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Introduction
The inhibition of T-cell inhibitory receptors, 
mainly the programmed death 1/programmed 
death-ligand 1 (PD1/PD-L1) and the cytotoxic 
T-lymphocyte-associated antigen 4 (CTLA4), 
has led to a paradigm shift in the treatment of 

cancer. Monoclonal antibodies that target these 
immune checkpoint receptors have demonstrated 
promising antitumor activity and have achieved 
regulatory approvals for the treatment of multi-
ple types of tumors.1–13 However, responses to 
PD-1⁄PD-L1 inhibition range from 20% to 
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Abstract
Background: Programmed death-ligand 1 (PD-L1) may be induced by oncogenic signals or 
can be upregulated via interferon gamma (IFN-γ). We have explored whether the expression 
of IFNG, the gene encoding IFN-γ, is associated with clinical response to the immune 
checkpoint blockade in non-small cell lung cancer (NSCLC) and melanoma patients. The role 
of inflammation-associated transcription factors STAT3, IKBKE, STAT1 and other associated 
genes has also been examined.
Methods: Total RNA from 17 NSCLC and 21 melanoma patients was analyzed by quantitative 
reverse transcription PCR. STAT3 and Rantes, YAP1 and CXCL5, DNMT1, RIG1 and TET1, 
EOMES, IFNG, PD-L1 and CTLA4, IKBKE and NFATC1 mRNA were examined. PD-L1 protein 
expression in tumor and immune cells and stromal infiltration of CD8+ T-cells were also 
evaluated. Progression-free survival and overall survival were estimated.
Results: A total of 17 NSCLC patients received nivolumab and 21 melanoma patients received 
pembrolizumab. Progression-free survival with nivolumab was significantly longer in NSCLC 
patients with high versus low IFNG expression (5.1 months versus 2 months, p = 0.0124). 
Progression-free survival with pembrolizumab was significantly longer in melanoma patients 
with high versus low IFNG expression (5.0 months versus 1.9 months, p = 0.0099). Significantly 
longer overall survival was observed for melanoma patients with high versus low IFNG 
expression (not reached versus 10.2 months p = 0.0183). There was a trend for longer overall 
survival for NSCLC patients with high versus low IFNG expression.
Conclusions: IFN-γ is an important marker for prediction of response to immune checkpoint 
blockade. Further research is warranted in order to validate whether IFNG is more accurate 
than PD-L1.
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40%.5,14–17 Until now, PD-L1 protein testing by 
immunohistochemistry (IHC) is the commonly 
used biomarker for selecting patients for immune 
checkpoint blockade therapy, at least for lung 
cancer patients. The PD-L1 IHC 22C3 PharmDx 
kit (Dako North America, Carpinteria, CA, 
USA) is United States Food and Drug 
Administration (FDA)-approved as a companion 
diagnostic for pembrolizumab in non-small cell 
lung cancer (NSCLC). The PD-L1 28-8 
PharmDx kit (Dako North America) and the 
PD-L1 SP142 Ventana test (Ventana Medical 
Systems Inc., Tucson, AZ, USA) are approved as 
complementary diagnostics for nivolumab and 
atezolizumab, respectively. The PD-L1 SP263 
Ventana test (Ventana Medical Systems Inc.) is 
approved for durvalumab.18 The overall muta-
tion load that is linked to smoking in lung cancer, 
or mismatch repair deficiency in colon cancer, 
have also been correlated with response to the 
immune checkpoint blockade.19–23

PD-L1 expression may be induced by oncogenic 
signals or can be upregulated via interferon 
gamma (IFN-γ). Both CD8+ T-cells and IFN-γ 
are critical for antitumor immunity.24 Tumor 
cells are able to abolish interferon signaling sign-
aling and therefore avoid antigen presentation.25 
Melanoma cells that are resistant to the immune 
checkpoint blockade do not respond to IFN-γ 
treatment with expression and activation of signal 
transducer and activator of transcription 1 
(STAT1), or expression of interferon regulatory 
factors (IRFs) and downstream interferon targets, 
like PD-L1 and major histocompatibility complex 
(MHC) class I.25 This interferon ‘insensitivity’ 
can also occur through epigenetic silencing of 
interferon signaling components or increased 
expression of negative regulators. For instance, 
activation of STAT3 activates the DNA methyl-
transferase 1 (DNMT1), which methylates the 
promoters and, therefore, silences the expression 
of IRFs and human leukocyte antigen (HLA) 
molecules. Simultaneously, STAT3 inhibits the 
expression and activation of STAT1 and further 
reduces antigen presentation26 (Figure 1).

