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A B S T R A C T   

Under the dual thrust of decarbonisation and digitalisation, data-driven enabling technologies become the most 
promising solutions to reducing the time, cost, and effort required in the development of modern internal 
combustion engines (ICEs) in which it is hard to handle high-data-cost, high-dimensional, complex nonlinear 
modelling problems. This paper proposes a view of data-driven enabling technologies used in ICE soft sensors 
with a focus on the reduction of experimental effort and model complexity to accelerate the development of ICE 
decarbonisation. The current progress in data-driven modelling of ICEs is briefly outlined from four aspects: data 
acquisition methods, data processing methods, machine learning methods and model validation methods. 
Moreover, the challenges of establishing ICE models with high accuracy, fast response, and strong robustness for 
real-time control are structured and analysed. Based on the challenges, perspectives on three aspects of versa-
tility, practicality, and autonomy are presented. Finally, physics/data-enhanced machine learning and digital 
twin technology are suggested to empower soft sensors used for modern ICEs.   

1. Introduction 

Internal combustion engines (ICEs) are indispensable in the current 
power generation and transportation industries. It is critical to improve 
engine performance and efficiency and to reduce harmful emissions. 
After decades of research and design, ICEs have been now comprehen-
sively developed but have also encountered bottlenecks. Engine 
modelling as the core task aims 1) to predict engine performance 
without having to conduct tests; 2) to deduce the performance of pa-
rameters that can be difficult to measure in tests. Such as engine-out 
transient emissions prediction, combustion knock and auto-ignition 
prediction, combustion noise and ringing intensity modelling, combus-
tion mode transition modelling, they are still challenging due to the high 
nonlinearity and complexity and the highly transient and broad oper-
ating conditions of ICEs. In order to overcome these problems in the 
development of modern ICEs, accurate, fast-response, and low- 
development-cost enabling technologies are urgently needed to pro-
mote their decarbonisation and commercialisation. 

Physically based modelling, although interpretable, requires 
immense expertise, and its solving process is time-consuming and un-
suited for control purposes. Rapid development in informatics has 

enabled fast modelling of complex physical systems based on the mea-
surement of real-world performance. Plenty of machine learning solu-
tions have been proven to be able to handle complex nonlinear 
modelling problems in ICE development [1]. The successful implanta-
tion of data-driven models into engine control systems usually relies on a 
good quantity of experimental data. On the other hand, ICE experiment 
is typically complicated, costly, and time-consuming, due to detailed 
and accurate mechanisms of process or a wealth of experience and 
knowledge. In addition, the increasing complexity of modern ICE 
development makes these preconditions (e.g., emissions) difficult to 
meet. Therefore, it is imperative to develop data-driven modelling 
technologies to provide faster simulations and reduce the required 
expertise, interactions with the physical environment, time, and exper-
imental costs for ICEs [2]. 

In view of Industry 4.0, soft sensors are efficient modelling means 
that are widely applied to meet the urgent development demand for 
different industrial applications. As a mathematical model with easy-to- 
measured variables as input and hard-to-measured variables as output, 
soft sensors estimate or predict important variables expediently [3]. 
Compared to the conventional physical sensors, the advantages of soft 
sensors are organised at each stage of the full life cycle, as shown in 
Fig. 1. As the unavoidable component of the digital economy, a soft 
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sensor helps the digital economy enhance carbon emission performance 
at the significance level of 5% [4]. In the research of David et al. efficient 
and large-size soft sensors even display an outstanding ability to reduce 
the carbon footprint up to ~100–1000X [5]. Raul et al. [6] proposed a 
soft sensor for the implementation of wireless networked control sys-
tems to reduce battery consumption by up to 21%. In Norway, soft 
sensors reduce energy consumption in paper production, saving elec-
tricity by 10% [7]. For the ICE development, the soft sensors have great 
potential to reduce the dependence on experts, so that they could save a 
large amount of time and cost from the production and maintenance 
compared to conventional physical them. This further assists in pro-
moting the rapid development of novel ICEs. 

