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ABSTRACT

This paper presents a new Plant-Wide Modelling methodology for describing the
dynamic behaviour of water and sludge lines in WWTPs. The methodology is based on
selecting the set of process transformations needed for each specific WWTP to model
all unit-process elements in the entire plant. This “transformation-based’” approach, in
comparison with the conventional “process-based” approach, does not require the
development of specific transformers to interface the resulting unit-process models,
facilitates the mass and charge continuity throughout the whole plant and is flexible
enough to construct models tailored for each plant under study. As an illustrative
example, a Plant-Wide model for a WWTP that includes carbon removal and anaerobic
digestion has been constructed, and the main advantages of the proposed methodology
for integrated modelling have been demonstrated. As a final consequence, this paper
proposes a rewriting of the existing unit-process models according to the new standard

transformation-based approach for integrated modelling purposes.

1. INTRODUCTION

Mathematical modelling and dynamic simulation of the processes in a WWTP is a
useful tool in the selection of operational strategies that improve process stability,
effluent quality and operational costs. Optimum solutions for the design or operation of
an entire WWTP, including the mutual relationships among the different unit-process

elements involved in water and sludge lines, frequently differ from the simple
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compilation of solutions achieved for the design or operation of each unit-process
element separately. Therefore, models used to analyze the entire WWTP must be
rigorously developed taking into account the dynamic description of all the relevant
processes in water and sludge lines (physico-chemical treatments, primary and
secondary settling, activated sludge reactors, anaerobic digesters, etc.), and the effect of
reject flows among the different lines.

Consequently, if the behaviour of the entire plant must be evaluated in order to establish
optimum design and operational criteria, the construction of integrated WWTP models
including water and sludge lines, is required. But obtaining integrated WWTP models
that guarantee mass and charge continuity throughout the model plant is not a
straightforward task (Vanrolleghem et al., 2005; Wentzel et -al., 2006). The main
challenges in obtaining integrated model plants arise from the incompatibilities and
different descriptions of the components and transformations in standard process
models. These include varying descriptions of organic carbonaceous substrates and
organic nitrogen as well as pH and buffer capacity in water or sludge and the different
processes considered, etc. With respect to this problem, two main plant-wide modelling
approaches have been proposed so far.

The first approach is based on the construction of a Supermodel consisting of all the
components and transformations needed to reproduce every process within the entire
plant (Jones and Takacs, 2004; Seco et al., 2004). In this model, components and
transformations are common to every unit process model in the WWTP and therefore,
specific transformers connecting different process models are not required.
Nevertheless, the use of a unique Supermodel for any WWTP lacks the flexibility to add
or remove components as well as transformations depending on the case study and

model aims. Another significant drawback to this approach is the continuous increase of
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the model size required to progressively adapt the Supermodel to reproduce new
processes (Volcke et al., 2006).

The second approach, known as the Inferfaces approach, is based on the construction of
transformers among existing standard models. An illustrative example of transformers
between the Activated Sludge Model ASM1 (Henze et al., 2000) and the Anaerobic
Digestion Model ADM1 (Batstone et al., 2002) has been proposed by Copp et al. (2003)
for the simulation of a Standard WWTP in the Benchmark study BSM2 (Jeppsson et al.,
2006). In order to guarantee mass and charge continuity in the model interfaces
Vanrolleghem et al. (2005) propose a general methodology (CBIM) for the interface of
any two standard models (Zaher et al., 2007; Volcke et al., 2006). However, although
the Interfaces approach facilitates the construction of integrated models tailored to the
case study, there are some limitations when it comes to properly transforming the model
components among existing models, guaranteeing mass and charge continuity under any
dynamic condition (Grau et al., 2007).

Combining aspects from both approaches, in this paper, a new Plant Wide Modelling
methodology based on the most appropriate transformations for each specific case study
is proposed. This transformation-based approach, specially adequate for integrated
modelling purposes, permits the construction of models tailored to the WWTP being
studied without the need for specific transformers among process models and

guarantees the mass and charge continuity at any point in the plant.

2. PLANT-WIDE MODELLING METHODOLOGY

This paper proposes a new Plant-Wide Modelling methodology for the systematic and
rigorous construction of the most appropriate mathematical models for describing, in an

integrated way, the dynamic behaviour of the entire WWTP under study, including the
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main unit-process elements of both the water and sludge lines. The proposed
methodology is based on selecting, for each specific WWTP, the set of compatible
process transformations needed to model all unit-process elements throughout the entire
plant. This “transformation-based” approach, in comparison with the conventional
“process-based” approach, does not require the development of specific transformers to
interface the resulting unit-process models and additionally facilitates the mass and

charge continuity throughout the whole plant.

The proposed modelling methodology requires, as a preliminary step, the compilation of
the stoichiometry and kinetics (Petersen matrix) of all the most relevant biochemical,
chemical and physico-chemical transformations that can occur in a WWTP, in order to

create a general List of Transformations (LT) for Plant-Wide Modelling objectives.

