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Abstract  

Industrial Cu-smelters still suffer from metal rich droplet losses in slags due to insufficient 

phase separation. One important factor in the mechanical entrainment of metal rich droplets in 

slags is their attachment to solid spinel particles, which are also present in the slag phase. 

Consequently, these particles hinder the settling of the metal droplets. In order to improve 

phase separation it is important to identify the fundamental mechanism governing this 

attachment.  

Industrial slags are, however, of an extremely complex nature and, therefore, the entrainment 

of Cu-alloy droplets is studied in this work in a simplified, synthetic PbO based slag (PbO-

CaO-SiO2-Cu2O-FeO-ZnO) containing solid spinel particles. This work presents results on the 

development and optimization of a methodology to characterize the synthetic system and to 

discover trends in the interaction at the interface between the spinel and Cu-metal phase. 

I. Introduction 

Slags play an essential role in pyrometallurgical processes acting as collectors for specific 

groups of metals and for the elimination of unwanted impurities. Although desirable, a perfect 
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phase separation is impossible and valuable metal losses are inevitable during these processes 

and, consequently, an important issue in metal extraction industries. In order to minimize 

these losses and further increase efficiencies of industrial processes, it is essential to 

determine the form and origin of the metal losses. 

Extensive research has been performed on Cu losses in the slag phase during Cu processing 

and refining processes. Currently, it is accepted that copper losses in slags are caused by 

chemical dissolution of copper and mechanical entrainment of Cu containing droplets.
[1-3]

 

Chemical dissolution of metals is inherent to pyrometallurgical processes and its occurrence is 

governed by the thermodynamic equilibrium of the system: The chemical activity of the 

metal
[1]

, the chemical composition of the slag/matte phase
[1; 4-6]

, the partial oxygen pressure
[1; 

4; 6]
 and the temperature of the system

[1; 6]
.  

Mechanically entrained metal droplets can originate from a variety of sources. Three sources 

have been discussed in detail in literature based on scientific research using both simplified 

and industrial slag systems:  

 entrainment due to charging of the furnace or tapping of the slag
[7; 8]

, 

 precipitation of metal from the slag due to temperature fluctuations
[9]

 or chemical 

reactions, 

 gas producing reactions (e.g. SO2-formation), dispersing the metal into the slag phase, 

as the gas crosses the metal-slag interface 
[9-11]

. 

There is however a fourth possible source on which only scarce literature data are available, 

namely the mechanical entrained Cu rich droplets due to their attachment to solid particles 

present in the slag. An industrial example is the attachment of Cu rich droplets, to spinel 

particles present in the slag. The specific and complex nature of the mechanisms responsible 

for this phenomenon, warrant a fundamental and systematic investigation.  

The present study aims to develop a methodology to the study the interaction between Cu 

droplets and spinel particles in a slag. To our knowledge, no systematic evaluation on the 

specific interactions responsible for this attachment phenomenon has been performed in 

literature so far. In order to gather the desired know-how on this interaction, a dedicated 

experimental methodology needs to be developed and optimized. First, the interaction of Cu 

with spinel particles present in the synthetic slag system PbO-Cu2O-CaO-SiO2-Al2O3-ZnO-

FeO is examined. Subsequently, the production of spinel substrates for high temperature 

contact angle measurements of Cu droplets in contact with the spinel phase is discussed. 

II. Experimental procedure  

A synthetic PbO based slag system has been chosen in this work: PbO-Cu2O-CaO-SiO2-

Al2O3-ZnO-FeO. This slag system has already been examined extensively by Jak and his co-

workers.
[12-15]

 In order to prevent that the used Cu-alloy would be fully oxidized, experiments 
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are carried out using a partial oxygen pressure of 10
-7

. In order to work in an industrially 

relevant temperature frame, a temperature of 1200 °C is chosen. 

A methodology has been developed to investigate the behavior of Cu droplets in a slag system 

towards spinel particles. The interaction of copper towards spinels present in the slag will be 

examined by decantation of one bigger Cu droplet through the slag system with a well chosen 

synthetic composition, consisting out of a slag phase and spinel particles. In order to increase 

the possible interaction, the slag is saturated with alumina; leading to a spinel layer at the 

interface between the slag system and the alumina crucible. The alumina crucible will react at 

this interface resulting in the formation of spinel solids. In the first series of experiments, the 

behaviour of pure Cu droplets in the spinel ([     ]  [     ] 
    ) single-phase region of 

the slag system, mentioned above, was examined, in order to evaluate the methodology. 