Treatment with DNMT inhibitors can sensitize 
cells to immune checkpoint blockade by dere-
pressing endogenous retroviral sequences that are 
usually epigenetically silenced. Endogenous ret-
roviral sequences trigger the double-stranded 
RNA (dsRNA) sensing pathway that through the 
RNA-sensing proteins toll-like receptor-3 
(TLR3), melanoma differentiation associated 

gene-5 (MDA-5) and retinoic acid inducible 
gene-1 (RIG1) induce interferon type I responses. 
Tumors with high expression levels of the viral 
defense set of genes are more likely to respond to 
immune checkpoint blockade.27–29 Ten eleven 
translocation 1 (TET1) that is activated by vita-
min C enhances the activity of DNMT inhibitors 
and contributes to endogenous retroviruses 
upregulatation in the dsRNA form and the induc-
tion of viral defense pathways30 (Figure 1).

We have shown that STAT3 and Yes-Associated 
Protein 1 (YAP1) are related with innate resistance 
to epidermal growth factor receptor (EGFR) inhi-
bition in EGFR-mutant NSCLC.31 In prostate 
cancer, a disease with de novo resistance to 
immune checkpoint blockade,32,33 YAP1 through 
a CXCL5-CXCR2 signaling axis drives myeloid-
derived suppressor cell (MDSC) recruitment, 
which ultimately suppress T-cell activity34 (Figure 
1). Rantes (regulated upon activation, normal 
T-cell expressed and presumably secreted), also 
known as CCL5, is a chemokine that its produc-
tion is dependent on STAT335 and contributes to 
the recruitment of MDSCs and regulatory T-cells 
(Tregs)36 (Figure 1). The T-box transcription fac-
tor eomesodermin (EOMES) maintains exhausted 
CD8+ T-cells defined by the expression of PD-137 
(Figure 1).

The noncanonical IκB kinase family member, 
IKBKE (also called IKKε and IKKi), induced by 
tobacco components, inflammatory factors and 
viral infections, regulates immune response by 
phosphorylating and activating IRF3, IRF7 and 
STAT1.38 However, IKBKE is a double edged 
sword since it can also negatively regulate T-cell 
immune responses through phosphorylating the 
nuclear factor of activated T-cells c1 (NFATc1).39 
NFATc1 complexes with STAT3 and cooperates 
in transcriptional regulation40 (Figure 1).

In an effort to discover biomarkers that can pre-
dict the outcome to immune checkpoint block-
ade, we have examined archival tumor samples of 
NSCLC and melanoma patients who were treated 
with nivolumab and pembrolizumab, respec-
tively, and we have analyzed the potential influ-
ence on survival and response of the mRNA 
expression of several transcripts that directly or 
indirectly influence tumor immunogenicity 
(Figure 1). The influence of the protein expres-
sion of PD-L1 on tumor cell and immune cells 
and the stromal infiltration of CD8+ T-cells were 
additionally examined.
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Methods

Clinical samples
Pretreatment tumor archival specimens from 
advanced NSCLC patients and metastatic mela-
noma patients were retrospectively collected from 

the the Institute of Oncology Rosell (IOR), 
Quiron Dexeus University Hospital, Barcelona, 
Spain and from Hospitals of the Spanish 
Melanoma Group (GEM). All samples were 
derived either from the primary tumor or a meta-
static biopsy performed >3 months before 

Figure 1.  Immune suppressive and immune stimulating signaling pathways explored in our study. Signal 
transducer and activator of transcription 3 (STAT3) activates the DNA methyltransferase 1 (DNMT1), 
which silences the expression of interferon regulatory factors (IRFs), HLA molecules and subunits of the 
immunoproteasome complex (PSMB8 and PSMB9). The immunoproteasome facilitates antigen presentation 
for CD8+ T-cell responses. Ten eleven translocation 1 (TET1) enhances the activity of DNMT inhibitors. 
TET1 activity is upregulated by ascorbic acid. STAT3 can also indirectly inhibit the expression and activation 
of STAT1 and further reduce antigen presentation. Retinoic acid inducible gene-1 (RIG1) is one of the three 
RNA-sensing proteins [the other two are toll-like receptor-3 (TLR3) and melanoma differentiation associated 
gene-5 (MDA-5)] that induces interferon type I responses. Key transcription factors involved in RIG1 signaling 
include IRF3, IRF7 and NF-κB. Yes-Associated Protein 1 (YAP1) through a CXCL5–CXCR2 signaling axis 
drives myeloid-derived suppressor cell (MDSC) recruitment. STAT3 regulates the expression of Rantes 
(regulated upon activation, normal T-cell expressed and presumably secreted), also known as CCL5 and 
contributes to the recruitment of MDSCs. STAT3 increases the expression of genes encoding the calcium-
binding proinflammatory proteins S100A and S100B. S100A and B activate cell surface receptors like toll-like 
receptor 4 (TLR4). A key downstream signal effect of TLR4 is mediated by activation of nuclear factor-kappa B 
(NF-κB), which produces large amounts of inflammatory cytokines like IL-6 and eventually STAT3 activation. 
Activated STAT3 has been demonstrated to bind to multiple sites in the arginase I promoter. High levels 
of arginase activity suppress CD8+ T-cell function and mediate MDSCs immune suppressive action. The 
T-box transcription factor eomesodermin (EOMES) maintains exhausted CD8+ T-cells. The noncanonical 
IκB kinase family member IKBKE (also called IKKε and IKKi), induced by tobacco components, regulates 
immune response by phosphorylating and activating STAT1. IKBKE can also negatively regulate T-cell immune 
responses through phosphorylating the nuclear factor of activated T-cells c1 (NFATc1) which complexes with 
STAT3 and cooperates in transcriptional regulation.
DNMT1, DNA methyltransferase 1; EOMES, eomesodermin; HLA, human leukocyte antigen; IL, interleukin;
IRF, interferon regulatory factors; LPS, lipopolysaccharide; MDA-5, melanoma differentiation associated gene-5; MDSC, 
myeloid-derived suppressor cells; NFATc1, nuclear factor of activated T-cells c1; NF-κB; nuclear factor-kappa B; PD-1, 
programmed death 1; PD-L1, programmed death-ligand 1; RIG1, retinoic acid inducible gene-1; STAT3, signal transducer 
and activator of transcription 3; TET1, ten eleven translocation 1; TLR3, toll-like receptor-3; TLR4, toll-like receptor 4; TME, 
tumor microenvironment; YAP1, Yes-Associated Protein 1.
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anti-PD-1 therapy. All patients provided written 
informed Ethics Committee (EC)/Institutional 
Review Board/(IRB)-approved consent before 
study entry.