This List should be approved and standardized within the scientific community and
serve as the common base for the building of any WWTP model. Additional
transformations or alternative descriptions of the existing ones could be introduced

when needed without changes in the modelling methodology.

Once the general List of Transformations (LT) has been defined and compiled, the
construction of every Plant-Wide Model (PWM) under study is based on a systematic
procedure. The compilation of the LT and the systematic procedure proposed in this
paper for the construction of plant-wide models for WWTPs are described in detail in

the following paragraphs.

The general List of Transformations (LT) for Plant-Wide Modelling

The basic sources for the selection of the most relevant transformations involved in
WWTPs are the well-known IWA models ASM1, ASM2d, ASM3 (Henze et al., 2000)

and ADMI1 (Batstone et al., 2002). However, in order to obtain a standardized and
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compatible LT for a PWM objective, some modifications should be made to the original

models.

On the one hand, stoichiometry must be defined in order to avoid redundancies in
component definition and to guarantee elemental mass (in terms of C, N, O, P and H)
and charge continuity for all transformations included within the LT. With this in mind,
all model components must be characterised by constant values for their elemental mass
composition and charge density. Furthermore, some components must act as source-
sink or compensation terms accounting for possible imbalances in C, N, O, P, H and
charge (Reichert et al., 2001; De Gracia et al., 2006). This role of compensation is
usually associated with components in their oxidation reference state (Reichert et al.,
2001; Gujer et al., 1999). On the other hand, kinetic equations have to incorporate all
required activation or inhibition terms in order to reproduce the appropriate activity
under every possible environmental condition in a WWTP (aerobic, anoxic and

anaerobic).

Figure 1 shows an example of a possible LT that can be compiled for PWM objectives.
Readily and slowly biodegradable organic matter, known in the AS models as S;and X,
have been described as a set of different components (monomers and VFAs for soluble
substrate and carbohydrates, proteins and lipids for particulates) to properly describe the
biological activity under anaerobic conditions. Organic nitrogen, known in the ASMI1
model as S,; and X,; has been considered as part of the soluble and particulate
carbonaceous substrates. Buffer capacity and pH prediction have been described by
means of the component S+ with a set of acid-base transformations related to inorganic
carbon, nitrogen, VFAs, etc. that reproduce buffer capacity and permit a more realistic
prediction of pH variations in the water line than in standard AS models (S6temann et

al., 2005). Furthermore, liquid-gas transfer and acid-base transformations have been
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considered to guarantee mass continuity of the process throughout the whole WWTP.
Another modification is the decoupling of the composites and inert matter entering with
the influent (X.;, X;, S;) from those obtained as decay by-products (X.2, X, S,), in order
to avoid the common discrepancies in elemental mass characterisation between both
groups of components (Huete et al., 2006). In addition, decay of microorganisms has
been described under aerobic, anoxic and anaerobic conditions to reproduce a realistic
behaviour of biological activity under all environmental conditions (Siegrist et al.,
1999). Finally, some transformations have been described in a more detailed way so that
more Biological Processes occurring in a WWTP can be modelled. For example, the
nitrification and denitrification described as two-step transformations will permit
developing models to reproduce processes for treating reject water with high nitrogen

content, like the Sharon-Anammox process.

The elemental mass characterisation for all the components, combined with the use of
source-sink components, makes it possible to calculate transformations stoichiometry
while guaranteeing mass and charge continuity. Table 1 includes the list of all non
redundant components involved in the transformations with their mass composition and
charge density. As C, N, O, P and H are considered to be the most relevant elements for
the description of the organic compounds, and X summarizes all other elements, any

model component can be described according to the following general formula:

Ch,i

o
C H o N P Xa /MX)} Equation 1
X.i

((ZCJNZ) (aH,i) (aO,i/M) (aN,i/M) (a‘p,i/ﬂ)

where Mx is the molar mass of the element X.
This elemental characterisation does not imply a significant increase in model
complexity because the mass fractions of most model components can be reasonably

estimated from their known stoichiometric formula, bibliography or experimental data
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(Huete et al., 2006). Additionally, the description of the model component’s elemental
mass permits a straightforward conversion of their mass to the Theoretical Oxygen
Demand (ThOD) using, for example, the oxidation state of the elements in the
compounds (Gujer et al., 1999) or the mineralization equation (Reichert et al., 2001).
Components selected as source-sink components of the LT are dissolved CO, for C,

NH," for N, HPO,* for P, dissolved O, for O, H,O for H and H' for charge.

