

Magnetic proof
mass

Figure 1. The schematic of the magnetic microactuator is shown. It consists of a movable proof mass
within a guiding glass tube, a piezoelectric stack actuator (kick actuator), permanent magnets and an
electromagnet (catch actuator).

The objective is to achieve a robust, bistable characteristic without the need for a permanent energy
input, as well as a fast and efficient transition between the resting positions. Therefore, a parameterised
system model is derived and then optimised simultaneously with the controller in a co-design.
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2.1. Modelling

The actuator consists of three coupled dynamical systems, namely a solenoid, a stack actuator
and a movable mass. The current i(t) of the electromagnet is given as:

L
d
dt

i(t) = uin(t)− R i(t) , (1)

where R denotes the wire resistance, L the inductance and uin(t) the input voltage. For the piezoelectric
actuator, a linear second order approximation is used [14]. Taking into account the effectively moved
mass M of the piezo actuator, which is assumed to be a third of its overall mass, the deformation d(t)
can be described by:

M d̈(t) = −M g− cA ḋ(t)− kA d(t)− Fc(t) + Fu(t) , (2)

where g is the gravitational acceleration and cA the damping and kA the stiffness coefficients of the
actuator, respectively. The forces Fc(t) and Fu(t) correspond to the contact force between the piezo
actuator and the proof mass and the inverse piezoelectric effect by applying a voltage uA(t). Similar
to [15], we approximate the relation between the force and input voltage by a linear equation; hence:

Fu(t) =
Fmax

Umax
uA(t) . (3)

In (3), Fmax and Umax are the maximum achievable force and its corresponding input voltage,
respectively. Although the dynamics are nonlinear, we assume the model to be sufficiently
representative for the short time of contact with the proof mass. Finally, the vertical motion z(t)
of the proof mass is determined by the sum of forces:

m z̈ = Fpm(z) + Fem(z, i) + Fc(z, ż, d, ḋ)− cf ż |ż| −m g . (4)

Note that the time dependencies are neglected for readability. The parameters cf and m denote the
air friction coefficient and the mass of the proof mass. Moreover, the magnetic interaction is described
by the permanent and electromagnetic forces Fpm(z), Fem(z, i), where the former corresponds to a
superposition of the single forces Fpm,j(z), j = 1, 2. We assume fully magnetised, hard magnetic
materials with remanence values Br,p, Br,pm,j for the proof mass and ring magnets. Thus, we can
use the proportional relations (Br,p Br,pm,j) ∼ Fpm,j(z) and (Br,p i) ∼ Fem(z, i) [16,17]. Due to the
linearity, we can now describe the magnetic forces by introducing z-dependent shape functions
fpm,j(z), fem(z) as:

Fpm,j(z) = Br,p Br,pm,j fpm,j(z) , (5)

Fem(z, i) = Br,p i fem(z) . (6)

Instead of an analytical expression, these forces are computed numerically with ANSYS®

Maxwell [18] for a grid of system states and parameters and are implemented as a spline-interpolated
lookup table. It is noteworthy that we can inversely compute the shape functions from (5) and (6),
given the numerical simulation data of the forces with known remanence values and currents. In the
case that the permanent and electromagnet centre points are given by zpm,j and zem, the force can
easily be obtained by shifting the shape function.

For the computation of the contact force Fc(z, ż, d, ḋ) between the piezoelectric actuator and the
movable mass, a viscoelastic approximation adapted from the method of power-based restriction
functions [19] is applied. Thus, by allowing a small overlap s⊥(t) = z(t)− d(t) between both objects,
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the counteracting force is proportional to an activation functionRa(s⊥), which corresponds to a virtual,
nonlinear spring. In contrast to the latter reference, we use the piecewise function:

Ra(s⊥) =

{
0 , if s⊥ ≥ 0

−k s⊥ + τ k
(
exp( s⊥

τ )− 1
)

, otherwise .
(7)

For further details, the reader is referred to the corresponding work of Specker et al. [19].