1.1. Related review work 

Over the last two decades, plenty of review-type or survey-type ar-
ticles related to modelling methods and specific applications of soft 
sensors have been published. As organzied in Table 1, the article [3] 
based on the current most significant advancement, presents a 
comprehensive review of the developments on soft sensors in process 
monitoring, control and optimisation. Soft sensors have been demon-
strated to significantly reduce carbon emissions of power generation 
applications [8]. They also help use sustainable energy more effectively 
to reduce carbon emissions [9]. The comprehensive analysis and future 

Abbreviations 

ANN Artificial neural network 
DT Digital twin 
FCM Fuzzy C-means 
ELM Extreme learning machine 
GAN Generative adversarial network 
GB Grey box 
GMM Gaussian mixture model 
GPR Gaussian process regression 
ICE Internal combustion engine 
ML Machine learning 
NN Neuronal network 
QoS Quality of service 
SBIPV Smart building-integrated photovoltaic 
SVM Support vector machine  

Fig. 1. Physical sensors vs soft sensors during their full life cycles.  

Table 1 
The summary of the review papers on soft sensors.  

Review 
paper 

Publish 
year 

Characteristics 

[3] 2021 1. Includes the procedures of soft sensors 
2. Focuses on the most up-to-the-date advancement 
3. Needs to display more details of real applications 

[8] 2022 1. Analyses the different soft sensors for combustion in 
power generation applications 
2. Classifies combustion processes and the related 
applications of soft sensors 
3. Needs to compare the performance of different 
optimisation algorithms in the combustion applications 

[9] 2023 1. Summarises the application of Machine learning in 
sustainable energy 
2. Explains the Role of machine learning in future of 
multi-carrier energy systems 
3. Highlight the potential of circular integration 

[10] 2023 1. Analyses data driven technology comprehensively 
2. Proposes the application of data driven technology in 
SBIPV systems 
3. Needs to provide more recommendations for the 
specific application of data driven technology in SBIPV 
systems 

[11] 2021 1. Focuses on the engines with biodiesel 
2. Shows the details of the modelling process by using 
soft sensors 
3. Needs to display more details of real applications 

[12] 2023 1. Reviews the application of soft sensors on the ICE 
performance and emission prediction 
2. Includes the research about different ML technologies 
and algorithms 
3. Needs to show the outlook on ICE performance and 
emission prediction 

[13] 2022 1. Focuses on the application of the vehicle powertrain 
system 
2. Includes the design and control of the powertrain 
system 
3. Proposes the outlook of soft sensors in the entire 
vehicle industry 

[14] 2021 1. Introduces the application of deep learning 
2. Needs to display the more comparison between deep 
learning and other pure data-driven methods 

[15] 2020 1. Considers the background of Industry 4.0 
2. Introduces the Gray box technology 
3. Needs to display more detail of model construction 

[1] 2021 1. Focuses on the specific application: ICE 
2. Displays more details of Machine Learning 
3. Needs to display more comparison between the grey 
box and other pure data-driven methods  
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perspectives of data driven technology in the smart building-integrated 
photovoltaic (SBIPV) systems are displayed in Ref. [10]. For engine 
development, soft sensors still play an unavoidable role. The article [11] 
thoroughly reviews the use of soft sensor technology in dedicated en-
gines which use biodiesel and displays the superior potential of soft 
sensors for monitoring or controlling biodiesel systems in real-time. 
Similarly, The article [12] reviews the soft sensors used to predict ICE 
performance and emissions of ICEs. The soft sensors show a superior 
potential to extract the in-cylinder features and help to analyse the 
thermal process. Considering the entire vehicle powertrain system [13], 
summarises the application of soft sensors in the vehicle powertrain 
system, including the support for design and control components. 
Meanwhile, the outlook for the applications of soft sensors on the entire 
vehicle system is proposed. In Refs. [14,15], deep learning-based ap-
proaches and grey-box (GB) model-based approaches for data-driven 
soft sensors are specifically investigated, respectively. However, to 
date, few works provide some insight into the soft sensors of ICEs. The 
article [1] provides a critical review of the existing ICE modelling, 
optimisation, diagnosis, and control challenges and the promising 
state-of-the-art machine learning (ML) solutions for them. While this 
review article covers the related topic, no focus on data efficiency is put 
into the work. 

1.2. Scope and outline 

Based on the existing fruitful research outcomes, the focus of this 
paper is to observe the latest progress and common problems in data- 
driven soft sensors of modern ICEs and provide promising future di-
rections for related enabling technologies. 