The LT proposed in Figure 1, with its corresponding components shown in Table 1, are
logically expandable with additional transformations and components that could be
incorporated into the proposed modelling methodology without any necessary
alterations. This may include those related to HPO,* precipitation processes, for

example.
A systematic procedure for constructing Plant-wide models for WWTPs

Once the general List of Transformations (LT) has been defined and compiled, the
construction of every Plant-Wide Model (PWM) under study is based on a systematic

procedure with three consecutive steps:

a) Selection of relevant transformations from the general list LT and construction
of the specific Plant Transformation Model (PTM) appropriate for the case
study.

b) Construction of a set of compatible Unit Process Models (UPM) describing each
unit of the plant under study.

c) Construction of the integrated Plant-Wide Model (PWM) by direct interfacing

between the Unit Process Models previously developed.

a) Construction of the Plant Transformations Model (PTM)
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The construction of the Plant Transformations Model (PTM) consists of the selection
of the relevant biochemical, chemical and physico-chemical transformations that should
be considered to model the WWTP under study. The selection of appropriate
transformations requires sufficient insight into biochemical processes and,
consequently, must be systematized in order to simplify the tasks undertaken by model

users. Therefore, the following procedure is proposed for easy construction of a PTM:
a.1) Selection of Biological Processes

In this first step, the modeller has to decide which Biological Processes should be
included in the Plant-Wide Model, according to the plant configuration and model aims.
Some of the most common processes that can take place in a WWTP can be listed as
follows:

. Activated sludge process for Carbon removal AS-C

. Activated sludge process for Carbon and Nitrogen removal AS-CN (Example:

ASM1)
e  Activated sludge process for C, N and P removal AS-CNP (Example: ASM2)
o Acid Fermentation
. Anaerobic digestion (Example: ADMI1)
. Sharon process for reject water treatment
. Anammox process for reject water treatment

. Others

a.2) Selection of the active microorganism populations required to describe the selected

Biological Processes
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The key to selecting process transformations in each specific plant model is the correct
identification of the microorganism populations involved in the biological processes. As
shown in Table 2, each of the Biological Processes implies the activity of one or more
microorganism population and, therefore, from the Biological Processes previously
selected by the model user, the active microorganism population for each plant under

study can be easily identified and selected.

a.3) Selection of the biochemical transformations associated with the activity of

different microorganism populations

The presence of microorganism populations in a plant involves a set of biochemical
transformations associated with their corresponding metabolisms under different
environmental conditions. Therefore, once the appropriate set of microorganism
populations has been selected according to Table 2, the biochemical transformations
which describe for each one of them the growth, decay and enzymatic hydrolysis under
all environmental conditions (aerobic, anoxic and anaerobic) must be selected from the
general List of Transformations (LT) and incorporated into the PTM. As an example,
the transformations associated with the activity of Heterotrophic bacteria X, and
Anaerobic Sugar Consuming bacteria Xy, are shown in Figure 2 according to the list LT

previously presented in Figure 1.

Once all transformations which describe the activity of the microorganisms have been

selected, all components involved in these transformations are easily identified.
a.4) Incorporation of acid-base and liquid-gas equilibria

The last step in the construction of the Process Transformation Model (PTM) is the
incorporation of the acid-base equilibria and liquid-gas transfer to the PTM constituted

in a.3. In this manner, when the model components selected in a.3 are involved in acid-
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base or liquid-gas equilibria with their respective acid/base couples or gas phase
components, these transformations must also be incorporated into the PTM and the
corresponding acid/base conjugated and gas phase components must also be added to
the list of selected model components. The set of resulting model components obtained
will constitute the Plant Components Vector (PCV), which will be the common state
vector used for the process description at any point of the plant and will additionally act
as a common model interface between all Unit Process Models that will be described in

the following section.

Once these four steps have been completed, the resulting set of transformations and the
vector of model components (PCV) make up the Plant Transformations Model (PTM)
(Figure 3). The selected transformations should be able to reproduce the biological
activity in the liquid phase for the WWTP under study, including the buffer capacity of
the liquid phase and the mass transfer between the liquid and gaseous phase in contact

with it.

It is important to point out that the selection of Biological Processes considered in a.l is
the only “subjective” decision left to the modeller when constructing the PTM. The
selection of active microorganisms, transformations and model components is a
straightforward procedure that can be carried out automatically according to predefined

rules.

b) Construction of the set of Unit Process Models (UPM) of the plant

The set of Unit Process Models (UPM) is the collection of mathematical models
describing the most relevant units included in the water and sludge lines of the plant

under study. Each UPM must incorporate the mathematical description of both the mass

10
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transport and the internal transformations and must use, as a common model interface,

the Plant Components Vector (PCV) previously described.

The mathematical description of the mass transport in each UPM is logically quite
diverse for different elements of the plant (for example, CSTR reactors, primary or
secondary settlers, filters or other solids separation systems, etc.) and sometimes even
based on lumped additional variables that are usually a combination of the model
components included in the common PCV (a typical example of this is the use of total

solids concentration in the modelling of clarification or settling processes).

The mathematical description of the internal transformations for all UPMs should be, as
a general rule, based on the previously constructed PTM. The use of a common set of
transformations for all Unit Process Models will facilitate a coherent description of the
processes throughout the whole plant and guarantee mass continuity. Additionally, the
use of the common PCV, as the internal components vector for describing
transformations, allows for a direct connection between the Unit Process Models
without introducing specific transformers. However, in order to reduce the model
complexity and to increase computational efficiency, some simplifications could be

considered for some UPMs operating under specific conditions:

The models describing a Unit Process without any significant biochemical
activity can be based only on mass transport equations. Typical examples
include the mathematical models commonly used for primary or secondary

settlers.

