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Abstract

Digital images are generally created as discrete mea-
surements of light, as performed by dedicated sen-
sors. Consequently, each pixel contains a discrete
approximation of the light inciding in a sensor ele-
ment. The nature of this measurement implies cer-
tain uncertainty due to discretization matters. In
this work we propose to model such uncertainty us-
ing intervals, further leading to the generation of
so-called interval-valued images. Then, we study
the partial differentiation of such images, putting
a spotlight on antisymmetric convolution operators
for such task. Finally, we illustrate the utility of the
interval-valued images by studying the behaviour of
an extended version of the well-known Canny edges
detection method.

Keywords: Image processing, Interval-valued in-
formation, Edge detection, Canny method

1. Introduction

Mainly due to economic matters, digital sampling
has become the most common way to record and
store continuous facts, being video or audio sam-
pling paradigmatic examples of such. However, it is
evident that discretization processes miss (or lose)
a portion of the initial information, simply because
the range of possible measurements is limited to a
predefined set. In the case of a digital image, the
loss of information due to the model (the limitation
in the number of tones) is combined with that alien
to it (as noise or broken cells in the sensor). As a
consequence, we can never be fully certain about the
tone of a pixel, this fact having a variable impact on
different image processing tasks. In the field of edge
detection the problems originating from this uncer-
tainty manifest themselves clearly, since sometimes
not even two humans can reach an agreement on
where the boundary between two objects is.
Considering the inherent ambiguity of the infor-

mation in a digital image, fuzzy logic, either in a
narrow or wide sense [1], appears as an appropriate
tool for low level feature extraction. In fact, within
the context of image processing, edge detection has
been one of the tasks for which fuzzy logic has been
most prolific. It has been used for different purposes
at almost any step of the process, from the very in-
terpretation of the image [2, 3] to the reconstruction

of the edges once they have been characterized [4].
Authors have experimented with a wide variety of
techniques based on fuzzy logic, including fuzzy in-
ference systems [4], fuzzy morphology [5] and fuzzy
peer groups [6]. Many of such attempts are based
on representing images as classical Fuzzy Sets (FS),
for which the membership degree of each element is
expressed in the interval [0, 1]. However, apart from
FSs, many extensions have been proposed in order
to model fuzziness for edge detection. Among these
extensions, some relevant examples Interval-Valued
Fuzzy Sets (IVFSs), which represent membership
degrees by means of intervals [7], or Type-2 Fuzzy
Sets (T2FSs), which represent membership degrees
as FSs [8].

In this work we study a novel interval-valued rep-
resentation of images, which is constructed to cap-
ture the inherent ambiguity in the image capturing
(and discretization) process. Then, we analyze the
computation of gradients on such representation,
what leads to the introduction of the Canny method
for interval-valued images. Finally we include an
experiment in which we compare the results of the
Canny method in both scalar and interval-valued
images. In that experiment the use of the latter ap-
pears to be beneficial for edge detection, over using
scalar-valued images.

The remainder of this work is organized as fol-
lows. In Section 2 we analyze the measurement er-
ror in the representation of digital images. Then, in
Section 3 we present the adaptation of the Canny
method for interval-valued images, which perfor-
mance is analyzed in Section 4. A brief discussion
is included in Section 5.

2. Images and ambiguity representation

2.1. Image representation

In this work we consider images to be matrices of
M rows and N columns, so that Ω = {1, . . . ,M} ×
{1, . . . , N} is the set of their positions. Given an
image I, the value of a pixel at a certain position
p ∈ Ω, is referred to as I(p) (e.g. may an image
I be grayscale, then I(p) ∈ [0, 1]). Moreover, we
denote as w(p) ⊂ Ω to the set of positions in a
3× 3 neighbourhood centered at p, including itself.
Unless p belongs to the limits of the image, we have
|w(p)| = 9.
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2.2. Images and inherent ambiguity