Gene expression analyses
All analyses were performed centrally at the Pangaea 
Oncology SA laboratory, Barcelona, Spain, an ISO 
15189 accredited laboratory by the Spanish 
Accreditation Body (ENAC). RNA was isolated 
from formalin-fixed paraffin-embedded (FFPE) tis-
sue specimens in accordance with a proprietary pro-
cedure (European patent number EP1945764-B1) 
as previously described.41 Quantification of gene 
expression was performed using the ABI Prism 
7900HT Sequence Detection System (Applied 
Biosystems) and calculated according to the com-
parative Ct method. The primer and probe sets for 
each gene were designed using Primer Express 3.0 
Software (Applied Biosystems) according to their 
Ref Seq (http://www.ncbi.nlm.nih.gov/LocusLink) 
respectively. The sequences of the primers and 
probes used were as follows: STAT3 forward 
5 ′ - C A C C T T C A G G A T G T C 
CGGAA-3′, reverse 5′-ATCCTGGAGATTC 
TCTACCACTTTCA-3′, probe 6FAM 5′-AGA 
GTGCAGGATCTAGA-3′ MGB; Rantes forward 
5′-CATCTGCCTCCCCATATTCCT-3′, reverse 
5′-AGTGGGCGGGCAATGTAG-3′, probe 
6FAM 5′-ACACCACACCCTGCTG-3′ MGB; 
YAP1 forward 5′-TTGGGAGATGGCA 
AAGACATC-3′, reverse 5′-GCCATGTTGTT 
GTCTGATCGA-3′, probe 6FAM 5′-TCAGA 
GATACTTCTTAAATCACA-3′ MGB; CXCL5 
forward 5′-CGCCATAGGCCCACAGTG-3′, 
reverse 5′-ATTTCCTTCCCGTTCTTCAGG- 
3′, probe 6FAM 5′-AGGTGGAAGTGGTAGCC 
T-3′ MGB; TET1 forward 5′-AAACCATCTG 
TTGTTGTGCCTCT-3′, reverse 5′-TTTG 
GGCTTCTTTTCCCTCTG-3′, probe 6FAM 
5′-GGAGGTTATAAAGGAAAAC-3′ MGB; 
EOMES forward 5′-AATAACATGCAGGGCA 
ACAAAA-3′, reverse 5′-CTCATCCAGTGGG 
AACCAGT-3′, probe 6FAM 5′-ATGTTCA 
CCCAGAGTCT-3′ MGB; IFNG (that encodes 
for IFN-γ) forward 5′-TTAGGCATTTTG 
AAGAATTGGAAA-3′, reverse 5′-GGAGACA 
ATTTGGCTCTGCATT-3′, probe 6FAM 
5′-AGGAGAGTGACAGAAAA-3′ MGB; PD- 
L1 forward 5′-AGCTATGGTGGTGCCGA 
CTA-3′, reverse 5′-TTGATTTTGTTGTATGG 
GGCATT-3′, probe 6FAM 5′-AGCGAA 
TTACTGTGAAAGT-3′ MGB; IKBKE forward 
5′-TCAAGCTCTTTGCGGTGGA-3′, reverse 

5′-TGGAGCAGTACTCCATCACCAGTA-3′, 
probe 6FAM 5′-GAGACGGGCGGAAG-3′ 
MGB; NFATC1 forward 5′-CTACGTCCTAC 
ATGAGCCCGA-3′, reverse 5′-AGCTCATACG 
GGCCTGAGTG-3′, probe 6FAM 5′-GCCCTG 
GACTGGCA-3′ MGB and β-actin (internal refer-
ence gene) forward 5′-TGAGCGCGGCTAC 
AGCTT-3′ reverse 5′-TCCTTAATGTCACGCA 
CGATTT-3′, probe 6 FAM 5’-ACCACCACG 
GCCGAGCGG-3’ TAMRA. Gene expression of 
DNMT1, RIG1 (DDX58) and CTLA4 was ana-
lysed with Hs00154749_m1, Hs01061436_m1 and 
Hs00175480_m1 (Applied Biosystems), 
respectively.