The models describing a Unit Process that is always working under stable
environmental conditions can “switch-off” or eliminate transformations that are

irrelevant under these specific conditions. For example, anaerobic

11
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transformations can be “switched-off” when describing conventional activated

sludge reactors in the water line.

For simplicity or computational efficiency, some UPMs could be developed
based on internal “lumped” variables and transformations. Typical examples can
include the use of lumped variables for the slowly (Xs) or easily (Ss)
biodegradable carbonaceous substrates or lumped transformations as the one-
step nitrification from Ammonia to Nitrates. However, the convenience of this
kind of simplification should be carefully analysed in each case, as the resulting
UPM must incorporate transformers among its internal model variables and the
PCV (the common model interface within the whole plant). In many cases, the
design of these transformers guaranteeing mass and charge continuity under
different operating conditions is not a straightforward task (Vanrolleghem et al.,

2005).

Therefore, although the modeller could develop specific unit process models, it is
important to note that any UPM must guarantee mass and charge continuity for every
internal process transformation and must use the PCV as the common interface with the
other UPMs of the entire plant. Consequently, when computational time is not a critical
restriction, the direct incorporation of the general PTM for internal transformations in
all UPMs is strongly recommended in terms of modelling coherence and conceptual

simplicity.

c) Construction of the Plant-Wide Model (PWM) for the whole plant

Once the set of UPMs has been constructed in accordance with the proposed
methodology, the Plant-Wide Model (PWM) can be easily created, without additional

transformers, by the direct connection of the mass fluxes among the UPMs. The

12
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resulting integrated model will guarantee mass and charge conservation for all process

transformations and through all UPM interfaces.

3. EXAMPLE: PWM FOR A CONVENTIONAL ACTIVATED SLUDGE

PROCESS WITH ANAEROBIC DIGESTION

Once the methodology for model construction has been defined, tailored Plant
Transformations models (PTMs) can easily be built including all the biological
processes required for the description of the water and sludge lines at each specific case
study, for example, carbon oxidation, nitrification, denitrification, biological

phosphorus removal, fermentation or complete anaerobic digestion, etc.

As an example, this paper shows a PWM for a conventional WWTP that includes an
aerated activated sludge reactor for C removal, a secondary settler and an anaerobic

digester for sludge treatment.

a) PTM Construction

The PTM for the WWTP proposed in this example has been constructed following the

sequential procedure indicated in Section 2.

a.1) Selection of Biological Processes

According to plant configuration and model objectives, the Biological Processes
considered have been limited to the activated sludge process for Carbon removal (AS-
C), which occurs mainly in the aerated activated sludge tank and the anaerobic digestion

process (ADM1), which is active in the digester.

a.2) Selection of the microorganism populations required to describe the selected

Biological Processes

13
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As a consequence of the Biological processes considered in a.1, as shown in Table 2,
the selected active microorganism populations are X, and the set of anaerobic

microorganisms Xy, Xua, Xpuy Xcas Xpros Xac and Xp.

a.3) Selection of the biochemical transformations associated with the activity of the

microorganism populations

Once active microorganism populations have been determined, the biochemical
transformations describing their growth, decay and enzymatic hydrolysis are selected
under all environmental conditions as shown in Figure 2. In this case, the selected
transformations are 1-7, 16-29, 33-40, 41, 45-51, 55, 59-65, 69, 73-79 and 89-97. In
addition to these biochemical transformations, X, disintegration under aerobic, anoxic
and anaerobic conditions must be selected (84, 86 and 88). Although disintegration of
X2 is not related to activities of the microorganisms, this transformation has been
considered as an intermediate transformation between the microorganisms” decay and
the enzymatic hydrolysis as it is proposed for X, in the ADMI1. The list of all these
transformations will reproduce the biological activity that occurs in the whole WWTP.
However, as in this particular case, anoxic conditions do not exist at any point in the
plant, transformations occurring under this specific condition (16-29, 55, 59-65, 86 and

92-94) can be eliminated.

The set of components involved in the selected transformations will correspond to the
soluble substrate, the microorganism populations selected in a.2, the decay products and
the particulate substrate. Furthermore, source-sink components have been considered by
default to guarantee the mass and charge continuity in the biochemical transformations
regardless of the components” mass compositions. Figure 4 shows, as an illustrative
example, the biochemical transformations and components involved in the Xj and Xj,

activities.

14
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a.3) Incorporation of acid-base and liquid-gas equilibriums

According to the set of components selected in a.3, the required acid-base equilibria
(98-105) and liquid-gas transfers (106-110, 112) have been incorporated into the PTM.
Finally, additional components needed to describe these acid-base and liquid-gas
equilibria have been included in the PCV. Figure 5 shows the transformations and
components incorporated in this step according to the components selected for the X

and Xj, biological activity description (Figure 4).