The work presented in this paper is organised as follows. Firstly, the 
current progress in the data-driven enabling technology of ICE soft 
sensors is introduced and the related common issues are discussed. Af-
terwards, several future research directions are suggested to improve the 
versatility, practicality, and autonomy of ICE soft sensors. Based on 
these future research directions, some specific recommendations and 
implementation plans are proposed for assisting further improvement. 

2. Current progress and common problems 

Based on different functionalities, ICE models are generally devel-
oped for diagnostics, data analytics, optimisation, and control. To ensure 
the accuracy of predictive models, a large amount of data is usually 
obtained under diverse operating conditions. To build these models, 
there are four main phases, including data acquisition, data processing, 
model establishment, and model implementation. Its brief description is 
presented in Fig. 2, where each phase consists of its own main proced-
ures to assist ICE development. 

2.1. Data acquisition 

Data acquisition refers to the use of various sensors to collect 
experimental samples from a target physical system. To improve sam-
pling efficiency, Wang et al. [16] developed an efficient method for the 
identification of the engine volumetric efficiency map from transient 

condition data to reduce the map calibration time and cost compared to 
steady-state engine testing. The proposed method achieves the accurate 
identification of maps within the dynamic engine model in a short time. 
In the work of Li et al. [17], a Gaussian distributed resampling technique 
was proposed to locate and minimise the redundant data in the volu-
metric efficiency modelling. This allows screening a small number of 
samples with wide engine operations, which enables the proposed 
methodology to achieve superior learning efficiency with fewer samples. 
Though different methods have been applied to collect data efficiently, 
the quality of data acquisition is still unstable. The acquisition of 
experimental data in ICE development is a complex and expensive 
process. Selective collection of high-quality data needs to be taken into 
account in the design of experiments that could save significant exper-
imental costs. 

2.2. Data processing 

To further improve the quality of experimental datasets, the dataset 
often needs to be processed before the data can be utilised. Data 
cleaning, feature extraction and feature selection are typically employed 
for ICE development. Data cleaning refers to sifting out data that affects 
the quality of the dataset, such as missing values, outliers, etc. Feature 
extraction is to extract variables that can reflect the characteristic in-
formation of the target issue from the dataset, and feature selection is to 
filter out the redundant variables for feature dimensionality reduction. 
Effective feature extraction and feature selection approaches can guar-
antee model accuracy with minimum computational cost to a certain 
extent. A recent review summarised several feature extraction methods 
used for ICEs, including t-distributed stochastic neighbour embedding, 
time domain and frequency domain statistics, wavelet transform, and 
deep neural networks [18]. As for feature selection techniques used for 
ICEs, in addition to the common principal component analysis [19], 
there are other effective methods such as the least absolute shrinkage 
and selection operator feature selection method [20], feature ranking 
method [21], feature extension method based on in-feature interactions 
[22], elitist genetic algorithm [23], decision tree algorithm [24], and 
hybrid feature selection algorithm based on statistical measures [25] 
and Fourier transform [19]. Because of noises and complex interaction 
among the feature signals in ICE development, such these methods 
should be carefully analysed and selected for different cases to ensure 
the reliability of data representation. 

2.3. Model establishment 

Accurate modelling of ICE has always been a daunting task as ICE is 
considered as a complex physical system. Machine learning methods 
have been shown to be effective in predicting the highly nonlinear and 
complex phenomena occurring within ICE. Supervised learning is the 
most common machine learning approach, which is designed to learn 
the input-output relations through training and can be used for regres-
sion and classification, such as artificial neural network (ANN) [26,27], 
support vector machine (SVM) [28,29], extreme learning machine 
(ELM) [30] and Gaussian process regression (GPR) [29,31]. Relatively, 
unsupervised learning does not require labelled training data but is 

Fig. 2. A brief description of four main phases, including data acquisition, data processing, model establishment, and model implementation.  
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designed to recognise desired patterns from the available information 
set. Typical methods consist of K-means clustering, fuzzy C-means 
(FCM) and Gaussian mixture model (GMM), which are widely applied in 
industrial cases [32]. By using these machine learning technologies, 
however, interpretability and generalizability might be weak. Such 
brute force machine learning could be supplemented and improved by 
appropriate expert experience. 