Immunohistochemistry
Four microns thick sections were cut from FFPE tis-
sue specimens and IHC was performed using the 
following antibodies: anti-PD-L1 rabbit monoclonal 
antibody (SP142, Ventana Medical Systems, Inc.) 
and CONFIRM anti-CD8 rabbit monoclonal pri-
mary antibody (SP57, Ventana) on an automated 
staining platform (Benchmark ULTRA, Ventana) 
with antigen retrieval and antibody dilutions follow-
ing manufacturer’s recommendations. In the nega-
tive control, the primary antibody was omitted. 
Human tonsil was used as a positive control.

Statistical analysis
The primary endpoint of the study was to examine 
the potential effects of gene mRNA expression 
levels on survival and response. Progression-free 
survival and overall survival were estimated by 
means of the Kaplan–Meier method and com-
pared with a nonparametric log-rank test. 
Progression-free survival was calculated from the 
start of treatment with immune checkpoint block-
ade to the date of disease progression or death 
from any cause. Overall survival was recorded 
from the first day of treatment with immune 
checkpoint blockade until death or was censored 
on the date of the last follow-up consultation. In 
addition to analysing gene expression as a contin-
uous variable, expression levels were divided into 
tertiles. A multivariate Cox proportional hazard 
regression model was applied with potential risk 
factors as covariates, obtaining hazard ratios (HR) 
and their 95% confidence interval (CI). Each 
analysis was performed with the use of a two-sided 
5% significance level and a 95% CI. Association 
between biomarkers was assessed using a Pearson 
correlation analysis. The statistical analyses were 
performed using SAS version 9.4.
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Results

Gene and protein expression analysis and 
correlations among the biomarkers examined
The clinical characteristics of the patients 
included in this study are shown in Tables 1 and 
2. In archival samples of 17 NSCLC patients 
treated with nivolumab and 21 melanoma 
patients treated with pembrolizumab we con-
ducted a comprehensive analysis of the mRNA 
levels of key genes (Figure 1): STAT3 and 
Rantes, YAP1 and CXCL5, DNMT1, RIG1 
and TET1, EOMES, IFNG, PD-L1 and 
CTLA4, IKBKE and NFATC1. This analysis is 
among the most comprehensive molecular bio-
marker studies in immunotherapy treated 
patients that has been reported to date. Both 
NSCLC and melanoma patients were heavily 
pretreated, with >50% having received at least 
two previous lines of therapy for metastatic dis-
ease (Tables 1 and 2). Gene expression levels 
were grouped based on the tertiles (Q33, Q66) 
and divided into high (>Q66 and Q33–Q66) 
and low (<Q33). As presented in Table 3, some 
of the correlations among the biomarkers recon-
firmed the biological rational behind our study. 
In the melanoma cohort, STAT1 was strongly 
and significantly correlated with IFNG (r = 
0.80, p < 0.0001). In both cohorts of patients, 
IKBKE was correlated with NFATc1 (r = 0.81, 
p = 0.0005 and r = 0.60, p = 0.0093, for 
NSCLC and melanoma, respectively) and 
STAT3 with YAP1 (r = 0.80, p < 0.0001). 
IFNG was positively and significantly correlated 
with CTLA4 (both cohorts) and with STAT1 
and IKBKE in the melanoma group of patients 
(Table 3). We also evaluated the PD-L1 IHC 
expression on tumor cells and immune cells as 
well as the stromal infiltration of CD8+ T-cells. 
Greater number of CD8+ T-cells was found in 
melanoma patients with high IFNG mRNA 
expression (p = 0.0341).

Survival analysis for the NSCLC patients 
treated with nivolumab
For the NSCLC patients treated with nivolumab, 
IFNG mRNA expression emerged as the only 
biomarker that significantly influenced treatment 
outcome. With a median follow up of 15.7 (95% 
CI 3.4–23.0) months, median progression-free 
survival was 2 months (95% CI 0.5–3.1) and 5.1 
(95% CI 1.4–15.2) months for patients with low 
and high IFNG mRNA, respectively (p = 
0.0124), [HR for disease progression, 6.66; 95% 

CI 1.20–36.79; p = 0.0297; Figure 2(a); Table 
4]. Univariate analysis revealed that low IFNG 
mRNA expression was significantly associated 
with shorter progression-free survival, whereas 
none of the other biomarkers examined or the 
clinical parameters were related with progression-
free survival (Table 4).