2.2. Trajectory Planning and Control

The derived model is now used to find an efficient control strategy. We first consider both
actuation principles separately and then give an outline of the overall approach.

2.2.1. Electromagnetic Actuation

Let us first highlight two relevant system properties of the electromagnetic actuation. On the
one hand, the electromagnetic force is zero whenever the position of the proof mass coincides with
the centre point of the solenoid; hence, Fem(zem, i) = 0, ∀i ∈ R. On the other hand, the model is flat
with respect to the output z(t), allowing us to express the system states and input exactly by only the
output and its derivatives [20]. Consider the assumption that z(t) 6= zem, ∀t.

We then predetermine a sufficiently differentiable output trajectory zref(t). By the definition of the
flatness property, there exists a reversible state transformation between x = [z, ż, i] and ξ = [z, ż, z̈].
This can be used to inversely compute the reference input sequence:

uin,ref(t) = f−1 (zref, żref, z̈ref,
...
z ref) , (8)

where f−1(·) corresponds to the inverse relation between the output, its derivatives and the solenoid
voltage after the state transformation, which can be found by reformulating (1), (4). That is,
by feedforward application of uin,ref(t) and in the absence of disturbances, we achieve the desired
reference motion zref(t) without error, provided that the initial conditions are satisfied.

The reference input is now superimposed by an additional feedback controller for disturbance
compensation. Here, we make use of the linearisability of the system via a feedback term [21]. By using
the state transformation, we obtain the linear system:

ξ̇ =

0 1 0
0 0 1
0 0 0

 ξ +

0
0
1

 ν , (9)

with a virtual input ν(t). Since ν =
...
z (t), we can insert it into (8) and obtain an expression for uin(t)

with dependence on ν(t). Thus, the task is reduced to controlling the linear system. We propose a
two-degree-of-freedom controller design, consisting of the feedforward term νref(t) =

...
z ref(t) and a

feedback control law4ν(t) = −Ke(t), resulting in ν(t) = νref(t) +4ν(t). Here, e(t) = ξref(t)− ξ(t)
is the state error, and the stabilising controller gain matrix K is found in terms of a linear quadratic
regulator (LQR).

For the feedforward term, a suitable reference needs to be computed. The goal is to find a twice
differentiable motion zref(t) starting at initial state ξ0 and terminating at ξf after time Tf. We achieve
this by defining

...
z ref(t) and subsequently integrating it. Here, we choose

...
z ref(t) to be piecewise

constant with n ≥ 3 equidistant time steps T, i.e.,

...
z ref(t) = ui, t ∈ [T i, T(i + 1)], ∀i = 0, . . . , n− 1 . (10)

These trajectory parameters ui can be chosen arbitrarily. Only the last three parameters un−j,
j = 1, 2, 3 have to be computed in a way that the three final state conditions are met.
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2.2.2. Piezoelectric Actuation

So far, we have only focused on the electromagnetic actuation. Since there is a large distance
between the lower equilibrium and the solenoid, initially accelerating the proof mass requires high
electrical currents. A more suitable approach is to transfer the relevant force directly by a piezoelectric
kick. Due to the short interaction time between the mass and the piezo actuator, we only use
feedforward control in terms of a voltage spike. Here, the applied voltage:

uA(t) =
up

0.53

(
exp

(
−t
τ2

)
− exp

(
−t
τ1

))
(11)

with τ1 = 1 ms, τ2 = 5 ms and the peak voltage up ≤ Umax is used as an approximation
of the achievable voltage. In summary, the cooperative actuation starts with a kick, and the
electromagnetically controlled catch is switched on after time Tkick. The subsequently followed
trajectory is precomputed such that it ends in the upper equilibrium position with zero velocity and
acceleration. The permanent magnets then stably keep the proof mass in place. The reverse procedure
is used for the direction toward the lower resting position. However, only the electromagnet can then
be used.

