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Abstract – Software-Defined Radio (SDR) technology is evolving 

rapidly, offering higher flexibility for wireless communication 

networks. For the sake of performance, and power consumption, 

filtering is commonly implemented in hardware using FPGAs. 

Pulse shaping in the transmitter and the corresponding matched 

filtering in the receiver, which together satisfy the Nyquist inter 

symbol interference (ISI) criterion, are no exception to this. To 

decrease the FPGA resources used by filters, to increase speed 

and to decrease power consumption the filter coefficients can be 

optimized by expressing them in canonical signed digit (CSD) 

form, using as few arithmetic operations per filter as possible, 

while maintaining acceptable filter characteristics. In this paper 

a new method to decrease the number of nonzero signed digits is 

presented. With this method a reduction of up to 65% of the 

nonzero signed digits per filter is realized, while decreasing the 

ISI ratio too.  
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I. INTRODUCTION 

Software-Defined Radio (SDR) is a rapidly evolving 

technology which is capable of enabling the flexibility 

required in modern-day wireless communication networks, by 

shifting functionality from hardware to far more dynamic 

software. A generic hardware platform provides the minimal 

analog functions and a well-chosen set of hardware 

accelerators to offload computationally intensive tasks from 

the processor. Filters are among these accelerators, important 

specifications of which are size, power consumption and 

delay. Pulse shaping in the transmitter and the corresponding 

matched filtering in the receiver, which together satisfy the 

Nyquist inter symbol interference (ISI) criterion, are no 

exception to this. In order to decrease the number of 

operations needed to realize these filters, their coefficients are 

optimized by expressing them in canonical signed digit (CSD) 

format. As a CSD numerical digit can take 3 values: +1, 0 and 

-1, more information can be represented using fewer digits 

compared to binary, without increasing the hardware 

complexity as an addition and a subtraction are basically the 

same operation. If K is the total number of nonzero digits in 

CSD representation of a coefficient, than K shifters and K-1 

adders per coefficient are needed. While the CSD 

representation of the coefficients can considerably simplify the 

filter implementation, additional approximation of the 

coefficients can be beneficial. On the other hand by decreasing 

the number of nonzero signed digits per coefficient the 

quantization error will increase, which will result in sub-

optimal filters. Thus we want to decrease the overall number 

of adders needed to realize the filter while preserving the 

desired pulse shaping filter characteristics, such as: the ISI 

level after matched filtering and the ratio of peak ripple to the 

average level in the pass-band, and limiting the error from the 

ideal filter.  

In literature, various algorithms for designing FIR filters with 

CSD coefficients have been proposed [1-7]. However, pulse 

shaping and matched filtering are more specific in the sense 

that the optimization of the coefficients for these filters should 

be done by taking into account the combination of both 

transfer functions. In this case, the optimization of filter 

coefficients becomes harder since for every set of coefficients 

the convolution of the impulse responses of the pulse shaper 

and the matched filter should be evaluated in order to verify 

whether the set is optimal or not. In this paper a new method 

to find a filter coefficient set for the pulse shaping and 

matched filter with a forset limited number of nonzero signed 

digits per coefficient in CSD format is presented. The idea is 

to increase the accuracy for the central coefficients which 

contribute to 90% of the filter power while decreasing the 

number of nonzero signed digits for the rest of coefficients. 

The remaining filter coefficients are rounded to the nearest 

CSD representation with a single nonzero signed digit.  

The rest of this paper is organized as follow: in the next 

section the problem is discussed in more detail, in the third 

section the description of the new method is shown. Results 

and a design example are discussed in the fourth section while 

the final section provides some conclusions. 