IFNG mRNA expression was not significantly 
associated with the survival of the patients but 
a clinically relevant difference was found. 
Specifically, median overall survival was 4.9 
months (95% CI 0.5–8.7) and 10.2 [95% CI 
0.8–NR (not reached)] months for patients 
with low and high IFNG mRNA, respectively 
(p = 0.0687), (HR for death, 4.10; 95% CI 
0.80–20.83; p = 0.0911) [Figure 2(b); Table 
4]. From the clinical parameters, the presence 
of brain metastases was significantly associ-
ated with shorter overall survival (HR for 
death, 6.12; 95% CI 1.22–31.03; p = 0.0286) 
(Table 4).

Survival analysis for the melanoma patients 
treated with pembrolizumab
Similarly to the NSCLC cohort of patients, IFNG 
was among the genes that most significantly influ-
enced the outcome of the melanoma patients 
treated with pembrolizumab. With a median fol-
low up of 12.4 (95% CI 7.3–18.0) months, 
median progression-free survival was 1.9 months 
(95% CI 0.0–5.1) and 5.0 (95% CI 1.5–14.1) 
months for patients with low and high IFNG 
mRNA, respectively (p = 0.0099), (HR for dis-
ease progression, 3.77; 95% CI 1.23–11.16; p = 
0.0164) [Figure 3(a); Table 5]. Univariate analy-
sis revealed that low IFNG mRNA expression 
and elevated lactate dehydrogenase (LDH) levels 
were significantly associated with shorter progres-
sion-free survival (Table 5). Paradoxically, low 
Rantes mRNA expression was also significantly 
associated with shorter progression-free survival. 
However, in the Cox’s regression model, only 
LDH levels remained a significant predictor of 
progression-free survival (HR for disease progres-
sion, 3.13; 95% CI 1.04–9.42; p = 0.0419; Table 
5). There was a trend for IFNG levels to be asso-
ciated with progression-free survival (HR for dis-
ease progression, 3.29; 95% CI 0.83–13.08; p = 
0.0910).

IFNG mRNA expression was significantly associ-
ated with the overall survival of the melanoma 
patients treated with pembrolizumab. Median 
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Table 1.  Characteristics and treatment response 
to immune checkpoint blockade for the 17 NSCLC 
patients treated with nivolumab.

NSCLC patients N = 17

Sex, n (%)

Female 5 (29)

Male 12 (71)

Median age (range) year 64.2 (58–69)

ECOG PS, n (%)

0 10 (59)

1–2 7 (41)

Smoking history, n (%)

Never 1 (6)

Former⁄current 16 (94)

Histology, n (%)

Adenocarcinoma 12 (70)

Squamous cell carcinoma 3 (18)

Other* 2 (12)

Brain metastasis, n (%)

Yes 3 (18)

No 14 (82)

KRAS mutation, n (%)

Detected 6 (35)

Not detected 11 (65)

PD-L1 (IHC) tumor cells, n (%)

Positive 3 (18)

Negative 13 (76)

Not evaluable 1 (6)

PD-L1 (IHC) immune cells, n (%)

Positive 9 (53)

Negative 7 (41)

Not evaluable 1 (6)

CD8+ T-cells, n (%)

Positive 7 (41)

Negative 8 (47)

Not evaluable 2 (12)

Lines of previous therapies, n (%)

0 1 (6)

NSCLC patients N = 17

1 6 (35)

2 10 (59)

First line (n = 6)

Platinum based 
chemotherapy

6 (100)

Second line (n = 5)

Docetaxel 10 (100)

mPFS with nivolumab 
treatment (months)

3

mOS with nivolumab 
treatment (months)

8.3

Best response to nivolumab, n (%)

Complete response 0 (0)

Partial response 5 (29)

Stable disease 0 (0)

Disease progression 6 (36)

Not evaluable 6 (35)

ECOG PS, Eastern Cooperative Oncology Group 
performance status; IHC, immunohistochemistry; mOS, 
median overall survival; mPFS, median progression-free 
survival; NSCLC, non-small cell lung cancer; PD-L1, 
programmed death-ligand 1. 
*Large cell carcinoma (1), adenosquamous (1).

Table 1. (Continued)

overall survival was 3.1 months (95% CI 0.0–
11.8) for patients with low IFNG mRNA while it 
was not reached (95% CI 2.6–NR) for patients 
with high IFNG mRNA expression (p = 0.0183), 
(HR for death, 3.50; 95% CI 1.16–10.60; p = 
0.0265) [Figure 3(b); Table 5]. Median overall 
survival was 3.6 months (95% CI 0.03–5.4) for 
patients with low Rantes mRNA and 11.79 
months (95% CI 2.6–NR) for patients with high 
Rantes mRNA expression (p = 0.0082), (HR for 
death, 4.75; 95% CI 1.34–16.86; p = 0.0159). 
From the clinical parameters, Eastern Cooperative 
Oncology Group (ECOG) performance status 
(PS) and LDH were associated with shorter over-
all survival (HRs for death, 3.34; 95% CI 1.01–
18.99; p = 0.0473 and 6.40; 95% CI 1.89–21.70; 
p = 0.0029, respectively). In the multivariate 
analysis only LDH levels remained a significant 
predictor of overall survival (HR for disease pro-
gression, 5.45; 95% CI 1.28–23.28; p = 0.0221) 
(Table 5).
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Table 2.  Characteristics and treatment response to 
immune checkpoint blockade for the 21 melanoma 
patients treated with pembrolizumab.