Although relevant exceptions hold, digital images
are the result of the discretization of the real world.
That is, discrete, sampled version of continuous
facts, e.g. lightning (conventional photography) or
echoes to radio signals (SAR imagery). There are
different sources of uncertainty to be considered
when performing image processing tasks. Most of
such sources are contextual, in the sense that they
could be present (or not) in an image, depending
on the situation the image was registered at. Ev-
ident examples of those sources of contamination
are noise, distorting illumination or shading. How-
ever, there is also a source uncertainty inherent to
the very nature of digital images: the measurement
error. The image discretizes the reality in two differ-
ent facets, spatial and tonal, each of them producing
a measurement error:

• Spatial error: Surfaces and objects are contin-
uous in reality, so that their limits are compli-
cated to define in a precise manner. Moreover,
the limits might not coincide with those in the
pixel grid in the generation of the digital im-
age. Hence, due to the way the information
is stored, the digital representation might be
mislocating an object by 1 position in any di-
rection.
• Tonal error: Pixel values are taken from a finite
number of tones. There are usually 28 tones in
a grayscale image and 224 in a RGB one but,
even using a larger amount of bits per pixel,
there is always a limit in the tonal precision.
Hence, the measure error associated to the tone
of the pixel is as much as ± 1 tone.

Both of the errors above stem from the impreci-
sion of the discrete measure used in each dimen-
sion (spatial and tonal, respectively). Clearly, a
scalar representation of pixel brightness is not suffi-
cient for representing both errors (indeed not even
one of them). Having this in mind, we propose an
interval-valued representation of the image bright-
ness, which is able to account for both errors in
an explicit manner. The construction is straightly
driven from the above analysis of the measurement
error.

Let I be a grayscale image. The interval-valued
image Ĭ generated from I is given by

Ĭ(p) =
[
max(0, min

p′∈w(p)
I(p′)− 1),

min(255, max
p′∈w(p)

I(p′) + 1)
]
. (1)

In the construction in Eq. (1) we assign to each
position in the image an interval encompassing all
of the brightness values in a 3 × 3 neighbourhood
(assuming the spatial error), modified by ± 1 tone
(because of the tonal error) [9]. Note that the inter-
pretation of the interval is twofold. If considering

(a) Original Image (b) IV image

Figure 1: The Cameraman image and the lower and
upper bounds of its interval-valued representation.

that the pixel has one true value, it encompasses
the potential values of such. Alternatively, if un-
derstanding that the real value of a pixel cannot be
scalar, i.e. there is no single value than can repre-
sent the tone in that area of the image, the inter-
val encompasses (or represents) such range of tones.
The images generated from a grayscale image as in
Eq. (1) are referred to as Interval-Valued Images
(IV Images).

Figure 1 displays the Cameraman image, together
with the upper and lower bound of its interval-
valued representation. For obvious reasons, the up-
per and lower bounds are very similar to dilated
and eroded versions of the image [10], respectively.
Also, the inverval-valued representation is similar
to that produced with upper-lower constructors, as
presented in [7], when using certain combination of
parameters. However, the semantics of the informa-
tion, as well as the use of the interval-valued infor-
mation, are completely different.

The construction of IV images is robust against
some types of noise (as Gaussian one), but also quite
sensitive to some other kinds of contamination (as
impulsive or salt-and-pepper). Dealing with exter-
nal sources of contamination is not the main goal of
IV images, since they only intend to capture factors
intrinsically linked to the image representation.

The IV images provide a realistic interpretation of
the image, since the measurement error is embed-
ded in the original data. However, there are very
few procedures in the image processing field able to
deal with such a representation of the images. We
devote the rest of this paper to study discrete dif-
ferentiation methods, as well as to generalize the
Canny method for edge detection on IV images.