II. PROBLEM DFINITION 

Let’s consider the root-raised cosine filter (RRC) as pulse 

shaping filter. The frequency response of the RRC filter is 

given as [8]: 

𝐻𝑡 𝑓 = 𝐻𝑟 𝑓 = 
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in which β is the roll-off factor and 𝐻𝑡 𝑓  and 𝐻𝑟 𝑓  are 

frequency responses of transmitter and receiver filter, 

respectively. Its continuous-time and finite-spectrum nature 

would require infinite amount of taps and precision for the 

coefficients. Given reality’s limitations the number of taps 

should be finite, usually up to 100. Together with the matched 

receive filter the overall frequency response 𝐻 𝑓 = 𝐻𝑡 𝑓 ∗
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𝐻𝑟 𝑓  should ideally yield a Nyquist filter, hence satisfying 

the criteria for zero ISI [8]: 

ℎ 𝑛 = 0, 𝑛 = 𝑁 ± 𝑘𝑀, 𝑘 = 1,2, … , 𝐿               (2) 

in which ℎ 𝑛  represent the impulse response coefficients of 

𝐻 𝑓  at time nT, M is the oversampling factor, h(N) is the 

central coefficient of impulse response and L is the symbol 

length of the filter. 

The ISI will be zero for filters with infinite precision 

coefficients. However, any quantization of filter coefficients 

will result in nonzero ISI. The conventional measure of the ISI 

distortion can be expressed as the ratio of the sum of 

amplitudes of ℎ(𝑁 ± 𝑘𝑀) terms over the amplitude of the 

central impulse response [3]: 

𝐼𝑆𝐼 =
  ℎ(𝑁±𝑘𝑀) 𝐿

𝑘=1

 ℎ(𝑁) 
                              (3) 

The number of coefficients to be optimized depends on the 

filter symbol length and the oversampling factor. If the filter 

symbol length is 8 and the oversampling factor is also 8, then 

the number of coefficients to be optimized is 65. Due to the 

filter symmetry the real number of coefficients to be optimized 

will be decreased by a factor of 2. 

The set of filter coefficients with infinite precision is given by 

inverse Fourier transform (IFT) of equation (1). In order to be 

able to realize the filter in FPGA, coefficients should be 

written with finite precision length, thus limiting the number 

of nonzero signed digits per tap. In the CSD format each 

coefficient, 𝑐𝑖  , is given by [1]: 

𝑐𝑖 =  𝑎𝑘 ,𝑖2
−𝑘𝑁

𝑘=1                                   (4) 

in which 𝑎𝑘 ,𝑖 ∈  −1,0,1 ,  N represents the bit length of the 

coefficient. 

First of all we will define the theoretical minimal number of 

operations per filter as the number of the coefficients per filter. 

Since each coefficient of the filter cannot be written with less 

than one nonzero signed digit in CSD format then the 

theoretical lower bound of number of operations per filter 

equals the number of coefficients used. By quantizing each 

coefficient to the nearest CSD representation with a certain 

number of nonzero signed digits, obviously the quantization 

error will increase. However, the quantization error on 

particular coefficients is not a sufficient criterion, but the 

overall error of the chosen set of coefficients from the ideal 

one has to be considered. It has to be minimal compared to all 

other potential sets.  

𝑒 =   ℎ(𝑘) − ℎ𝑖𝑑𝑒𝑎𝑙 (𝑘) 𝐿∗𝑀+1
𝑘=1                     (5) 

Another quality indicator of a pulse shaping filter with 

quantized coefficients is the inter-symbol interference ratio 

(ISI). Hence, two performance indicators need to be taken into 

account in order to find the optimum set of coefficients: 

equations (3) and (5), both need to be minimized. At the same 

time the ratio of peak ripple to the average level at pass band 

𝛿/𝑏 should be kept under -30 dB [3]. 