2.4. Model implementation 

Data-driven models are, at this stage, widely used in various aspects. 
The specific model implementation includes model deployment, pre-
diction, evaluation, and maintenance. In the development of ICE, multi- 
faceted model implementation can replace traditional development 
models and save significant experimental costs. This helps to speed up 
the introduction of new ICEs into the marketplace. Summarising the 
current research, the progress of data-driven model implementation is 
inspiring. For instance, Siobhan et al. [33] presented a novel data-driven 
modelling approach to optimise the large-scale scenarios of electric 
vehicle charging. This data-driven model enabled rapid assessment of 
new electric vehicle rate designs. Meanwhile, the data-driven models 
have been used to predict various industrial indicators widely in the ICE 
industry [34]. For evaluation, data-driven models are generally vali-
dated to optimise their performance by using leave-one-out cross--
validation [35] and K-fold cross-validation [36]. Based on data-driven 
models, various novel diagnosis approaches are proposed [1]. In the lab, 
these methods are proven to enhance the model prediction performance. 
However, the application of soft sensors should achieve the different 
real-time requirements in practice. The practice efficiency of the model 
implementation in practice should be considered and researched for the 

further development of soft sensors. 

3. Future perspectives 

Future engines require to be adaptable, cost effective, environmen-
tally friendly and more efficient, with better fuel economy. Soft sensor 
technology is a promising solution to accelerate the achievement of 
these goals via empowering the versatility, practicality, and autonomy 
of ICEs. 

3.1. Versatility 

In order to adapt to complex environments and respond to different 
functional requirements, the high versatility of soft sensors needs to be 
met in the ICE development process. A soft sensor with high versatility 
owns the satisfactory ability to be compatible with different other 
technologies, such as digital twins and physics-informed learning to 
solve different kinds of issues. In ICE development, soft sensors are 
connected with data-driven enabling technologies to improve the effi-
ciency of ICE development in terms of 1) modelling, 2) calibration, 3) 
controlling, and 4) diagnostics [1]. For instance, a digital twin auxiliary 
approach based on an adaptive sparse attention network is proposed by 
Jiang et al. to achieve the high versatility in diesel engine fault diag-
nosis, as shown in Fig. 3 [37]. However, the reliability of the soft sensor 
multifunction still needs to be improved to face different complex in-
dustrial conditions. Meanwhile, how to appropriately match the re-
sources occupied by high versatility in soft sensors and the requirement 
for practical applications is still an issue which limits the further 
improvement of versatility in soft sensors. 

Fig. 3. Fault diagnosis process of digital twin based on an adaptive sparse attention network [37].  
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3.2. Practicality 

Early soft sensor development was obsessed with improving pre-
dictive performance, which caused the extremely complicated design of 
soft sensor algorithms. Inalg practice, the complex design brings a huge 
computational load and running time cost. Especially for the ICE 
development, the possible prediction delay brought by huge computa-
tional is intolerable. For ICE development, practicality is displayed in 
the ability of real-time prediction and acceptable implementation cost 
[38]. For the real-time control of ICEs, even the entire powertrain sys-
tem, some attempts have been reported. For example, multiple optimi-
sation methods have been proposed to improve the usage efficiency of 
the entire powertrain system, including ICEs, as shown in Fig. 4 [39]. To 
fill the gap between the laboratory outcome and the industrial practice, 
a further in-depth collaboration between academia and the industry is 
considered a useful approach to provide more flexible space and avail-
able opportunities to optimise the practicality of the current soft sensor 
algorithms. 

3.3. Autonomy 

Due to soft sensors being used in different application scenarios of 
the vehicular system, the robustness of soft sensors is considered as a key 
factor in measuring performance. Autonomy reflects the ability to 
compensate for system failures without external intervention and keep 
the satisfactory performance of models. Superior autonomy strengthens 
the robustness of models and saves the cost of manual adjustment. 
Therefore, it has become an urgent requirement for novel soft sensor 
technology. Although the direction of autonomy development has not 
been approached systematically and extensively today, it is inspiring to 
notice that there are some attempts reported. The authors in Ref. [40] 
proposed to conduct automated validation to improve the accuracy and 
reliability of soft sensors by integrating just-in-time models and relevant 
vector machines. Adaptive optimisation of the whole energy system is 
proposed for plug-in hybrid electric vehicles to improve the usage effi-
ciency significantly [41]. The schematic diagram of this adaptive opti-
misation is shown in Fig. 5. 