The PTM obtained is presented in Tables 4, 5, 6 and 7 in terms of stoichiometry and
kinetics (Petersen matrix). The stoichiometry associated with the biological activity and
the physico-chemical transformations is shown in Tables 5 and 6, respectively. In Table
7, the source-sinks stoichiometric values have been expressed by a set of formulas since
their exact values depend on the mass composition of the components involved in each
transformation. On the other hand, the kinetic equations include the appropriate
activation and inhibition terms for the environmental conditions. Therefore, when the
environmental conditions change from one unit-process element to another, the
conversion of non-viable microorganisms under specific conditions into decay products
is described by continuous decay kinetics regulated by the specific environmental
conditions prevailing at each point of the WWTP. Finally, it must be taken into account
that the kinetic equations selected for the construction of the PTM, should be revised for
each case study to ensure that the monod terms included in them are coherent with the
components considered in the model. In some cases, if the kinetic equations were

modified, the values of the parameters included in them should be readjusted.

b) Construction of the set of Unit Process Models

15
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Once the PTM is obtained, UPMs for the activated sludge reactor, the secondary settler
and the anaerobic digester must be constructed by means of the mass transport

description and internal transformations.

Mass transport description

The description of the mass transport in the activated sludge reactor and the digester,
where transformations occur in a significant way, is based on a biological reactor
model. Since the constructed PTM includes components in liquid (dissolved and
particulate) and gaseous phases, one must consider these two phases.in the biological
reactor model. The anaerobic digester consists of two continuous stitred-tank reactors
(CSTRs), each one with their own interfaces, corresponding to these two phases and
where liquid-gas transfers take place. Therefore, mass transport will be described by
means of mass balances applied to the liquid and gaseous phases. The activated sludge
reactor is composed of a CSTR that represents the liquid phase in contact with the
atmosphere, in which the gaseous components present constant concentrations. In this
case, the mass transport description is described by mass balances applied to the liquid

phase.

On the other hand, the mass transport description of the secondary settler can be
reproduced by standard models that are normally utilized (ideal settlers, layered settlers,

etc.) using the 7SS variable.

Internal transformations

As recommended in section 2, the set of internal transformations and components

considered in each UPM should coincide with the PTM created in the previous step.

According to this suggestion, the PTM obtained in step A, has been utilized to describe

the internal transformations in the aerated activated sludge tank and in the anaerobic

16
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digester. In this manner, mass and charge continuity are guaranteed in these UPMs and
the PCV can act as an input-output interface without the need of transformers among

Specific Component Vectors and the common PCV.

However, with respect to the secondary settler UPM, as the mass transport is described
based on the lumped variable 7SS, specific input-output transformers must be included
to convert particulate components of the PCV into the variable 7SS and vice-versa.
Relationships between the COD and the mass of organic components, easily established
with the methodology proposed in this paper, permit a direct conversion between
organic particulate components and 7SS, guaranteeing the mass- continuity during

stationary and dynamic conditions.

c¢) Construction of the Plant-Wide Model (PWM) for the whole plant

Finally, the PWM for the WWTP proposed in this example has been created by the
direct connection of the mass fluxes among the UPMs. The obtained PWM, specific for
this WWTP, is able to reproduce all relevant process transformations and guarantees
mass and charge continuity throughout the whole plant without specific transformers

among the UPMs.

In addition to the example presented in this paper, other models have been constructed,

implemented in the simulation platform WEST (http:/www.mostforwater.com) and

successfully validated using the methodology proposed in this paper such as the BSM2
PWM (Grau et al., 2007), the Anaerobic Digestion Model (Huete et al., 2006), and the

Composting Reactor System Model (Zurcan et al., 2005).

It is important to point out the advantages of the transformation-based approach from
the point of view of developing computer code for simulation platforms. The general

List of Transformations (LT) can be compiled as a general library from which the
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modeller can construct tailored PWMs as simple or ascomplex as needed in each case

study.

4. CONCLUSIONS

The integrated modelling of an entire WWTP, including the mutual relationships among
the different unit-process elements of the water and sludge lines is not as
straightforward as the simple connection of existing models. A rigorous model
development must analyze the appropriate definition of model components at each unit-

process element and the mass continuity among all of them.

The Plant Wide Modelling methodology proposed in this paper takes into account the
advantages and limitations of existing approaches and develops a systematic procedure
for the tailored construction of integrated mathematical models for WWTPs, including
water and sludge lines, without the need of specific transformers among Unit Process
Models and guarantees mass and charge continuity throughout the WWTP under any
dynamic condition. -Additionally, the proposed “Transformation-based” approach

facilitates the development of simulation codes in an efficient modular manner.

The example given in this paper has illustrated the different steps of the systematic
procedure to construct integrated models where the mass continuity is guaranteed

throughout the whole plant.

Nowadays, it is probably time to rewrite the existing unit-process models when they are
used for integrated modelling objectives. From an “approved” list of process

transformations, agreed upon by modelling experts, a general and systematic procedure

18
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442

can be developed to create compatible unit-process models, and integrated models

adapted to the specific plant under study.