𝑚𝑖𝑛  
  ℎ(𝑁±𝑘𝑀) 𝐿

𝑘=1

 ℎ(𝑁) 
                              (6) 

𝑚𝑖𝑛   ℎ(𝑘) − ℎ𝑖𝑑𝑒𝑎𝑙 (𝑘) 𝐾∗𝑀
𝑘=1                        (7) 

III. METHOD DESCRIPTION 

Let F be the set collection which contains all the sets of filter 

coefficients with word length of 16 bits. Let S be the sub-

collection of F which contains all the sets of coefficient 

combinations where every CSD representation of taps does 

not exceed the maximal number of signed digits per tap, K.  

𝐹 =  𝑍:  𝑍 =  
𝑐∶ 𝑐= 𝑎𝑘2−𝑐𝑘16

𝑘=1
𝑎𝑘= −1,1 ; 𝑐𝑘∈ 1,2,…16 

                    (8) 

𝑆 ⊂ 𝐹 =  𝑍𝐾:  𝑍𝐾 =  
𝑐∶ 𝑐= 𝑎𝑘2−𝑐𝑘𝐾

𝑘=1
𝑎𝑘= −1,1 ; 𝑐𝑘∈ 1,2,…16 

               (9) 

The maximal number of nonzero signed digits in one of the 

sets in S will be K*M, where M is the number of coefficients. 

We want to find the optimum set of coefficients out of S, such 

that the number of maximal nonzero signed digits per 

coefficient K is pre-fixed and the total number of signed digits 

in the set does not exceed M*K.  

Rounding all the coefficients to the nearest CSD 

representation with a fixed number of nonzero signed digits 

does not necessarily yield the optimal solution. To broaden the 

search space, all sets including the D nearest CSD 

representations of each coefficient will be included. However, 

if more options per coefficient are taken into account the 

number of sets in S will increase exponentially with the 

number of coefficients to be optimized. So the design space S 

might become too large to scan for the optimum set of 

coefficients, hence, a way to decrease the number of sets in S 

is required. 

If D is the number of combinations with K maximum signed 

digits per coefficient and M is the total number of coefficients 

then the sub-collection S will have 𝐷𝑀  potential sets. One 

should keep in mind that the convolution should be computed 

for every potential set in order to check equation (6).   

In order to decrease the searching space, only the D nearest 

CSD representations with K nonzero signed digits of the 

central coefficients that contribute to 90% of the total filter 

power are included in the search space, while all other 

coefficients are rounded up to the nearest CSD representation 

with a single nonzero signed digit. This is also the theoretical 

lower bound of the number of operations per coefficient. The 

representation of these coefficients with only one nonzero 

signed digit can be allowed since most of them have a low 

value and even if the quantization error of these coefficients is 

high it will not impact the ISI ratio too much or the overall 

error from the case with infinite precision taps. Doing so the 

number of sets in sub-collection S will decrease by a factor of 

𝐷𝛼𝑀  where 𝛼 is the ratio of coefficients that do not take part in 

90% of the filter power. By increasing the symbol length of 



 

the RRC filter this ratio increase too, this means the number of 

sets in sub-collection S will decrease. In turn the number of 

coefficients written with one nonzero signed digit in CSD 

format in total is increased. This brings the total number of 

operations per filter towards the theoretical minimal number 

of operations bound. So the ratio between theoretical minimal 

number of operations per filter and the number of operations 

per filter after optimization will approach 1 by increasing the 

symbol length (see table II, ratio γ).  

In case a filter with filter length of 8 symbols and 

oversampling ratio of 8 is considered, the number of 

coefficients to be optimized will be  
8∗8+1

2
 = 33, hence, S 

will contain 333  possible sets of coefficients to be checked. 

Out of these 33 taps just 13 central taps make up to 90% of the 

filter power, for which D=3 CSD options per tap are taken 

into account, while for 20 remaining taps a single CSD option 

is chosen.  So by using this method to decrease the number of 

sets in S the new searching space will have 20 ∗ 313  sets to 

search over. The number of sets in S is decreased by a factor 

of 317 .  