4. Recommendations 

Depending on the rapid development of informatics, many emerging 
enabling technologies show superior potential to assist the effective 
application of ICE soft sensors. This section introduces useful data- 
driven enabling technologies for the further developing directions of 
soft sensors in terms of 1) physics/data-enhanced machine learning and 
2) digital twin technology. 

4.1. Physics/data-enhanced machine learning 

The performance of a supervised machine learning model is largely 
influenced by the dataset that should contain abundant labelled data. 
However, collecting such an amount of labelled data tends to be a highly 
time-consuming, expensive, and complicated process in many practical 
applications. To reduce experimental effort and model complexity in 
developing accurate ICE predictive models, the emerging machine 
learning methods with data-directed and physical-directed enhance-
ments are presented for ICEs in this section. Fig. 6 displays these two 
enhancement methods for the data-driven soft sensors. 

4.1.1. Data-directed enhancement 
The data-directed enhancement assists in creating trustworthy 

models by improving the quality of data. As shown in Fig. 6, different 
data-enhanced approaches, e.g., scaling-down, data augmentation and 
knowledge transfer, are applied to enhance the models. 

Scaling down: Scaling-down sampling is applied to scale down the 
data size and extract the representative samples for further modelling 
[42]. By this sampling approach, the ICE model could be trained with 
fewer data and further save significant computational time. However, 
limited interpretability is still an unavoidable issue for the practical 
application of scaling-down sampling. 

Data augmentation: Compared to scaling-down sampling, data 
augmentation is applied to generate equivalent data for expanding the 
training dataset. For ICE diagnostics, one of the data augmentation, 
generative adversarial network (GAN) generates misleading data to 
strengthen the judgement ability of faults and further improve the 

Fig. 4. A real-time control framework with superior practicality [39].  
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classification accuracy of the ICE models [43]. At the same time, the 
misleading data bring negative noise for the ICE modelling, causing 
unstable training and even model collapse. How to fix these issues is the 
urgent need for the further efficient application of GAN. 

Knowledge transferring: Transfer learning [44] is a widely used 
method to transfer knowledge from current cases to unknown cases and 
further alleviate the need for large amounts of labelled data. The basic 
idea behind transfer learning is to transfer data information (features or 
models) from a source domain to a target domain to solve the problem of 
the lack of data in the target domain. Li et al. [45] presented a novel 
approach to geometric neuro-fuzzy transfer learning for a diesel engine 
fuelled with microalgae oil. This approach only utilises limited 

experimental data obtained by geometric screening to learn a 
high-precise transfer model of the in-cylinder pressure with different 
blending ratios. Though transfer learning has been proven to bring 
significant positive influences for modelling, the instability of the 
transferred performance is a major constraint to transfer learning. 

4.1.2. Physics-directed enhancement 
To enhance the interpretability and prediction accuracy of the 

models, physical information is involved in the modelling process to 
strengthen the connection between the physical plant and its soft sen-
sors. Various physical information is introduced in the modelling pro-
cess and forms the physics-directed enhancement to optimise the data- 

Fig. 5. The adaptive optimisation system displaying high autonomy [41].  

Fig. 6. The different enhancement approaches for data-driven soft sensors.  
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driven soft sensors widely [46]. 
Symmetry: By introducing the observational biases in the models, the 

physical principles are reflected as the learning functions, vector fields 
and other physical data. Using this physical information, the evolution 
of complex phenomena in the modelling process is detected. Based on 
this interpretable and physically enhanced model, the efficiency of 
Machine learning has been enhanced in practical applications [47]. 
However, the physical symmetry extremely depends on the sensors to 
collect various physical data. This will bring a huge experimental cost, 
including financial and time costs. To further develop the symmetry 
technology in practical applications, the efficient saving of experimental 
cost is necessary. 

Conservation laws: Physics-informed learning introduces inductive 
biases into the data-driven soft sensors to add tailored physical in-
terventions. These interventions, as the derivation of the physical con-
servation laws, further monitor the modelling process and fix the 
possible errors of the models. A classic example is the application of 
covariant neuronal networks (NNs), which is related to the rotation and 
translation invariances present in the many-body system and improves 
the prediction accuracy of NNs [48]. Due to the limited known conser-
vation laws in the physical world, this technology is hard to be imple-
mented in the complex task at the current stage. 