The fact that the List of Transformations and components is open and allows the
incorporation of new transformations and components provides a useful and flexible
modelling approach that facilitates the interchange and contrast of information between

modelling teams.
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492

Table 1. Model components included in the LT

Soluble components

f Name Formula Description Stoichiometric Mass fractions and charge density

Unit &ci @y @o; QN @p;  Ccni Xy
1 Sw HO Water ¢H,0 01111 08889 -
2 S, 0, Dissolved Oxygen 20,/m’ — — 1 - - - -
3 S H" Protons gH/m3 -—- 1 - - - 1 -
4 S, OH Hydroxyl ions gH/ml -— 0.0588 0.9412 - -~ -0.0588  ---
5 St HPOZ Hidroxy phosphate oP/m’ 00104 06667 — 03229 -0.0208 -
6 Swper HPO, Dihidroxy phosphate gP/m3 --- 0.0206 0.6598 - 0.3196 -0.0103  ---
7 Suwe  NHS Ammonium oN/m’ — 02222 -~ 07778 - 00556 -
8 Susz NH Ammonia oN/m’ - 01765 -  0.8235 -
9 S.» CO, Dissolved C. dioxide 2C/m’ 02727 - 07273 - - — —
10 Sje3-  HCOy Bicarbonate oC/m’ 0.1967 0.0164 0.7869 - — 00164 -
11 Sy CeH1206 Monosacharide 2COD/m’ 0.4 00667 0.5333 -
12 S C,H,0,,N Aminoacids 2COD/m’ 0.5498 0.0699 0.2199 0.1604 - - -
13 S C1g0Hs, LCFAs £COD/m’ 075 0125 0125 -
14 Spae  CsHigO, Valeric acid 2COD/m’ 0.5882 0.098 03137 -
15 Sw.  CsHOy Valerate 2COD/m’ 0.5941 0.0891 03168 - 00099 -
16 S CH{O, Butyric acid £COD/m’ 0.5455 0.0909 0.3636 -
17 Spu C,H,0, Butyrate 2COD/m’ 0.5517 0.0805 0.3678 - - -0.0115 -
18 Sipro  CHeO, Propionic acid 2COD/m’ 04865 0.0811 04324 -
19 S0 CHOy Propionate ¢COD/m’ 04932 0.0685 04384 - — 00137 -
20 She  CHO, Acetic acid 2COD/m’ 04 0.0667 05333 - - -
21 S..  CHOy Acetate 2COD/m’ 0.4068 0.0508 0.5424 - — 00169 -
22 Su H, Dissolved hydrogen 2COD/m’ - 1 - - - - -
23 Secns CH, Dissolved methane 2COD/m’ 075 025 . . . .
24 S, N, Dissolved nitrogen oN/m’® - - - 1 . . -
25 Su2  NOy Nitrites oN/m’ - 0.6957 03043 - 00217 -
26 Sus  NOy Nitrates oN/m’ — 07742 02258 - 00161 -
27 Sis K Potassium ions aK/m’® - - - - - 0.0256 1
28 Sygee Mg Magnesium ions gMg/m’ - - — - - 0.0823 1
29 8, - Soluble inerts £COD/m’ Ocpg Onpg  Gozg  ONpg  Op29  Och2g  Oxog
30 S, - Soluble decay products  gCOD/m’ Oc3o  On3o %oz  Onzo  Op3o  Ocnzo  Ox30
Particulate and gaseous components
31 X - Composites 1 2COD/m’ Oc3r O3t Oosr  Onzt Op3r Ocn3r Ox3i
32 X - Composites 1 gCOD/m3 Oc3y  Oy3z  Oo3z  On3z  Op3y  Ocpsz  Ox3
33 X, CgHy95s0sPgos  Carbohydrates gCOD/m3 0.4401 0.0608 0.489 - 0.01 - -
34 X, (C4Hg,1012N)x  Proteins 2COD/m’ 0.5498 0.0699 0.2199 0.1604 -
35 Xy Cs1Hy7906Pg;  Lipids gCOD/m3 0.752  0.1201 0.118 - 0.01 - -
36 X, CsHg9O,NP;  Heterotrophic B. gCOD/m3 0.5155 0.0592 0.275 0.1203 0.03 - --
37 Xu CsHg9ONPy,;  Nitrosomona B. 2COD/m’ 0.5155 0.0592 0275 0.1203 0.03 -
38 X, CsHg9O2NPy;  Nitrobacter B. gCOD/m3 0.5155 0.0592 0.275 0.1203 0.03 - -
39 Xp  CsHgoONPy,  Phosphorous Acum. B.  gCOD/m’ 0.5155 0.0592 0.275 0.1203  0.03
40 Xy C4Hs0, Cell internal storage gCOD/m3 0.2790 0.0698 0.3721
41 X, Ko33Mgo33PO;  Poly-phosphate oP/m’ — 04793 - 03096 - 02110
42 X CsHg9OoNPy,;  Sugar degraders 2COD/m’ 0.5155 0.0592 0275 0.1203 0.03 -
43 X, CsHg9O,NPy;  Aminoacid degraders gCOD/m3 0.5155 0.0592 0.275 0.1203 0.03 - -
44 Xy, CsHg9O,NPy;  LCFA degraders gCOD/m3 0.5155 0.0592 0.275 0.1203  0.03 - -
45 Xy CsHg9O,NPy;  Valeric/Butyric degrad. gCOD/m3 0.5155 0.0592 0.275 0.1203 0.03 - -
46 X, CsHg9O,NPy;  Propionic degraders gCOD/m3 0.5155 0.0592 0.275 0.1203 0.03 - --
47 X CsHg9ONPy;  Acetid degraders 2COD/m’ 0.5155 0.0592 0275 0.1203 0.03 -
48 X CsHg9O,NPy;  Hydrogen degraders gCOD/m3 0.5155 0.0592 0.275 0.1203 0.03 - -
49 X, CsHg9O,NP;;  Anammox degraders gCOD/m3 0.5155 0.0592 0.275 0.1203 0.03 - --
50 X; - Inert particulate material gCOD/m’ Ocso  Omso  Ooso  Onso  Opso  Ccnso  Oxso
51 Xp - Part. Decay 2COD/m’ Ocst Ousi Gosi OnNsi Opsi Ocnst Oxsi
52 Xien Fe(OH); Ferric hydroxide g/m3 - 0.0281 0.4492 - - - 0.5227
53 Xyep FePO, Ferric phosphate g/mz - - 0.4243 - 0.2055 - 0.3703
54 Xy -- Inorganic Inert g/m’ - - - - - - 1
55 G CO, Carbon dioxide gas oC/m’, 02727 - 07273 -
56 G H, Hydrogen gas 2COD/m’ - 1 - - - - —
57 G CH, Methane gas 2COD/m’ 075  0.25 - - - — -
58 Gus; NH; Ammonia gas eN/m’ — 01765 - 08235 -
59 G2 N, Nitrogen gas eN/m’ - - - 1 - - -
60 G, 0, Oxygen gas 20,/m’ - - 1 — — —
61 Gy  HO Water steam gH,0/m’, - 0.1111 0.8889 - — -
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493 Table 2. Relationship between Biological Processes and associated microorganism populations