A. Thermodynamic calculations 

To find an appropriate slag system, factsage is used for thermodynamic calculations, using the 

FACT53 and FACToxid databases. All componensts of the synthetic slag system are 

included, namely CaO, SiO2, FeO, ZnO, Al2O3, PbO with addition of Cu. The temperature 

and the amount of oxygen is assumed to remain constant (1200°C,       
  ).

[16]
 

A slag composition in the spinel single-phase region has been selected based on 

thermodynamic calculations. The calculated composition is represented in table 1.  

Table 1: Composition for of synthetic slag composition, calculated using Factsage  

 ZnO PbO SiO2 Al2O3 CaO FeO 

wt% 5 50 11 7 7 20 

B. Experiments  

a. Melting of the slag composition  

All components are weighed and mixed. FeO is added as a combination of metallic iron and 

hematite, CaO is added as limestone. A protective SiC crucible, containing an Al2O3 crucible 

with the different components mixed, is heated in an inductive furnace (Indutherm) up to a 

temperature of 800°C, while a protective N2 atmosphere was established above the slag. At 

800°C, the N2 atmosphere is replaced by a CO/air mixture with volume ratio 1 to 2.44 and a 

flow rate of 60 l/h, which is preserved during the remaining experiment. The slag is 

subsequently heated to 1200°C and kept 30 minutes at this temperature in order to melt all 

components. Subsequently the components are mixed by bubbling N2 through the liquid 

mixture for 15 minutes. After an equilibration time of 150 minutes, the molten slag is mixed 

by bubbling N2 through the liquid mixture for 5 minutes in order to disperse the solids 

throughout the slag. After 10 minutes decantation, a sample is taken from the molten slag, 
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using a cold sampling bar. This slag sample is quenched directly in water. Subsequently the 

remaining slag is quenched in water using a spoon and dried in a dry chamber at 105°C.  

b. Interaction between saturated slag and Cu droplet  

Four samples of 30 g were taken from the quenched slag and fed into four separate alumina 

crucibles (20 ml) and placed in a resistance furnace. The furnace is heated up to a temperature 

of 800°C, while a protective N2 atmosphere is set above the slag. At 800°C, the N2 

atmosphere is replaced by a CO/air mixture with volume ratio 1 to 2.44 and a flow rate of 60 

l/ h. The furnace is subsequently heated to 1200°C and kept for one hour at this temperature, 

in order to assure that the slag is completely molten. Subsequently 2.5g Cu is added. After 7, 

21 and 42 minutes, a crucible is quenched completely by placing the crucible in water. The 

fourth crucible is cooled slowly under inert atmosphere (Ar). 

C. Analysis methodology 

For evaluation of the microstructure, the quenched slag is embedded in epoxy resin and 

subsequently grinded and polished. The microstructure of the slag is observed using optical 

microscopy (OM) and secondary electron (SE) imaging using scanning electron microscopy 

(SEM, Quanta FEG 450). The composition of the present phase is determined using energy 

dispersive spectroscopy (EDX).  

D. Results and discussion 

In a first section, the microstructure of the slag system is studied, before addition of the Cu 

droplets. Subsequently the formation of the spinel layer at the interface between the Al2O3 

crucible and the slag is discussed. In the next section, the interaction of the Cu droplet with 

spinel particles in the slag system is discussed and in the last section the methodology is 

evaluated. 

a. Slag system 

The microstructure of the slag phase before the addition of the Cu can be observed in Figure 

1. Two phases can be distinguished: a slag and a spinel phase (25.4 ± 3.4 vol%, white/black 

faceted solids in OM/SEM images). EDX analyses and compositions are given in Table 2. For 

the spinel particles, ‘FeO’ is defined as the sum of FeO and ‘FeO’ in Fe2O3. The spinel solids 

are formed from three spinel inducing constituents, namely Al2O3, FeO and ZnO. Moreover, 

the thermodynamic calculated phase equilibrium corresponds nicely with the experimentally 

obtained results.  
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Figure 1: (a) – (b) : OM image of microstructure phase after equilibration – Dark brown phase 

= slag phase ; light brown particles = spinel particles (c) : SE image of microstructure after 

equilibration – Light gray phase = slag phase; black particles = spinel particles  

Table 2: Composition of slag and spinel solids after equilibration based on EDX analysis  

 Al2O3 SiO2 PbO CaO ‘FeO’ ZnO 

wt% slag  9.29 25.47 45.69 9.62 6.83 3.06 

wt% spinel 41.41 0 0 0 35.77 22.80 

b. Evolution of spinel layer at interface with Al2O3 crucible 

As expected, a spinel layer has formed at the border of the alumina crucible in contact with 

the slag system was. The evolution of this spinel layer over time is shown in Figure 2. 