2.3. Differentiation of interval-valued
signals

The gradient of a signal is the n-dimensional exten-
sion of the concept of derivative. It is mathemati-
cally modelled as the vector containing the first or-
der partial derivative in n orthogonal directions. In
this sense, being S : Rn → R any signal, its gradient
at some position (i1, . . . , in) ∈ Rn is given by

∇S(i1, . . . , in) =
(
∂S

∂x1
, . . . ,

∂S

∂xn

)
,

with (x1, . . . , xn) representing a base of vectors
in Rn
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As the differentiation of discrete signals is an ill-
posed problem, image processing algorithms typi-
cally perform directional measurements of the vari-
ation of the signal change. This is done by convolv-
ing the discrete signal with specialized filters. The
study of such operators is vast and detailed [11, 12,
13], but has often rendered into the generation of
antisymmetric convolution filters [14].

To the best of our knowledge, no study has been
performed on the differentiation of interval-valued
signals. However, from the very definition of differ-
entiation, there is no evident problem in exporting
the concept from a scalar to a interval-valued setup.
When it comes to discrete signals, there is also no
problem in extending the concept of discrete convo-
lution to an interval-valued setup, as we will see in
the upcoming section.

3. The Canny method and its application to
interval-valued images

3.1. The Canny method

In 1983 Canny presented a master thesis [15] which
was further condensed into a very significant pa-
per [16]. The work by Canny presented several
ideas, each of them receiving different attention in
subsequent research. Following the trends in the lit-
erature, Canny studied the characterization of the
gradients of the image as a useful representation to
discriminate edges. Gradient-based edge detection
methods require, at least, three steps [17, 18]: regu-
larization of the image, characterization of the gra-
dients and discrimination of those pixels for which
the gradient indicates the presence of a significant
boundary. The attention received by each of the
three steps is very different. While regularization,
either context-aware or context-unaware, has been
common subject of study [19, 20], differentiation has
been seldom analyzed [21, 22], and edge binarization
is barely absent from the literature. Canny studied
all three steps in the boundary detection process.
However, the most acclaimed novelty in his work is
the definition of three criteria the gradient extrac-
tion operators should satisfy in the context of edge
detection, and derived an optimal filter for such cri-
teria. This filter happened to be very similar to the
negation of the first derivative of a Gaussian filter.
As a consequence, the first order Gaussian kernels
are known as Canny operators, despite Canny him-
self noted that the first derivative of Gaussian oper-
ator [..] should not be taken as the final word in edge
detection filters, even with respect to the criteria we
have used [16].
Typically, an edge detection procedure is referred

to as the Canny method when it involves, sequen-
tially, (a) Gaussian regularization of the image, (b)
Gradient extraction using two orthogonal first or-
der Gaussian kernels (see Fig. 2), (c) Non-maxima
suppression for edge thinning [23] and (d) hystere-
sis for binarization. It should be noted that some

(a) Filters with σ = 2.0

(b) Filters with σ = 4.0

Figure 2: Examples of Canny differentiation oper-
ators for gradient characterization, i.e. first partial
derivatives of isotropic Gaussian kernels with differ-
ent σ in two orthonormal directions.

additional procedures or techniques are needed to
properly produce a binary edge image, e.g. the de-
termination of the standard deviation of the Gaus-
sian filters or that of the thresholds used for the
hysteresis. Moreover, it is also relevant the fact
that Canny proposed many other variations of this
standard procedure, including anisotropic Gaussian
kernels for a better adaptation to 2D boundaries or
the fusion of gradients obtained at different scales.

Figure 3 displays an schematic representation of
the application of the Canny method on the Cam-
eraman image. First, the image is regularized us-
ing Gaussian filters, with well-known signal preser-
vation properties [24]. Then, the gradient at a
given position p is constructed as the concatena-
tion of the partial derivatives of the image, com-
puted by convolving the image with the first deriva-
tive of a Gaussian kernel in horizontal and verti-
cal directions. That is, ∇I(p) = (Ix(p), Iy(p)),
with Ix(p) = (I ∗ Gxσ)(p), Iy(p) = (I ∗ Gyσ)(p),
where Gxσ and Gyσ represent the partial differentia-
tion of a Gaussian kernel of standard deviation σ in
the horizontal and vertical axis, respectively. Once
∇I(p) is computed, many different techniques be-
come applicable to the creation of a binary represen-
tation of the boundaries. In this case, the gradient
magnitudes have been used to generate an inter-
mediate representation of the edges, in the shape
of a fuzzy set. In order to do so, we have se-
lected the normalized Euclidean norm ||∇I(p)|| =

1√
2

√
(Ix(x, y))2 + (Iy(x, y))2 (see [4, 25] for deeper

discussions on other options for combining the gra-
dient components). To finish, the conversion into
binary edges has been carried out using the Non-
Maximum Suppression (NMS) [23] and hysteresis,
combined with the double bowstring technique for
thresholding [26, 27].
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Figure 3: Schematic representation of the Canny edge detection method.