Microorganism Populations
Biological Processes
Xon | X | Xt | Xz | Xpao | Kut | Kaw | X | Ko | Xpro | Xae
Anaerobic oxidation of N-NH," X
Q -
» Carbon oxidation X
<
X 5 S
o 2 Nitritation X
£ S
£ Zz5 b=
= . .
2 Q% = | Nitratation X
< 0 c Z
<wn =
2 o . R
% g Denitrification on NO; X
Q b=}
%) =
< é‘f Denitrification on NO, X
Bio-P storage and release X
€ . .
5 Acidogenesis X X
L e uw
g8
=
s 3 Acetogenesis X X X
S o
c .2
< T
494 Methanogenesis X
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Table 3. Expressions utilized in the kinetic equations

Lumped variables used to simplify the kinetic equations description
Valerate Sva = Siva + Sva- Readily degradable substrate ~ Ss =Sg, +So0 +S 4 + Sy +Spy +Sppo +S4c
Butyrate Spu = S+ Shu- Inorganic carbon S1¢ = Seoz + Sheos-
Propionate Spro =Sipro *Spro- Ammoniacal nitrogen Sy = Sunar +Suns
Acetate Suc =She TS Inorganic phosphorus Sip = Sipos= T Sh2pos-
Activation/Inhibition terms depending on the environmental conditions
S,2 K 402
Oxygen activation A,y =" Oxygen inhibition I,= :
K 02 +502 K o2 4552
03— i itri Ky
Nitrates activation Ay =——"5— Nll:.rSF?S/Nltrltes I 2
KA.no3 + Sno3— inhibition KA,nax + (Sn027 + Sno37)
S o
Nitrites activation Ay = =
KA,naZ + Sm727
Activation terms for source-sink components
Sw Sic
Inorganic nitrogen Ay =——""7 Inorganic carbon A = -
Kymw+ S Kic+Sic
S
Inorganic phosphorous Ap =——"—
Kymp+Sp
Activation/Inhibition terms depending on pH values
2
e pepes . . . . K I.,h,aa
pH inhibition of the acidogenesis and acetogenesis transformations 1 pH aa = I 3
K 1.h,aa + Sh+
K 2
. ey ele . . 1,h,ac
pH inhibition of the acetoclastic methanogenesis I ol ac = 7 3
Kl,h,ac + Sh+
2
S . . . K
pH inhibition of hidrogenotrophic methanogenesis 1 P2 = N 3
Ky + S
Inhibition terms caused by inhibiting components
VFAs hydrogen inhibition I _ K, h2.fa Prqp ronie hyd'rogen I _ K, h2,pro
durine the acidogenesis h2,fa — inhibition durlng the 2,pro — - o
g & Koo +Sh acetogenesis K napro + S
Valeric and Butyric hydrogen K K
. . 1,h2,c4 e eyl 1,nh3
inhibition during the Lo =" Ammonia inhibition Ly =———c—
acetogenesis K rea +Si Ky + S
497
498
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Table 4. Kinetic equations of the PTM transformations