In terms of FPGA resources used by the filter, we gain due to 

the higher number of coefficients written with a single 

nonzero signed digit. Taking into account that the absolute 

value of most of these coefficients is nearly zero and the 

fluctuation of coefficient values are low far from the filter 

center, then most of these coefficients are rounded to the same 

value. So most of these coefficients are written with the same 

expression which even further decreases the area used in the 

FPGA. Also, by using horizontal and vertical sub-expression 

elimination [9,10] the number of adders and shifters will be 

reduced significantly.   

The algorithm of this method is given below: 

Step 1 Given the coefficients set of the filter with infinite 

precision,  ℎ(𝑛) ∞ . 

Step 2 Find the central coefficients that take part in 90% of 

the filter power. 

Step 3 Find the D nearest CSD format representations of 

these coefficients that do not exceed the maximal 

number K of nonzero signed digits per coefficient. 

Step 4 Find the nearest CSD format of the remaining 

coefficients with a single nonzero signed digit. 

Step 5 Fill in the search space S with all possible 

combinations yielding 𝛼𝑀 ∗ 𝐷𝑀−𝛼𝑀  possible sets. 

Step 6 Calculate the convolution of pulse shaper and 

matched filtering for each set in S in order to 

calculate equation (3). 

Step 7 Continue searching the space S until the optimal set 

with (6) and (7) is fulfilled, while 
𝛿

𝑏
<-30 dB is 

found. 

IV. RESULTS AND DESIGN EXAMPLE  

MATLAB R2013a was used to test the algorithm and to 

design RRC filters with different symbol length as pulse 

shaping filters. In Table I the parameters used for simulation 

are given. 

It is known from [3] that a good approximation of FIR filter 

coefficients is typically achieved with 2 – 4 nonzero signed 

digits per tap. So for each central coefficient that contributes 

to 90% of the filter power three nearest combinations (D=3) 

with maximum 2 nonzero signed digits per coefficient were 

taken (the worst case is considered). The choice of parameter 

D is crucial for the algorithm since it will define the searching 

space dimension. The other coefficients were rounded to the 

nearest CSD representation with a single nonzero signed digit, 

thus taking the theoretical lower bound of number of 

operations per coefficient. In this way the number of 

coefficients written with more than one nonzero signed digit 

was decreased. A graph showing the ratio 𝛼 of coefficients 

assigned to a single signed digit over the coefficients with 

more signed digits is given in Figure 1. Also in Figure 1 ratio 

γ shows the ratio between theoretical minimal number of 

operations per filter and the number of operations after 

optimizations. By increasing the symbol length this ratio 

approach 1 since 90% of filter power will be concentrated in 

fewer central coefficients, which in turn increase the number 

of coefficients written with just one operation. 

TABLE I.  SIMULATION PARAMETERS 

Roll-off factor 𝛽 0.3 

Oversampling rate 8 

Number of symbol length 3-16 

Number of taps 25-129 

Number of signed digits per tap K 2 

D nearest combinations 3 

Bits per coefficient 16 

 

Fig. 1. Ratio 𝛼 of coefficients assigned to a single signed digit over the 
coefficients with more signed digits and ratio γ of theoretical minimal number 

of operations per filter over the number of operations after optimizations. 



 

TABLE II.    DATA GATHERED FROM SIMULATION: NUMBER OF SIGNED DIGITS USED, ERROR IN TIME DOMAIN, ISI RATIO AND 𝛿/𝑏  THE RATIO 

In Table II the data taken from the simulation is 

summarized. Number of taps gives also the theoretical 

minimal number of operations per filter. The starting point 

gives the truncated RRC filter with finite coefficient 

precision but without optimization of nonzero signed digits 

number. The ISI ratio is calculated at the output of the 

matched filter, after the convolution of the two RRC filters. 