Melanoma patients N = 21

Sex, n (%)

Female 7 (33)

Male 14 (67)

Median age (range) year 54 (49–61)

ECOG PS, n (%)

0 10 (48)

1–2 11 (52)

Metastasis stage, n (%)

M1a 3 (14)

M1b 3 (15)

M1c 15 (71)

Brain metastasis, n (%)

Yes 3 (14)

No 18 (86)

LDH levels

Elevated 10 (48)

Not elevated 11 (52)

BRAF V600 mutation, n (%)

Detected 7 (33)

Not detected 14 (67)

PD-L1 (IHC) tumor cells, n (%)

Positive 5 (24)

Negative 16 (76)

Not evaluable 0 (0)

PD-L1 (IHC) immune cells, n (%)

Positive 10 (48)

Negative 9 (43)

Not evaluable 2 (9)

CD8+ T-cells, n (%)

Positive 6 (28)

Negative 14 (67)

Not evaluable 1 (5)

Lines of previous therapies, n (%)

1 21 (100)

Melanoma patients N = 21

2 18 (86)

3 7 (33.3)

Previous lines of previous therapies, n (%)

First line (n = 21)  

Dacarbazine 7 (33.3)

Ipilimumab 6 (28.6)

Temodal 4 (19.0)

Vemurafenib 2 (9.5)

Dabrafenib + trametinib 1 (4.8)

Encorafenib 1 (4.8)

Second line (n = 18)  

Ipilimumab 10 (55.6)

Vemurafenib 2 (11.1)

Carboplatin + paclitaxel 2 (11.1)

Temodal 1 (5.6)

Ipilimumab + nivolumab 1 (5.6)

Encorafenib 1 (5.5)

Dacarbazine 1 (5.5)

Third line (n = 7)  

Ipilimumab 4 (57.1)

Temodal 1 (14.3)

Carboplatin + paclitaxel 1 (14.3)

Fotemustine 1 (14.3)

mPFS with pembrolizumab 
treatment (months)

4

mOS with pembrolizumab 
treatment (months)

5.7

Best response to nivolumab, n (%)

Complete response 1 (5)

Partial response 1 (4)

Stable disease 9 (43)

Disease progression 8 (38)

Not evaluable 2 (10)

ECOG PS, Eastern Cooperative Oncology Group 
performance status; IHC, immunohistochemistry;  
LDH, lactate dehydrogenase; mOS, median overall survival; 
mPFS, median progression-free survival; NSCLC,  
non-small cell lung cancer; PD-L1, programmed  
death-ligand 1.

Table 2. (Continued)
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Table 3.  Statistically significant Pearson linear correlation coefficients among the biomarkers explored.

NSCLC cohort Melanoma cohort

Genes 
correlated

Pearson linear 
correlation

Genes 
correlated

Pearson linear 
correlation

IKBKE-NFATc1 r = 0.81, p = 0.0005 IKBKE-NFATc1 r = 0.60, p = 0.0093

STAT3-YAP1 r = 0.80, p < 0.0001 STAT1-IFNG r = 0.80, p < 0.0001

CTLA4-IFNG r = 0.82, p = 0.0003 CTLA4-IFNG r = 0.80, p = 0.0009

STAT1-RIG1 r = 0.60, p = 0.0297 STAT1-IKBKE r = 0.81, p < 0.0001

CTLA4-NFATc1 r = 0.62, p = 0.0332 STAT1-CTLA4 r = 0.87, p = 0.0001

Rantes-EOMES r = 0.58, p = 0.0179 CTLA4-Rantes r = 0.96, p < 0.0001

  IKBKE-IFNG r = 0.72, p = 0.0005

  CTLA4-STAT1 r = 0.87, p = 0.0001

  CTLA4-IKBKE r = 0.65, p = 0.0227

Response rate and IFNG mRNA expression
Considering that IFNG was consistently influenc-
ing the survival of both cohorts of patients, we then 
explored whether it may have an effect on the 
response to the immune checkpoint blockade. A 
total of nine NSCLC patients with IFNG expres-
sion levels determined were evaluable for response. 
Disease control rate was 71.43% for those with 
high IFNG expression (five out of seven patients 
with partial response) compared with 0% for 
patients with low IFNG expression (two out of two 
patients with disease progression) [Figure 4(a)]. A 
total of 19 melanoma patients with IFNG expres-
sion levels determined were evaluable for response. 
Disease control rate was 71.43% for those with 
high IFNG expression (out of 14 patients, 8 had 
stable disease, 1 had partial response and 1 had 
complete response) compared with 20% for 
patients with low IFNG expression (1 out of 5 
patients had stable disease) [Figure 4(b)]. The 
above results should be taken cautiously consider-
ing the low number of patients being evaluated.