S
=k oS S A A A A | X
Pr =K K, ,+5, S [ 02 " ANAp IC] h
S
=k '$ A ApAe [ X,
P> m,h Koy 5+ S0 Ss 02 " AN Ap 1c]
S
ps =k, 7fa o2 Ay A A ] X,
Kfa ptSp SY
Sy Sy
Py =kyyy—" [Agz A ApAge ]'Xh
Kyy w+Sy Ss
N S
=k, 28U |4, Ay Ap A | X
Ps =Kup Ky 1 +Spo Ss [ 02 " ANAp IC] h
S pro Spro
ps =k, [A 2 A Ap AIC] X,
KPRO »+Spro Ss
S4c Sac
pr=kyy———"—— '[Aoz 'AIN'AIP'AIC]'Xh
Kic_n+Sic Ss
=k / oA Ap A I X
P33 mysu” Ks — S [ v AptAe pHAzza] su
k s Ay Ap A I X
P34 = Kmaa” KS'aa + S [ N AipAare pH,atl] aa
S
Ja
Pis =k, fa Ki[Auv ApAie Loy Ty Th2 fa L phoaa ] Xfa
S, fa Jfa
N 1
P36 =kmic4' - '[AIN'AIP'AIC Y . 'Ihz, o1 h,aa]'Xc4
Kgeqg+Syy 1+ S5y /Sy, g
Sgu 1
P37 =km,c4' i ‘[AIN'AIP'AM DY - ’]hz,c4 g h,aa]' Xy
Koy +Spy 1+ Sy /Spy ?
S
Pss = km,pm'K PROS [AIN I VR I P % pro Iph aa] Xpro
S.pro TOPRO
Sac
P39 = km,uc ——— [[az'lnux'AIN'AIP'AIC Azl h,ac]‘ X e
Ko +Suc r
Si>
=k —h2 ] Ao A A A -1 X
Pao mh2 Kop +Spo [ 02 A Ae L, hZ] h2

Pss =kq_ser '[Aoz A - Ap 'Alc]'Xcz

Pss = ka_ naer '[[m Ay, ‘A1N'A1P'A1C]' Xez
Pso =ki_ser '[Aoz A Ap 'AIC]'XCh

Poo =ki_ter '[Anz A Ap 'A/C]'Xf”

Por =kn_ser '[Aoz A - App 'AIC]'XH

Pos =k _anaer '[[oz Ao - Apy - App 'Alc]'Xch
Pos = ki _anaer ‘[Ioz A - Apy - App ‘AIC]'XW

P97 =k tnaer ‘[[oz Loy ‘AIN'AIP'AIC]‘Xzz

Py = kde('ia(/r,xh A, X,
Pas = kdec_aer,xsu : AoZ : Xsu
p46 = kdeciaer,xaa : A()Z . Xau
P47 = kdec_aer,xfa ) AoZ : Xﬁz
Pys = kdec,aer.xc/l AoZ ) Xc4
Pag = kd@ciaer,xpm : AuZ : Xpru

Pso = kdec,aer.xac : AoZ ’ Xac

Psi = kdeciaer,th Ayr Xy

Pey = kdec_an,xh : 102 : Inox : Xh
p73 = kdecfan,xsu : 102 . [nox : X.&'u
,074 = kdec_an,xaa ) 102 ) Inax ) Xaa
Prs = kdecian‘xﬁz . 102 . Inax : X/a
p76 = kdecian,xm < IuZ : Inux : X(‘4
p77 = kder_an,xpm : 102 : Inox : Xpro
p78 = kdecian,xac : 102 . Inox . Xac

p79 = kdec,an,th : 102 : Inox : XhZ
Pos =Kup.1r20 '(Ka,Hzo - SahJSm)

Poo =k p1c '(KaJC “Se02 = Sheos- 'S/H)
Proo = Kag.v '(Ka,nv “Sunar = Suns 'Sh+)
Pror =kapp '(Ka,IP “Sp2pos- = Shpos= ‘S,H)
Proz =k apya '(Ka 74 Siva = Sva- 'Sh+)
Pros =kappu - ( @80 " Snou — S ~Sh+)
Pros =Kz pro - ( a.PR0 " Stpro =S pro- -S,H)
=kapac (Kosc Shae = Sac S

p[(}6 = KLacz)Z (KH co2 " gas co2 ScoZ)

Pios

P =Kpa,;- ( Ho2 " gasoZ Soz)
pros = Kuan:o Pt = P

Prog =K au;s '(KH,nM 'Pgas,nhs _ths)
— Sﬁ-m)

Pz =K,a;, '(KH,hZ 'Pgas,hz —Shz)

Prio =Kpay ‘(KH‘L-M “Pogs e
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Figure 5. Components and transformations incorporated in the X, and X, activity