3.2. Application to interval-valued images

The introduction of IV images poses interesting
challenges to the application of the Canny method,
due to the interval-valued of the signal to be differ-
entiated. Initially, we could think of applying the
detector individually on the upper and lower bounds
of the intervals, as they are themselves scalar im-
ages. However, this is equivalent to considering
both bounds of the interval as independent, what
partially collides with the main idea behind IV im-
ages. Instead, we propose to replace the arithmetic
operators in the computational model proposed by
Canny to replace scalar operations by interval ones.
According to the Canny method, the partial

derivative in the horizontal axis, Ix, can be com-
puted as I ∗ Gxσ. For a given p ∈ Ω, p = (x, y), we
have

Ix(x, y) =
∫ ∞
x′=−∞

∫ ∞
y′=−∞

I(x+x′, y+y′)·Gxσ(x′, y′) ,

what becomes, in a discrete environment,

Ix(x, y) =
∞∑

i=−∞

∞∑
j=−∞

I(x+ i, y + j) ·Gxσ(i, j) .

Since the tails of a Gaussian distribution tend to
zero, we can safely restrict the support of the Gaus-
sian filter to some ψ = 2k + 1. In such case, we
have

Ix(x, y) =
k∑

i=−k

k∑
j=−k

I(x+ i, y + j) ·Gxσ(i, j) . (2)

The formulation in Eq. (2) includes interval sums,
differences and scalar-to-interval products, all of
them well defined in interval arithmetic [28]:

• Sum of intervals: [a, a] + [b, b] = [a+ b, a+ b];
• Difference of intervals: [a, a]− [b, b] = [a−b, a−
b];
• Product of a positive scalar s and an interval:
s · [a, a] = [s · a, s · a].

dv

dv

dh dh

p p p p p p p p p p p p r
rrc

g

g

(a) Area-based (b) Segment-based
interpretation interpretation

Figure 4: Visual representation of the area gradient
and its conversion to a segment. The area is arbi-
trarily assumed to be in the first quadrant, although
analogous in any other one.

We propose to adapt the Canny method by re-
placing the scalar operators by interval ones. In
this way, both partial derivatives of the IV image
are expressed as intervals. As a consequence, the
gradient estimated at the position p is no longer a
vector in R2, but an area instead, as illustrated in
Fig. 4(a). This area can be seen as a projection of
the uncertainty about the intensity of the pixels in
the image (and the object boundaries). Since the
initial data is unreliable, the uncertainty is propa-
gated when measuring local features (in this case,
the gradient). Following this interpretation of the
image brightness, we understand that the gradient
is located somewhere in the gray area in Fig. 4(a),
while its exact position remains unknown.

The area-based interpretation of the gradient in-
duces computational difficulties, more so consider-
ing our goal is to obtain a binary edge image. In
this work we propose a geometric interpretation of
the area in Fig. 4(a), which aims at converting the
gradient area into a segment. In order to do so, we
first calculate the center of gravity of the area,

c(p) =
[
Ix(p) + Ix(p)

2 ,
Iy(p) + Iy(p)

2

]
(3)