𝛿/𝑏 gives the ratio between the peak ripple 𝛿 and the 

average level at the pass band of the matched filter 

frequency response. Comparing the number of nonzero 

signed digits needed in the finite precision case without 

optimization with the number of nonzero signed digits 

needed after using the proposed method, it can be seen that 

around 65% less nonzero signed digits are used to describe 

the filter coefficients set (column V). Also the ratio between 

the theoretical number of operations per filter and the 

number of operations per filter after optimization is 

increased by increasing the filter length (column VI). So the 

optimization is higher for filters with longer filter length and 

number of operations per filter gets closer to the theoretical 

minimal number of operations per filter. At the same time 

the ISI ratio after matched filtering is decreased from 20 to 

60 dB compared with the starting point while the ratio 𝛿/𝑏 

is kept under -30 dB, as it is proposed in [3]. The error in 

time domain between the starting point and the optimized 

value lies between -15 and -17 dB which is acceptable based 

on [3]. Regarding the computation time it is in terms of 

seconds (up to 30 seconds) for short filter lengths (up to 17 

symbols) while for larger filter lengths (up to 50) it is in 

terms of minutes (up to 2 minutes). Keeping in mind that the 

optimization is done beforehand then the computation time 

is acceptable. 

TABLE III.  COMPARING RESULTS BETWEEN SIMULATED ANNEALING 

AND OUR ALGORITHM REGARDING ISI RATIO IN LINEAR SCALE 

Nr. of 
taps 

SA ALGORITHM [7]a OUR ALGORITHM 

# of signed digits ISI # of signed digits ISI 

27 54 0.027 16 0.033 

31 62 0.038 16 0.04 

35 70 0.057 16 0.042 

a. Results from Table IV in [7] 

A. Comparision with simulated annealing algorithm 

We compared our results with the simulated annealing 

algorithm in [7]. For this comparison an RRC filter with roll 

off factor of 0.25, precision of 10 bits per coefficient and 

oversampling ratio of 2 was taken, as described in [7]. The 

results are given in Table III, where the ISI ratio is given in 

linear scale. It is seen that the ISI ratio after matched 

filtering is nearly the same or better with our algorithm but 

up to 78% less nonzero signed digits per filter are used. For 

SA algorithm there are no data presented for error on time 

domain, while our algorithm finds the optimum coefficient 

set with minimal ISI and minimal error. On the other hand 

the computational time for our algorithm is in terms of 

seconds and always will give the optimum solution since all 

the space S is searched. On the other hand SA algorithm for 

higher filter length than 39 do not give the optimal solution 

on the first run, so more runs of the algorithm are required 

in order to find the reliable solution, which increase the 

computational time too.   

Design Example:  As  a  design  example  we  take  RRC 

filter with  symbol  length  of  6,  oversampling  factor  of  8  

and precision of 16 bits per coefficient. 25 coefficients have 

to be optimized in total. Figure 2 shows the magnitude 

Filter 

Symbol 
Length 

Nr of 

taps (A) 

Nr of signed 

digits starting 
point (B) 

Nr of signed 

digits after 
optimization 

(C) 

Ratio 

(C/B) 

Ratio 

γ 

(A/C) 

ISI in (3) after 

matched filtering 
for starting point 

[dB] 

ISI in (3) after 

matched filtering 
after optimization 

[dB] 

Ratio 𝛿/𝑏  
[dB] after 

optimization 

Error e 

in (5) 
[dB] 