2.3. Co-Design

For a fixed system, efficient trajectories can now be obtained by an optimisation over the trajectory
parameters ui. However, the system design influences the overall optimality, which is indicated by the
permanent magnetic force acting on the proof mass, as shown in Figure 2 for two different designs.

0 0.5 1 1.5 2 2.5 3
z in mm

-0.1

0

0.1

0.2

F p
m

in
m

N

Figure 2. Stationary magnetic force characteristics depending on the proof mass position for two
different magnet setups. Both the strong magnetic field (solid, black) and the weak field (dashed, red)
have stable equilibrium positions at z = 0 and z = 2.5 mm. The dotted, grey line corresponds to the
magnitude of the gravitational force.

The equilibrium positions correspond to the intersection of the mirrored gravitational force Fg

with the magnetic and contact force characteristics. These are locally stable, if additionally, the force
gradient is negative. Due to the counterforce of the stack actuator at the zero position, the stability
criterion at this point is simplified, i.e., the point is stable if the magnetic force is lower than Fg.
This corresponds to the mass being pushed against the piezo actuator. For both setups shown in
Figure 2, the resting positions are located at z = 0 mm and z = 2.5 mm, and their robustness depends
on the force steepness around that point. A steep force is able to counteract small deviations, pushing
the proof mass back into the resting position. In the case of the flat curve, the positive magnetic
force compensates most of the gravitational force at the lower position. Thus, a small positive force
disturbance is sufficient for the proof mass to inadvertently leave its equilibrium. Therefore, robust
equilibria are preferred. However, the energy effort for the transition between these points increases
with robustness, since larger counterforces have to be overcome. Thus, a trade-off has to be found.
These and similar contradictory goals can be handled by simultaneously optimising the system and
the controller in a co-design.
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Consider the individual design and controller cost functions Jd(pd), Jt(pd), depending on the
respective parameter vectors pd, pt, where the indices d and t denote the design and the trajectory.
See Table 1 for an overview of the parameters. Since the controller costs are additionally influenced by
the design parameters, minimising both cost functions individually can lead to suboptimal overall
behaviour. Instead, we define a combined cost function J(p) with the extended parameter vector
p = [pd, pt] and simultaneously optimise both the design and controller. With the respective
weightings wd and wt, the optimisation can be mathematically expressed as:

min
p

(wd Jd(p) + wt Jt(p)) (12a)

s.t. p ∈ P , (12b)

where P denotes the constrained set of allowed parameters. The design costs evaluate stability and
robustness, solely depending on the permanent magnetic field. Here, we penalise the deviation from
reference forces Fref,low, Fref,up and the upper equilibrium gradient ∇Fref,up, resulting in:

Jd = wd,1

(
Fpm(zeq,low)− Fref,low

)2
+ wd,2

(
Fpm(zeq,up)− Fg

)2

+ wd,3

(
∇Fpm(zeq,up)−∇Fref,up

)2
.

(13)

For given component dimensions, Fpm depends on the remanence of both the proof mass and the
magnetic rings, as well as the positions zpm,1, zpm,2. For the simplicity of the optimisation, we used
a continuous set of remanence values, assuming that the final result can approximately be achieved
by custom composite magnets of individual shape and dimension. The design can be then optimised
over the parameters Br,j, zpm,j, j = 1, 2 and Br,p. Concerning the trajectory efficiency, the quadratic
cost function:

Jt =
N

∑
k=1

wt,1 (zk − zeq,k)
2 + wt,2 ż2

k + wt,3 i2k + wt,4 u2
in,k (14)

is used, which penalises the deviation from the current reference equilibrium zeq ∈ {zeq,low, zeq,up},
high velocities, solenoid currents and the input effort at sampled time steps t = kTs with step
width Ts. The costs are directly influenced by the parameter vector pt, containing the values ui,
the maximum transition time Tf, the piezo voltage peak up and the controller switch-on time Tkick.
Additionally, the efficiency indirectly depends on the design parameters of the magnetic field, as well
as the solenoid centre position zem. The overall cost function can then be minimised by a suitable
constrained optimisation algorithm.