Discussion
IFN-γ is a cytokine that was initially discovered as 
crucial for the host response to viral infections 
and recently has been recognized as having a key 
role in cancer related immunity.42 Defects in the 
interferon signaling pathway are one of the main 
mechanisms of resistance to immune checkpoint 
blockade.25,43 IFN-γ secreted by immune cells in 

the tumor microenvironment causes growth 
arrest, augments MHC class I expression, con-
tributes to the recruitment of effector cells, causes 
T-reg fragility and coordinates the process of 
innate and adaptive antitumor response.25,44–46 At 
the same time, the same IFN-γ signaling compro-
mises antitumor immunity and activates PD-1 
activity.47 IFN-γ induces the expression of PD-L1, 
through increasing STAT1 signaling and decreas-
ing STAT3 activation.48 IFN-γ can also upregu-
late the expression of other immune suppressive 
molecules.49 In our study we found a strong posi-
tive correlation of IFNG with STAT1 mRNA 
expression, while in both cohorts, a strong corre-
lation was detected between IFNG and the 
immune suppressive molecule CTLA4. NSCLC 
and melanoma patients with high mRNA expres-
sion of IFNG exhibited longer progression-free 
and overall survival and higher disease control 
rates with anti-PD-1 therapies, nivolumab and 
pembrolizumab.

PD-L1 expression on tumor cells has been 
extensively explored as a biomarker to identify 
patients more likely to respond to immunother-
apy. Response rates to immune checkpoint 
blockade range from 36% to 100% for PD-L1 
positive tumors, while patients whose tumors do 
not express PD-L1 can experience a response 
rate ranging from 0% to 17%.50 Although 
PD-L1 has been assessed within most of the  
pivotal studies as a predictive biomarker for 
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Figure 2.  Survival analysis according to the expression levels of IFNG in NSCLC patients treated with 
nivolumab. (a) Kaplan–Meier curves for progression-free survival for NSCLC patients with low and high IFNG 
mRNA expression. (b) Kaplan–Meier curves for overall survival for NSCLC patients with low and high IFNG 
mRNA expression.
CI, confidence interval; NR, not reached; NSCLC, non-small cell lung cancer; PFS, progression-free survival.
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immunotherapy, it is still unclear whether 
PD-L1 expression correlates with treatment 
outcomes. There are several caveats with the 
use of PD-L1 expression as a biomarker that 
indeed can be applicable only to patients who 
are treated with anti-PD-1⁄PD-L1 antibodies 
and no other types of immunotherapy. The first 
and most important problem is the use of vari-
ous PD-L1 detection methods, like IHC, flow 
cytometry, mRNA expression that does not 
allow the standardization of the technique. 
Then, it is still not clear what levels of PD-L1 
expression define positivity, while PD-L1 
expression can occur, not only on the tumor 
cells, but also on the nonmalignant cells of the 
tumor microenvironment.51 PD-L1 is an induc-
ible and highly dynamic receptor that can 
change over time.52 Finally, differential PD-L1 
expression may occur according to tumor type 
or histological subtype.52 The Blueprint PD-L1 
IHC Assay Comparison Project compared four 
PD-L1 IHC assays (22C3, 28-8, SP142, and 
SP263) and found that the SP142 is inferior in 
comparison with the rest.53 A previous study 
found high concordance among six PD-L1 
monoclonal antibodies, including SP142.54 
However when Rimm and colleagues compared 
in 90 archival NSCLCs four PD-L1 platforms 
(22C3, 28-8, SP142, and E1L3N), they found 
that SP142 is an outlier that can detect less 
PD-L1 expression in comparison with the rest 
of the assays.55 We have found that IFNG 
mRNA expression can be predictive of response 
with >70% of NSCLC or melanoma patients 
achieving response or stabilization of their dis-
ease. PD-L1 expression neither by protein 
(SP142 Ventana test) nor by mRNA expression 
was associated with treatment outcome.

High tumor mutational burden can predict 
favorable outcome to the immune checkpoint 
blockade.56 But still, the presence of high muta-
tional loads does not always correlate with 
responses. Is there any interaction between IFN-γ 
signaling and tumor mutational load? The down-
stream interferon target, transporter associated 
with antigen processing 1 (TAP1),25 permits the 
entrance of short peptides, produced by the ubiq-
uitylation and proteasome degradation of mutant 
proteins, into the endoplasmic reticulum.57 In the 
endoplasmic reticulum the peptides bind to MHC 
class I, and then are transferred to the plasma 
membrane where they can be recognized by 
CD8+ T-cells.57 This indicates that high tumor 
mutational burden requires an active interferon 
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Figure 3.  Survival analysis according to the expression levels of IFNG in melanoma patients treated with 
pembrolizumab. (a) Kaplan–Meier curves for progression-free survival for NSCLC patients with low and high 
IFNG mRNA expression. (b) Kaplan–Meier curves for overall survival for NSCLC patients with low and high 
IFNG mRNA expression.
CI, confidence interval; NR, not reached; NSCLC, non-small cell lung cancer; PFS, Progression-free survival.
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signaling for the post-proteosomal trimming of 
antigen epitopes,58 in order to induce immune 
mediated tumor elimination.