3 25 124 44 0.35 0.57 -24.95 -Inf -31.82 -17.54 

4 33 145 54 0.37 0.61 -15.9 -43.7 -33.69 -17.61 

5 41 183 64 0.35 0.64 -36.59 -188.88 -31.62 -16.74 

6 49 209 74 0.35 0.66 -28.48 -71.02 -33.22 -16.33 

7 57 237 82 0.35 0.69 -40.76 -100.76 -31.29 -15.46 

8 65 257 92 0.36 0.71 -35.03 -82.3 -35.39 -15.94 

9 73 277 100 0.36 0.73 -38.37 -86.18 -34.74 -15.75 

10 81 304 108 0.35 0.75 -31.73 -71.05 -34.95 -15.62 

11 89 326 118 0.36 0.75 -44.1 -83.14 -38.39 -16.3 

12 97 350 126 0.36 0.77 -37.84 -73.28 -38.78 -16.21 

13 105 375 134 0.36 0.78 -51.43 -79.73 -39.02 -16.05 

14 113 393 144 0.37 0.78 -48.53 -75.79 -38.95 -16.15 

15 121 413 154 0.37 0.79 -46.25 -70.58 -37.54 -17.78 

16 129 433 162 0.37 0.80 -40.15 -67.72 -37.47 -17.7 



 

response after matched filtering for the two cases: before 

and after coefficients optimization. It is seen that the stop-

band attenuation after matched filtering is around 34 dB 

(δ b = −34𝑑𝐵). The ISI ratio from (3) is -71 dB.  Figure 3 

shows the impulse response after matched filtering for both 

cases: before and after coefficients optimization. The 

coefficients which are away from the filter center are 

rounded to CSD format with a single nonzero signed digit. 

Their quantization error in absolute terms is small due to 

their limit contribution to the total filter power. On the other 

hand, some of the central coefficients that take part in 90% 

of the filter power have higher quantization error. By 

increasing the maximum number of nonzero signed digits 

for central coefficients, let say to 4 signed digits, the 

quantization error will decrease too. The total quantization 

error in this case is -16.33 dB, which is on acceptable range 

[3]. 

The quantized coefficients for the design example filter are 

given in Table IV. It can be noticed that most of the 

coefficients which are written with one operation have the 

same expression in common, which means that the FPGA 

resources used for the filter implementation are reduced 

further by exploiting methods for sub-expression 

elimination [9,10]. For example, coefficients 

ℎ 5 , ℎ 6 , ℎ(7) have the same  expression. The number of 

operations used for this implementation compared with 

starting case before optimization is reduced by 65%, as it is 

shown in Table II (row 6). 

I. CONCLUSIONS 

A new approach to design multiplier-less pulse-shaping and 

matched filters with minimal number of nonzero signed 

digits is introduced. The new approach takes into account 

the central filter coefficients that contribute to 90% of the 

filter power by using more nonzero signed digits for these 

coefficients, while rounding the others to the nearest CSD 

value with a single nonzero signed digit. It was shown that 

up to 65% less nonzero signed digits per filter were used 

compared to before optimization. At the same time the ISI 

ratio was decreased from 20 dB to 60 dB while the peak 

ripple in the stop band to average level in pass band was 

kept under -30 dB. 

Comparison with simulated annealing algorithm shows that 

the ISI ratio was nearly the same or better with the new 

algorithm, however up to 78% fewer nonzero signed digits 

were used. This in turn reduces the FPGA resources used 

for pulse shaping filter realization with 65% compared with 

the FPGA realization without optimization. 
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TABLE IV.  THE QUANTIZED COEFFICIENTS AFTER OPTIMIZATION FOR 

THE DESIGN EXAMPLE FILTER 
n h(n) n h(n) n h(n) 

0 −2−6 8 2−6 17 2−7+2−10 

1 −2−7 9 2−7 18 2−4+2−6 

2 −2−8 10 −2−6 19 2−3+2−6 

3 2−7 11 −2−5 20 2−2−2−7 

4 2−6 12 −2−4+2−7 21 2−2+2−7 

5 2−5 14 −2−4−2−7 22 2−1−2−3 

6 2−5 15 −2−4+2−8 23 2−2+2−4 

7 2−5 16 −2−5+2−8 24 2−1−2−4 

 

 

Fig. 2. Magnitude response after matched filtering for RRC filter with symbol length of 6 and oversampling factor of 8. 



 

 

Impulse response after matched filtering for RRC filter with symbol length of 6 and oversampling factor of 8. 
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