No well-defined spinel layer has formed after 7 minutes, while after 21 minutes a clear layer 

was detected of approximately 20 µm. After 42 minutes the layer was approximately 37 µm. 

EDX analyses were performed on the spinel layers of the crucibles quenched after 21 minutes 

and 42 minutes, and data are given in Table 2. The composition of the spinel layers is constant 

with time.  

Table 2: Composition of spinel layer of crucibles after equilibration based on EDX analysis  

 Al2O3 'FeO' Cu2O ZnO 

Quenching after 21 min wt% 42.87 25.61 4.06 27.43 

Quenching after 42 min wt% 46.01 23.58 4.51 25.88 

c. Interaction between spinel and liquid Cu  

The cross-sections of the quenched crucibles are shown in Figure 3. It can be seen that in the 

first quenched crucible the Cu droplet bursts out of the slag during quenching. A possible 

explanation for this observation is the short duration of the experiment which causes only a 

limited reaction and entrains the Cu droplet occurred yet. After 21 minutes, the Cu droplet 

was decanted, but had an irregular shape. In time, the shape of the droplet appears to be more 

and more surface tension driven. The compositions of the quenched slag, spinel particles and 
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decanted Cu droplet are given in Table 3 and Table 4. It is observed that Cu has dissolved in 

the slag. A small fraction of Pb has dissolved in the Cu-droplet after 42 minutes. 

 

Figure 2: Spinel layer at alumina border. Phase A: Alumina crucible, phase B: spinel border, 

phase C: slag system (OM images (a) quenched after 7 min (b) quenched after 21 min (c) 

quenched after 42 min   SE images (d) quenched after 21 min (e) quenched after 42 min). 

 

Figure 3: Cross-sections of quenched crucibles after (a) 7 minutes (b) 21 minutes (c) 42 

minutes and (d) slowly cooled under protective atmosphere. 

 

Because a spinel layer forms at the bottom of a crucible and by dropping a large Cu particle 

into the slag, the interaction with the resulting Cu droplet and the spinel layer can be easily 

visualized. As a result the interaction between a Cu metal droplet and the spinel crystals can 

be studied while both are in contact with slag. 

 

 



 A methodology to study the interaction between Cu droplets and spinel particles in slags 

 

Proceedings of EMC 2013 7 

Table 3: Composition of slag phase and spinel phase in crucibles after quenching based on 

EDX analysis 

 Al2O3 SiO2 PbO CaO ‘FeO’ ZnO Cu2O 

Quenching after 21 min 

wt% slag 10,75 24.84 37.14 7.79 10.81 0 8.65 

wt% spinel 14.20 0 0 0 68.23 17.54 0 

Quenching after 42 min 

wt% slag 11.67 21.23 42.25 6.78 8.51 1.24 8.24 

wt% spinel 21,48 0 0 0 58.33 16.59 3.57 

 

Table 4: Composition of decanted Cu droplet after quenching based on EDX analysis  

 

Microstructural analysis allows to study the interaction between the spinel particles and Cu.  

During the persecuted experiments with the simplified slag system and the Cu droplet, it was 

observed that in none of the crucibles copper droplets stuck to the spinel particles present in 

the slag. This is different from what is observed in industrial slag systems. Figure 4 shows the 

microstructure of the crucible quenched after 42 minutes. In the region far from the large 

decanted Cu droplet, which is on the right-hand side of the figure, no small Cu droplets stick 

to spinel particles, as illustrated in the detailed microstructure (b). Only in the region near the 

large Cu droplet, small Cu droplets are observed in the detailed microstructure (c). These 

small Cu droplets are probably due to the precipitation of dissolved Cu from the slag during 

too slow quenching. This phenomenon has already been discussed in literature by Genevski 

and co-workers
[17]

. Similar observations can be made in the other crucibles. In order to better 

understand the driving forces for metal droplets to stick to solids, further research is needed. 