We take the segment created from the intersec-
tion of the area and the line passing through both
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Figure 5: Visual schema of the IV Canny edge detection method

the origin (0, 0) and c(p). From such segment, only
the part belonging to the quadrant to which c(p) be-
longs is retained. Note that, in case c(p) coincides
with the origin, we have a null gradient at position
p. In Fig. 4(b), this segment is defined by g (the
closest point to the origin) and g (the one furthest
away).
In order to follow the Canny method as closely

as possible, we have to generate a scalar representa-
tion of the edginess (computationally equivalent to
a FS [29]). However, in our case, instead of creating
directly a classical FS, we first use an IVFS, which
we denote G. The interval-valued membership de-
gree is expressed by G(p) = [||g||, ||g||], where || · ||
stands for the normalized Euclidean norm, as be-
fore.
Before using the classical procedures for binariza-

tion, the IVFS representation of the edges is turned
into a FS. To do so, we use the Kα operators, de-
fined as Kα([a, a]) = (a + α(a − a)). In this way,
α ∈ [0, 1] represents the optimism with respect to
the presence of edges. Once the edges are mod-
eled in the shape of a FS, the processing is as it
was in Fig. 3. We first use NMS for thinning the
edges1, then hysteresis, combined with the double
bowstring technique for thresholding.

This method for edge detection, as illustrated
in Fig. 5, is called the Interval-Valued Canny (IV
Canny) method.

Figure 6 includes some results of the IV Canny
method on the Cameraman image in Fig. 1(a).
First, we have regularized the image with a Gaus-
sian filter with σ = 1.80. At the moment of creating
a FS representation of the edges we have experi-
mented with different values of α. Note that the
upper and lower bounds of the IVFS are the FSs
generated with α = 0.0 and α = 1.0, respectively.
In this figure it is noticeable that increasing opti-
mism with respect to the appearance of boundaries,
leading to greater values of α, comes coupled to a

1The orientation of the gradient at each pixel is taken
from the incidence of the segment (g, g) in the origin.

larger number of boundary pixels. As an example,
we can observe how the background buildings take
shape as α increases. However, it remains unclear
whether increasing α truly produce better results,
since they also induce false positives (see, e.g. the
grass region in the image in Fig. 6).

4. Experimental results

4.1. Aim of the experiment

The aim of this experiment is to check the effect
of using IV images for edge detection. In this way,
we attempt to compare the results obtained by the
original Canny method on scalar images with that
on interval-valued ones.

4.2. Experimental dataset

In this experiment we have used the test and vali-
dation subset of the Berkeley Segmentation Dataset
(BSDS500) [30]. These datasets contain 200 and
100 images, respectively, together with hand-made
solutions, and were published as an extension (and
superset) of the original BSDS [31].

4.3. Quantification of the results

The evaluation of edge detection results has been
an open debate for a long time [32]. In this work we
approach the problem by assuming that edge detec-
tion can be seen as a binary classification problem et
al. [33], and consequently can be evaluated in terms
of success and fallout. We compare the output by an
edge detection method (i.e. candidate edge image)
with that generated by a human, which we take as
ground truth. Each pixel in the candidate edge im-
age is classified as true positive (TP), true negative
(TN), false positive (FP) or false negative (FN).

The classification of each edge pixel is not
straightforward. There are some considerations to
be taken into account, due to the special conditions
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Figure 6: Fuzzy and binary edge images obtained using different α values for theKα operator in the conversion
of the IVFSs into FSs.

of the edge detection problem and the interpreta-
tion of the edge information. More specifically, we
have to bear in mind that an edge image includes
some spatial information embedded in the edges.
An edge displaced from its true position should not
be penalized as much as if it was completely missing.
In order to solve this problem, we use a one-to-one
pixel matching algorithm to map the edge pixels in
the candidate edge image and the ground truth one.
This matching allows some spatial tolerance (in our
case, as much as 1% of the diagonal of the image),
so that an edge pixel can be slightly displaced from
its true position, yet being considered as correctly
classified. In order to do the pixel-to-pixel match-
ing we use the Cost Scaling Assignment algorithm
by Goldberg [34].
From the confusion matrix we calculate the preci-

sion (Prec) and recall (Rec) evaluations, defined
as

Prec = TP
TP + FP and Rec = TP

TP + FN . (4)