In our study, paradoxically, high expression of 
Rantes (CCL5) was related with longer progres-
sion-free and overall survival for the melanoma 
patients treated with pembrolizumab, although 
in the multivariate analysis, only LDH remained 
significant modulator of treatment outcome. 
This finding can be due to the dual role of 
Rantes. On one side Rantes is a chemokine that 
contributes to the recruitment of MDSCs and 
Tregs36 and on the other side its production by 
dendritic cells and macrophages, under the 
effect of IFN-γ, contributes to the recruitment of 
CD8+ T-cells.59 None of the rest of the biomark-
ers explored in our study was associated with 
treatment outcome.

Our findings reinforce previous knowledge on 
the fact that response to immune checkpoint 
blockade occurs mainly in patients with a preex-
isting intratumoral T-cell adaptive immune 
response.49,60–63 Antoni Ribas was among the 
first to show that an IFN-γ signature is associ-
ated with better survival for pembrolizumab 
treated melanoma patients.64 Several efforts are 
subsequently ongoing to identify essential genes 
in cancer cells that can facilitate immune selec-
tion. Applying an 18-gene IFN-γ signature with 
the Nanostring nCounter platform in RNA iso-
lated from FFPE tissue, Ayers and colleagues 
were able to separate responders from nonre-
sponders to pembrolizumab, across multiple 
solid tumors.65 The signature consisted of the 
following genes: TIGIT, CD27, CD8A, PD-L2, 
LAG3, PD-L1, CXCR6, CMKLR1, NKG7, 
CCL5, PSMB10, IDO1, CXCL9, HLA.DQA1, 
CD276, STAT1, HLA.DRB1 and HLA. Their 
signature performed favorably in comparison 
with PD-L1 IHC (22C3 PharmDx kit).65 In the 
POPLAR study, comparing atezolizumab versus 
docetaxel for previously treated NSCLC patients, 
those with high T-effector-IFNγ-associated gene 
expression had improved overall survival with 
atezolizumab.7 High levels of a baseline IFNG 
gene expression signature was associated with 
greater benefit from durvalumab in NSCLC 
patients.66 Prat and colleagues, with the 
Nanostring nCounter platform, reported a 
23-gene signature related to T-cell and IFNγ that 
could predict response and progression-free sur-
vival to nivolumab and pembrolizumab.67 Loss-
of-function mutations in APLNR, encoding the 
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apelin receptor, have been found in patient 
tumors that were refractory to immunotherapy.68 
APLNR interacts with JAK1 to augment IFN-γ 

response.68 In pancreatic tumor models that 
lack IFN-γ, CKLF-like MARVEL transmem-
brane domain containing protein 6 (CMTM6) 

Figure 4.  Best response according to IFNG expression. (a) NSCLC cohort. (b) Melanoma cohort.
NSCLC, non-small cell lung cancer.
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has been described as a regulator of PD-L1 
expression.69,70

Our study has some limitations. First, it is a retro-
spective study with a limited sample size. Second, we 
used the SP142 assay for PD-L1 IHC expression, 
which now is considered less consistent in PD-L1 
tumor cell staining in comparison with the Dako 
22C3, Dako 28-8, and VENTANA SP263 assays. 
In our study, approximately 20% of the patients in 
both cohorts (NSCLC and melanoma) were stained 
positive for PD-L1 expression. Still, PD-L1 expres-
sion by both IHC and mRNA were not predictive of 
treatment outcome. Finally, the patients included in 
our study were heavily pretreated and biomarker 
assessment was performed for most of the cases in 
the diagnostic sample that could be far from the 
immune checkpoint blockade therapy initiation.

In summary, our results show that single mRNA 
expression of IFNG could be predictive of response 
and survival to immune checkpoint blockade. 
These results are consistent with previous findings 
and the concept that the presence of a preexisting 
adaptive immune environment predicts clinical 
outcome. Ongoing clinical studies are evaluating 
immune-related gene expression profiles, but we 
also consider that single IFNG mRNA expression 
warrants further clinical validation. In our molecu-
lar oncology laboratory, Pangaea Oncology, we are 
screening our patients for IFNG mRNA expres-
sion and we are in the process of validating a 
7-gene IFN-γ signature (IFNG, CD274, CD4, 
CD8A, FOXP3, PDCD1 and GZMM) with the 
Nanostring nCounter platform71 as a predictor of 
response to immunotherapy.
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