Dynamics: Because physics-informed learning keeps dynamic evalu-
ation during the entire training process, dynamics is the unavoidable 
influence factor. To solve the dynamics issues and favour the training 
convergence rapidly, learning biases, including loss functions, con-
straints and inference algorithms, are introduced into the models. 
Compared to the conservation laws, the dynamics is considered as the 
soft penalty constraint to approximately satisfy the physical laws. 
Though the positive influence of the Dynamics is proven [49], the un-
steady model performance brought from the approximate satisfaction in 
the different industrial applications still stops the further development 
of the dynamics. 

4.2. Digital twin technology 

In Industry 4.0, digital twin (DT) is gaining the ever-increasing 

attention of many scholars and industrial sectors. Due to the superior 
ability to reflect the physical asset as the virtual representation, DT has 
proven to be useful for the further development of the vehicle power-
train system, e.g., vehicle energy management [50] and the rapid 
development of ICE [51]. Model formulation, as we know, is funda-
mental of DT technology. Apart from this, DT technology also displays 
its outstanding potential in other directions. Inspired by DT’s new class 
defined by Grieves, the further development directions of DTs for the 
ICE industry are drawn in Fig. 7. 

4.2.1. Data fusion 
Data fusion aims to integrate data information and improve data 

quality before data usage. It generally includes three procedures of data 
preprocessing, data mining, and data optimisation. In many industrial 
cases, Data fusion has been proven to bring a significant positive influ-
ence, including more comprehensive and real-time reflection of each 
element in the entire vehicular system [52]. To be more significant, it 
can provide complementary views of the same phenomenon by 
combining multiple interrelated datasets. The fusing information allows 
more accurate inferences than those from a single dataset. 

4.2.2. Interaction 
Interaction is another attractive development direction. The inter-

action process includes flexible connection and efficient collaboration 
among all DT parts. By using different connection combinations, i.e., 
physical-physical, physical-virtual, and virtual-virtual connection, 
physical entities and virtual models are flexibly connected. This flexible 
connection assists the interactions among each DT part to provide the 
entire DT system superior ability to address complex and real-time tasks. 
It is proven in many practical cases, such as production system optimi-
sation [53] and fault diagnostics [54]. To maximise the efficiency of the 
whole vehicle system, the ICE needs to closely interact with other 
component parts such as motors, batteries, and drivers via different 
connection combinations of their DTs. To build accessible communica-
tion between each other, soft sensors are used to determine and integrate 
their communication signals to be readable. 

Fig. 7. DT evolution in ICE development.  
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4.2.3. Service 
Services also can be reinforced by DT on many occasions such as 

structure monitoring, lifetime forecasting, in-time maintenance, etc. Not 
only can new services be enabled by DTs, but also existing services can 
be enhanced by the new data supplied by DTs. The topics include service 
encapsulation, service matching and searching, quality of service (QoS) 
modelling and evaluation, service optimisation and integration, and 
fault-tolerance management [55]. Service encapsulation helps to ach-
ieve different functions by using the same interface. In contrast, service 
matching and searching could meet different requirements of DT service 
from different clients. For the long term, QoS modelling, and service 
optimisation continuously update the relative services whilst the 
fault-tolerance management monitors the possible fault. 

5. Conclusion 

Soft sensors are proven to own the superior ability to accelerate the 
development of modern internal combustion engines. To further 
enhance the performance of soft sensors, data-driven enabling technol-
ogies have been commonly applied in both labs and practice. Currently, 
the data-driven enabling technologies in soft sensors are limited by four 
major issues: 1) the instability of data acquisition’s quality; 2) the weak 
robustness of feature selection methods in different cases; 3) the poor 
interpretability of the established ML models and 4) the limited practical 
efficiency of data-driven enabling technologies in the engineering 
application. To address these issues, future perspectives are proposed in 
terms of versatility, practicality, and autonomy. Based on these per-
spectives, physics/data-enhanced machine learning and digital twins 
are considered the main assistance for the further development of soft 
sensors in ICEs. With these two advanced technologies, the performance 
of soft sensors in ICEs could be improved significantly, including less 
experimental cost, higher prediction accuracy and stronger practical 
robustness. 

Based on the comprehensive analysis of the current progress, further 
perspectives, and future recommendation, we hope this paper will be 
useful to inspire the academic and the industry which focus on soft 
sensors in the development of internal combustion engines and inspirit 
them in further research. 
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