These measures are preferred over other alterna-
tives derived from ROC curves [35] because Prec
and Rec have good stability properties when the
size of the images varies [30]. Moreover, they avoid
involving TN, which is much larger than the other
elements in the confusion matrix, and hence dis-
torts the results. Prec and Rec evaluate specific
aspects of the problem. In order to compare the
performance of a method we need some scalar eval-
uation of the overall quality of an edge image. We
use the measure Fα, defined as

Fα = Prec ·Rec
αPrec +(1− α) Rec , (5)

where α is a value modulating the relative impact
of the Prec and Rec values. Overall, we evaluate
the accuracy (using Prec), the fall-out (using Rec)
and the overall quality (using Fα). We adhere to the
commonly used F0.5 (note that F0.5 is the harmonic
mean of Prec and Rec).

The BSDS500 contains several ground truth im-
ages the candidate image has to be compared to. In
this work, for each ground truth image we keep the
triplet for which F0.5 is maximal. That is, we com-
pare the candidate image with each of its ground
truth images. Then, the triplet (Prec,Rec,F0.5)
having the greatest F0.5 is considered as the evalu-
ation of the detector for that candidate image.

4.4. Experimental setting

We compare the Canny and IV Canny method on
two sets of the BSDS500. For both methods, the
Gaussian smoothing prior to gradient characteriza-
tion is performed with σ = 1.0, while the gradient
characterization operators take σ = 2.0. As for the
binarization, we use NMS, as proposed by Rosenfeld
and Kak [36], in combination with hysteresis [16],
whose thresholds are determined using the double-
bowstring technique by Liu et al. [26]2.

4.5. Results

The results obtained at each of the two datasets in
the BSDS can be observed in Fig. 7 (each column
corresponding to one dataset). Each side of the fig-
ure displays the results on one of th datasets in the
BSDS.

The first thing to be observed from the plots is
the fact that the behaviour of the Canny method
on IV images is similar for both datasets, especially
regarding the the evolution of the performance of
the IV Canny method with respect to α. This indi-
cates that the specificities of the images at each of
the sets does not introduce significant differences.
Another early fact that can be observed from Fig. 7
is that the performance of the IV Canny method
is not smooth with respect to changes in α. That
is, small variations in α might induce not-so-small

2Note that this procedure is, under normal regularity con-
ditions of the histogram, the result of two consecutive appli-
cations of the Rosin method [27].
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variations in the performance of the method. This
is mostly due to the binarization algorithm, and the
unavoidable instabilities such a process suffers.
We find clear biases in the quantitative results

with respect to the value of α. As for the preci-
sion, we observe a sudden increase for low values
of α, which is moderated for α > 0.2. In fact, the
variations for α > 0.2 are minimal, and mostly due
to the abovementioned discretization matters. Re-
garding recall, we find a slow decay with respect to
the increase of α. Overall, the optimal setting, in
terms of F0.5, seems to be around the end of the
fast increase of the precision, i.e. for α ≈ 0.3. Note
that, in any case, the vertical axes of Fig. 7 do not
cover the whole range [0, 1], and so the differences
in performance are not drastic. As for the compar-
ison with the Canny method, we find the use of IV
images rather promising. In fact, it seems to be ben-
eficial except for configurations with very low values
of α. Still, a more detailed comparison, as well as
a re-evaluation of the remaining phases or param-
eters the algorithm, is needed in order to confirm
this conclusion.

5. Conclusions

We have analyzed the role of the measurement er-
ror in digital images, proposing an interval-valued
representation of the image to overcome it. With
this representation we manage to model a type of
error that, because of the nature of digital imagery,
is embedded in the initial data. However, turning
the imagery data to an interval-valued setup poses
some challenges. In this work we have adapted the
Canny method to Interval-Valued (IV) images, by
analyzing the applicability of interval arithmetic to
signal convolution. Finally, we present a quantita-
tive comparison with the (classical) Canny method.
From the results in that comparison we can infer
that the performance of the Canny method can be
improved by using IV images for modelling the mea-
surement error, despite a deeper insight is needed
to confirm these preliminary results.
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