3. Results

The co-design framework was implemented in MATLAB®, and the dynamics (1), (2), (4) were
integrated numerically using the stiff ode23t solver. The optimisation problem is non-convex and
partially discontinuous. The latter results from the piezoelectric kick and the stiffness of the contact
model. Therefore, a genetic algorithm from the global optimisation toolbox [22] was used. See Table 2
for the fixed component and control parameters and Table 1 for an overview of the optimisation
parameters and their linear bounds. The existence of both equilibrium positions is ensured by shifting
the magnetic field to match the upper resting position and using a nonlinear constraint Fpm(0) ≤ 0.5 Fg

for the lower position. For the following study, we used the weighting coefficients given in Table 3.
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Table 1. Optimisation variables pd and pt with corresponding linear bounds used in the co-design.

Variable Description Lower Bound Upper Bound Optimised Value

Br,pm,1 Ring magnet remanence 0.1 T 1 T 0.2433 T
Br,pm,2 Ring magnet remanence −1 T 1 T 0.1425 T
Br,p Proof mass remanence 0.01 T 1 T 0.9977 T
zpm,1 Position of ring magnet 1 1 mm 10 mm 2.773 mm
zpm,2 Position of ring magnet 2 −7.5 mm 1 mm −5.329 mm
zem Position of solenoid 2.8 mm – 3.087 mm

up Piezo actuator voltage peak 0 V Umax 65.78 V
ui Third motion derivative – – –
Tkick Controller switch on time 0 s 0.02 s 3.71 ms
Tf Maximum transient time 1.1 Tkick Tsim 97.12 ms

Table 2. Fixed design and control parameters that are used in the simulation. LQR, linear quadratic
regulator.

Description Value Description Value

Inner radius (ring magnets) 4.5 mm Umax (piezo) 100 V
Outer radius (ring magnets) 5.0 mm Stiffness (piezo) 1.0909 kNmm−1

Height (ring magnets) 1.5 mm Surface (piezo) 9 mm2

Inner radius (solenoid) 0.8 mm Height (piezo) 21 mm
Outer radius (solenoid) 2.5 mm Mass (piezo) 1.8 g
Height (solenoid) 1.5 mm Diameter (proof mass) 1.0 mm
Wire diameter (solenoid) 25 µm Height (proof mass) 1.0 mm
Specific resistance (solenoid) 18 nΩ m Density (proof mass) 7874 kgm−3

Number of coils (solenoid) 4000 State penalty Q (LQR) diag([5× 1012, 2× 109, 2× 103])
Fmax (piezo) 360 N Input penalty R (LQR) 1

Table 3. Weighting coefficients of the cost functions.

Parameter Value Parameter Value

wd 8 wt,1 2.22× 104

wd,1 28 wt,2 0
wd,2 55× 106 wt,3 0.25
wd,3 70× 107 wt,4 2.22× 107

wt 1

The trajectory to be optimised consists of a motion to the upper equilibrium zeq,up = 2.5 mm
within Tsim = 0.15 s and back to the lower position within the same time span. The actual transient
time Tf is divided into n = 9 equidistant intervals T, to which an individual, optimised motion
parameter ui is assigned. The result is shown in Figure 3.