 Cu O Pb 

wt% decanted droplet after 21 min 99.25 0.75 0 

wt% decanted droplet after 42 min 99.16 0.68 0.15 



De Wilde, Bellemans, Vervynckt, Campforts, Vanmeensel, Moelans, Verbeken  

  

 Proceedings of EMC 2013 8 

Figure 4: (a) OM image of the microstructure of the crucible quenched after 42 minutes (b) 

Detail of good quenched microstructure (c) Detail of slow quenched microstructure, close to 

the decanted Cu droplet 

d. Evaluation of the methodology 

It can be concluded that the developed experiment setup is suitable to study the interaction 

between spinel particles and Cu droplets, in a slag matrix. The droplet can be easily visualised 

in the crucible. Furthermore, the interaction can be evaluated in two possible ways, namely by 

spinel particles present in the slag, and by the spinel layer at the crucible border. 

 

III. Production of spinel substrates for high temperature 

contact angle measurements  

As at present most studies are performed in absence of slag matrix and in presence of a gas 

phase, it can be useful to compare to compare the results of the described methodology with 

results from gas-spinel-droplet experiments as schematically represented in figure 5. 

A conventional method to investigate interfacial interaction between a substrate and a liquid is 

observing the wetting behaviour of the liquid on the substrate, quantified by the contact angle. 

Analogously contact angle measurements between spinel substrates and Cu-alloys under 

varying atmosphere could yield the important influencing factors on the interfacial 

interactions between spinel and Cu-alloys. However, contact angle measurements are not 

evident for the current system. High temperatures have to be obtained in order to melt Cu and 

Cu-alloys (TM Cu = 1083°C). Consequently standard contact angle measurement equipment 

cannot be used.  
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Figure 5: schematic representation of the basic concept of the contact angle measurements 

Moreover, in order to be able to perform high temperature contact angle measurements with 

comparable results, measurements have to be executed using a repeatable and reproducible 

methodology. A suitable setup has to be developed, and spinel substrates have to be produced. 

Furthermore, Cu alloys have to be produced with a controllable amount of oxygen. As the 

presence of surface active species such as oxygen and sulphur is very import, the atmosphere 

has to be selected, controlled and varied carefully. Also the presence of other surface active 

species has to be avoided to prevent unknown and undesirable effects. 

A. Production of spinel substrates 

Good substrates for contact angle measurements should be dense, with minimal porosity, 

chemically homogeneous, free of thermal stresses and produced in a reproducible way. 

Therefore, a powder metallurgical process was chosen to produce spinel substrates. Two 

commercially available spinel powders have been selected as the starting material: MgAl2O4 

and Fe3O4. Extensive research is available on the production of MgAl2O4 spinel substrates.
[18-

21]
 Magnetite has been selected, as its occurrence in the Cu-production process has been 

discussed in literature.
[4; 22]

  

a. MgAl2O4   

For the production of MgAl2O4 substrates, the spark plasma sintering (SPS) equipment is used 

as described by Vanmeensel and co-workers.
[23]

 A graphite die/punch (inner diameter: 30 

mm) set up was filled with dry MgAl2O4 powder (<50 nm particle size, Sigma Aldrich) and 

subsequently SPS sintered (type HP D25/1, FCT system Rauenstein, Germany, equipped with 

a 250 kN uniaxial press) in vacuum for 6 minutes under a load of 60 MPa, applying a heating 

rate of 200°C/min. The pressure was increased gradually from 5 to 30 MPa at 1050°C within 

a period of 6 minutes and from 30 to 60 MPa within a period of 3 minutes upon reaching the 

sintering temperature, as shown in figure 6. After 6 minutes, the current is switched off and 

followed by a natural cooling, with a cooling rate of about 250°/min. The spark plasma 

sintered MgAl2O4 samples were polished using 1-3 µm diamond paste, while a finishing step 

using colloidal silica (20 nm) was applied. 
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Figure 6: SPS temperature profile determined by a pyrometer focused on the upper punch, 

SPS pressure profile applied to the sample, SPS piston speed, compact shrinkage of the 

MgAl2O4 substrate 

Density of the spinel substrate was determined in ethanol at room temperature, using the 

Archimedes method (BP210S balance, Sartorius AG, Germany). The density of the MgAl2O4 

substrate is 3.5 g/cm³. An XRD diffractometer (Siemens diffractometer D5000) was used for 

identifying the spinel phase in the SPS sintered substrate. The XRD pattern is shown in figure 

7. All of the diffraction peaks can be indexed to the cubic spinel structure of MgAl2O4 

(International centre for diffraction data, No 00-021-1152). This indicates that the SPS 

sintering does not have an influence on the chemical composition of the MgAl2O4.  

