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SHORT ABSTRACT 

For the first time a personal Exposimeter (PE) is presented for radiation assessment in the 60-

GHz band. Numerical simulations are used to design the PE and its uncertainty is assessed 

using on-body calibration measurements at 61 GHz. The PE consisting of three nodes 

(antennas) with vertical-horizontal-horizontal (VHH) polarization has a 50% prediction 

interval of 1.3 dB which is 3.1 dB lower than a single node experiment. The proposed PE has 

a 19.7 dB smaller uncertainty compared to the currently available exposimeters at lower 

frequencies. A 95 % confidence interval of 6.6 dB is measured on the response of the 

proposed PE. 

INTRODUCTION 

The increasing demand for new wireless technologies and rapid progress in 60 GHz wireless 

communication systems have increased the concerns about potential health effects of mm-

waves on human body [1, 2]. In order to ensure that mm-wave systems have no adverse 

health effects on the users, compliance with international guidelines such as those issued by 

ICNIRP [2] is necessary. Since the absorption of mm-waves is limited to the human skin [3] 

the incident power density (IPD) is studied as a dosimetric quantity at mm-waves. The safety 

limits of IPD are 1 mW/cm2 and 5 mW/cm2 averaged over 20 cm2 of the exposed area for 

general public and occupational exposure, respectively. Personal exposimeters (PEMs) are 

used to measure the IPD at lower frequencies [4]. The performance of these devices is 

affected by the reflection and absorption of the human body, which results in a relatively 

large measurement uncertainty [5]. Moreover, it was shown that the location of the PEM on 

the subject’s body can cause large measurement uncertainties [6]. Previous dosimetric studies 

in the 60-GHz band, for example [7], have only investigated the exposure of biological cells 

at 60 GHz. A prototype of wearable on-body exposimeter (PE) for the millimeter wave band 

is presented. The PE consists of three receiving antennas and can be used to measure the 

incident power density in realistic indoor environments, and is calibrated in anechoic 

conditions using a real human subject. 

MATERIALS AND METHODS 

This study consists of two parts: numerical simulations and calibration measurements on a 

real human subject. The goal is to determine the response of the proposed PE in the 60-GHz 

band as well as its measurement uncertainty. 

 

Numerical modeling 

The response of the PE (on body) is studied using the Finite-Difference Time-Domain 

(FDTD) simulations. The antenna used in this study is a four-patch antenna array that has a 

power reflection coefficient of lower than -10 dB in the 55-65 GHz range [8]. In order to 

emulate the human body, a homogeneous single-layer skin model is proposed (200×200×10 
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mm3). The reason is shallow penetration depth of mm-waves in the skin [1]. The dielectric 

properties of dry skin [9] are assigned to the proposed numerical model. The antenna is 

placed at 5.6 mm from the skin model due to the geometry of the connector used in 

measurements. In order to determine the response of the antenna, simulations are performed 

for the antenna with and without the skin model. The quantity studied here is the response 

(R) of the PE which is the ratio of the median on-body received power (Pr
body) to the median 

received power in free space (Pr
free): 

 

𝑅 = 10 × log (
𝑃𝑟

𝑏𝑜𝑑𝑦

𝑃𝑟
𝑓𝑟𝑒𝑒

)                                                               (1) 

 

The received power on an antenna can be determined from its aperture [10]: 

𝑃𝑟(𝜑, 𝜃) = 𝐴𝐴(𝜑, 𝜃) × 𝑆𝑖𝑛𝑐                                                           (2) 

 

where AA(φ,θ) and Sinc are the on-body aperture of the antenna and incident power density, 

respectively. Using the method described in [11], first, the on-body antenna aperture is 

determined from its radiation pattern. Next, the received power on the antenna is determined 

by combining different single plane waves using sets of multiple plane waves to calculate the 

received power on the antenna. A realistic far-field exposure scenario in the 60-GHz band 

(conference room of IEEE 802.11) is considered [12]. 

 

Calibration measurements 

The calibration measurements are performed using the measurement setup in Figure 1. First, 

the free-space incident power density is calculated using the Friis formula [10] and is 

averaged over 20 cm2 of the studied area [3]. Second, the patch antenna array is used as a 

receiver (RX) on a male subject's forearm and the received power on the RX is measured on 

5 locations (for five φ angles).Two orthogonal polarizations of the antennas are studied, 

horizontal (H) and vertical (V). Third, three locations are selected for mounting the RX on 

the subject's forearm (see Figure 2) and the second step is repeated to obtain the best 

combination of three antennas (lowest measurement uncertainty). Using equation (2) the 

effective median on-body antenna aperture is obtained from calibration measurements. Next, 

AA values are determined for any realistic polarization [12]. These AA values can be used in 

realistic environments to determine the incident power density from the measured received 

power. 

 

RESULTS AND DISCUSSION 

Using equation (1) the simulated and measured (for single antenna) responses are determined 

and are equal to 0.72 (-1.4 dB) and 0.8 (-0.96 dB), respectively, which shows a good 

agreement. The median AA values are 9.2 mm2, 7.7 mm2 and 2.3×10-3 mm2 for horizontal 

orientation of RX on body, simulated horizontal RX on the skin model, and vertical RX on 

body, respectively. The simulated and measured AA values are in good agreement 

(difference of 17.7%). The lower simulated AA value indicates higher received power and is 

due to the exclusion of the connector. Also the difference between H and V orientation of the 

RX can be interpreted as the asymmetric structure of the RX and strong dependence of 

reflection and transmission coefficients at mm-waves. Figure 3 shows the 50% (PI50) and 

95% (PI95) prediction intervals of the response of the PE consisting of 1, 2 and 3 antennas. 

The value of PI50 improved 3.1 dB for three antennas (4.4 dB) compared to one antenna (1.3 

dB). Our proposed exposimeter has an improved PI50 of 16.6 dB (1 antenna) and 19.7 dB (3 



antennas) compared to the PI50 of commercial PEMs (up to 21 dB) at lower frequencies (≤ 6 

GHz) [5]. Also the PI95 value has an 8.8 dB improvement for 2 and 3 antennas (6.6 dB) 

compared to a single antenna (15.4 dB). The PI95 is 11.9 dB lower than the PI95 of a 

commercial exposimeter in an indoor scenario (18.5 dB at 900 MHz) [13]. 
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Figure. 1: Measurement setup used for calibration measurements. Solid squares show five 

locations of RX. 

 
 

 

 

 
Figure. 2: The optimized orientation of the receiver nodes on the subject's forearm. 

 

  

 

 

 

 
 

 

Figure. 3: The 50 % and 95 % prediction intervals of the averaged response for the 

optimized combination of three antennas. 