As can be seen in Figure 3a, fast trajectories in both the upwards and downwards direction are
achieved with small overshoot and a transition time of Tf = 97.1 ms. The optimised variables are given
in Table 1. The bistability property is verified by both zero inputs at the equilibrium positions and
magnetic field, which almost matches the reference points. In Figure 3a, the advantage of using the
cooperation between the piezoelectric kick and the catch is clearly illustrated. Due to the kick, the proof
mass is accelerated to a velocity of 0.1 ms−1, largely reducing the necessary voltage input. Without the
piezoelectric input, the optimal trajectory requires an initial voltage of 38 V for achieving the same
transient time. This is also reflected by the trajectory costs Jt, which are 0.284 for the cooperative
solution and 0.352 for the simulation without the kick.
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(b)
Figure 3. Optimised result: (a) The proof mass motion zref(t) with corresponding input uref(t),
accelerated by a kick (solid, black), and an optimised trajectory without kick (dashed, red). The dotted,
grey line shows the reference equilibrium over time. (b) The magnetic field (solid, black), resulting
from the superposition of the two single magnetic fields (dashed, red and dashed-dotted, blue), nearly
fulfils the target specifications (dashed and crosses, grey). The gravitational force is illustrated by the
grey, dotted line.

Given the optimised reference, we now study the trajectory following controller in the simulation.
To achieve this, the reference is used as a lookup table for the feedforward term. In order to assess the
disturbance compensation ability, model uncertainty is implemented, i.e., the magnetic field for the
simulation is different than that used for computing the feedforward term. The reference magnetic
field and its variations can be seen in Figure 4b, and the resulting controlled motion is visualised
in Figure 4a.
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(b)
Figure 4. Flatness-based following control with model uncertainty is implemented. (a) The feedback
controller is mostly able to compensate the model differences, but for the largest magnetic field
deviation (solid, green), the position of the proof mass briefly coincides with the solenoid centre.
The dashed, red line corresponds to the reference. (b) In each simulation, the magnetic force deviates
more from the reference (dashed, red).

The controller is still able to follow the reference trajectory, despite force deviations at a magnitude
comparable to the gravitational force. The large motion deviation at the beginning is partly due to the
fact that the kick has not been optimised for such forces pushing the movable mass against the piezo
actuator. Thus, the significant increase in the solenoid voltage can be explained by the decreasing effect
of the kick.
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4. Discussion

The simulations illustrate the ability of the co-design algorithm to handle the contradictory goals
effectively, as well as to find a suitable cooperation strategy. The initial kick greatly reduces the load
on the solenoid. However, high inputs are still needed for the transition to the lower equilibrium.
Decreasing the distance between the solenoid and the lower equilibrium can lead to stability issues,
since the proof mass cannot be controlled near the solenoid centre. This could be solved by using an
additional electromagnet. The implemented feedback control strategy shows good results in terms of
compensating significant differences in the magnetic fields. It can be seen, however, that the proof
mass cannot be guaranteed to remain below the solenoid centre for larger disturbances, resulting in
undesired input voltage spikes, as seen in Figure 4a for the green line. Similar to the high voltages for
the downwards motion, this can be avoided by using a second solenoid. In further studies, the number
of stable equilibria will be increased together with the working range by additional electro- and
permanent magnets. The simulative control approach currently assumes perfect state feedback. For the
real system, however, a measurement system will be necessary. To this end, induction coils will be
considered. Since only the velocity can be measured directly, an observer structure can reconstruct
the needed signals. The first approaches will be implemented in simulation and combined with the
controller. Moreover, the optimal placement of both actuation and sensing coils will be a non-trivial
task. Therefore, an extension of the presented co-design framework can be considered.

5. Conclusions

In this paper, we present a novel, bistable microactuator design, which allows the fast and free
motion of a magnetic proof mass in the vertical direction. For the transition between the equilibrium
positions, a cooperative mechanism between a piezoelectric stack actuator and an electromagnetic
solenoid is employed. We show that the achievable efficiency in terms of input effort depends on both
the design and the controller. A co-design approach is therefore successfully applied to optimise the
setup and trajectory at the same time, illustrating its usefulness for designing cooperative actuators.
To follow a given reference trajectory, we design a flatness-based controller and show its effectiveness
in terms of disturbance compensation in the simulation. The efficiency and travel range of the overall
setup can even be increased by an additional solenoid, since this cancels the restriction to remain below
the solenoid centre.
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