 

Figure 7: XRD pattern of MgAl2O4 substrate obtained by SPS sintering, and reference 

diffraction peaks (red) of MgAl2O4 (International centre for diffraction data, No 00-021-1152) 
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Five Vickers hardness indentations were made on the polished surfaces, applying an 

indentation load of 10 kg (FV-700 Vickers hardness indenter, Future-Tech Corp., Tokyo, 

Japan). The fracture toughness of the SPS processed materials was calculated from the crack 

lengths protruding from the edges of the hardness indentations. The Anstis formula was used 

to calculate the fracture toughness values
[24]

:  

 
2/3

2/1

1 016.0
c

F

H

E
K

V

C 









  

with E the Young’s modulus, estimated at 280 GPa , HV the Vickers hardness (GPa), F the 

applied indentation force (N) and c the crack length from the center of the indent to the crack 

tip (m). An average Vickers hardness and fracture toughness of HV-10kg of 13.8 ± 0.5 GPa 

and K1C = 1.5 ± 0.1 MPa.m1/2, respectively, were obtained, in good agreement with earlier 

reported values.
[25; 26]

 Representative optical micrographs of the polished MgAl2O4 

microstructure as well as 10 kg indentations are shown in Figure 8. 

Figure 8: Representative optical micrograph of the polished MgAl2O4 sample surface (a) and 

Vickers hardness indentations, with protruding cracks located at the indenter tips (b-c). 

Figure 9: Representative secondary SE image of polished and thermally etched MgAl2O4 

sample surfaces. The white circles in Figure (d) indicate the presence of closed pores at the 

triple junctions between the different grains. 
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The polished MgAl2O4 samples were thermally etched in air at 1200°C during 30 minutes 

(Nabertherm HT 16/17, Lilienthal, Germany), i.e. 100°C below the sintering temperature in 

order to avoid excessive grain growth by grain boundary migration. Scanning electron 

microscopy (SEM) was performed at 20 kV using a secondary electron detector (Philips XL 

30 FEG, Eindhoven, The Netherlands). A Au-Pt layer was sputtered on the samples. The 

secondary electron (SE) images (Figure 9 (a)-(d)) indicate that thermal etching was successful 

in revealing the grain boundaries in the polycrystalline material. Furthermore, a fine 

microstructure with a limited amount of pores, as indicated in (d), was obtained, indicating 

that SPS is capable of maintaining the intrinsic nanostructure of the powder, while enhancing 

the densification process. The majority of the grains have grain sizes ranging between 50 and 

500 nm, while local coarsening resulted in a limited amount of coarser grains with an average 

size of 1 µm. The shown microstructures clearly indicate that only isolated pores are present 

at the triple junctions between the distinct grains, confirming that open porosity is absent and 

guaranteeing that liquid Cu will not penetrate the spinel phase. Finally, it is expected that the 

fine microstructure and reduced porosity level will contribute to improved mechanical and 

functional properties such as bending strength and thermal shock resistance. 

b. Fe3O4 

Magnetite powder has been purchased ( < 5 µm, 95%, Sigma Aldrich) and free sintering has 

been applied. The powder has first been compressed into pellets and subsequently sintered. 

Different combinations of compression pressures and sintering conditions were tested. 

However, in each case, difficulties have been experienced with the physical properties and the 

chemical composition of the substrates.  

The main difficulties with respect to the physical properties were the occurrence of 

deformations, due to thermal stresses originating from the production process. The presence 

of these thermal stresses became visible during contact angle measurements performed on the 

produced substrates. The chemical instability of magnetite under the different sintering 

atmosphere also appeared to be inevitable, leading to the formation of a certain amount of 

hematite or wustite, as was confirmed by XRD measurements. This observation was related to 

the fact that there is only a restricted range of the partial oxygen pressures where magnetite is 

stable, as was for example described by Yang and co-workers. 
[27]

 

IV. Conclusions  

A suitable methodology has been developed to investigate the interaction between Cu droplets 

and spinel particles in the presence of a slag system, which has been confirmed by the first 

experiments, persecuted using a synthetic slag system with a composition in the spinel single 

phase region of the slag and pure copper. A comparison of this methodology with the 

interaction between spinel substrates and Cu in the presence of a gas phase, using high 

temperature contact angle measurements, could be very useful. A reliable and reproducible 
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methodology has been developed for the production of MgAl2O4 spinel substrates, which will 

subsequently be used in high temperature contact angle measurements.  
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