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Abstract: In multi-modular process architectures with independent but interacting sub-
systems, identification may not be the first choice at hand for closed loop control. A robust
relay-based PID autotuning strategy is presented and validated on a quadruple tank system
with non-minimum phase dynamics. The controller ensures a specified closed loop robustness,
which is of great benefit to the overall performance. The experimental results suggest that
the proposed method fulfils the robustness requirement and performs well in various operating
conditions of the testbench.
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1. INTRODUCTION

Industrial applications of inter-connected systems are
manifold and present difficult control issues, such as time
delays, multivariable interaction, non-minimum phase dy-
namics, etc (Bequette (2003); Smith (2010)). Process iden-
tification is usually very challenging and time consuming.
To simplify this task and to reduce the time required for it,
many PID regulators nowadays include autotuning capa-
bilities, i.e. they are equipped with a mechanism capable
of computing the ’correct’ parameters automatically when
the regulator is connected to the plant. This approach
copes very well with the dynamic context in factory au-
tomation and can be easily implemented in standardized
automation software and PLCs.

A specific class of autotuners use relay feedback in order
to obtain some information on the process frequency
response (Yu (2006); De Keyser and Ionescu (2010)).
For multiple input multiple output (MIMO) systems,
the autotuning procedure needs to take into account the
cross-coupling dynamics in order to converge to stable
closed loop controllers (Wang et al. (2008)). Using a
relay controller, the outputs will oscillate in the form
of limit cycles (after an initial transient). The controller
parameters are then iteratively obtained such that these
output oscillations converge to the critical frequency of the
entire coupled system (Wang et al. (2008)). The number of
iterations is usually related to the number of input-output
pairings (Johnson and Moradi (2005)).

Classical PID autotuning approaches such as the Åström-
Hägglund (AH), Ziegler-Nichols and recent revisited al-
gorithms based on phase margin specifications (Åström
and Hägglund (2006); Hang et al. (1991); Ionescu and De
Keyser (2012)), identify the critical point on the process
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frequency response using relay feedback. Their advantage
is that they are very simple to apply, i.e. few choices are left
for the user (which is indeed an advantage if the industrial
engineer lacks theoretical control engineering insight). In
(Husek (2014)) has been proposed a model-based method
for tuning decentralized PI controllers on the quadruple
tank using phase margin specifications. However, care
should be taken when single-point specification tuning is
performed, since it may lead to unstable results for certain
class of processes, as discussed in (Ionescu and De Keyser
(2012)).

A characteristic of the relay feedback PID autotuner pro-
posed in our paper is that it guarantees a specified robust-
ness, by means of the modulus margin index. The outline
of this paper is as follows. The proposed methodology is
given in Section 2, followed by a brief description of the
auto-tuning algorithm in section 3. The closed loop con-
trol performance and robustness is evaluated and results
reported in section 4. A conclusion section summarizes the
main outcome of this work.

2. PROPOSED METHODOLOGY

Traditional relay-based autotuning methods such as AH
(Åström and Hägglund (2006)) identify one point on the
Nyquist curve of the process P; namely, the intersection of
the process beeline with the negative real axis as depicted
in Figure 1. Using an appropriate PID controller, denoted
by C, this initial point is then moved to a specific point
in the complex Nyquist plane; e.g. for the original AH-
tuner, the beeline of C ∗P goes through the specific point
−0.6 − 0.28j (distance to the point -1 is then 0.5). The
theoretical insights from (Ionescu and De Keyser (2012))
claim that single-point specification in the Nyquist plane
might be sufficient for some type of processes, but might as
well result in poor (low) modulus margin (MM) for other
types of processes.
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Fig. 1. The Nyquist plot of the process and its intersection
with the negative real axis

The goal of this paper is to present and validate a robust
relay-based PID auto-tuning method for MIMO processes.
The following assumptions about the system under test are
made:

• the MIMO processes are open loop stable;
• the MIMO processes are capable of sustaining steady

state oscillations when placed under relay feedback
control.

For a 2 × 2 process, the proposed algorithm can be
summarized in the following steps below. Step 1 : Close one
loop with a relay feedback and leave open the other loop.
Suppose one closes loop #1 and leaves open loop #2 as in
Figure 2. This initial relay experiment allows us to extract
information about the interaction between loops and the
critical gain of the loop (recall figure 1). Consequently, we
can use the AH methodology to determine a proportional
controller (Åström and Hägglund (2006)):

Kc =
4d

πA
, Pc1 = 0.5Kc (1)

where Kc is the critical gain, d is the relay amplitude and
A denotes the oscillation amplitude of the first output.
Taking a look at the amplitude of the oscillations in
the second output, one may decide upon the amount
of interaction and whether the pairing is correct. From
hereafter, we will consider that the initial pairing u1 to y1

is correct.

Fig. 2. Proposed MIMO auto-tuning algorithm - Step 1.

Step 2 : In the first loop, replace the relay with the
proportional controller Pc1 as depicted in Figure 3. Close
the second loop with a relay feedback. Take a note of the
amplitude A and period Tc of the oscillations (ωc = 2π/Tc)
in the second output.

Step 3 : Add a delay (see Appendix for rationale) after the
relay block in the closed loop of the second output (i.e.
Figure 4), while maintaining the proportional controller
Pc1 on the other loop. Take a note of the amplitude and
period of the oscillations for the relay+delay loop.

Fig. 3. Proposed MIMO auto-tuning algorithm - Step 2

Fig. 4. Proposed MIMO auto-tuning algorithm - Step 3

Step 4 : Compute a PID controller for the second loop
based on the MM algorithm from (De Keyser et al. (2012)),
this will be denoted by PID2.

Step 5 : Replace the relay+delay from the loop selected at
step 3 with the PID2 from Step 4. Close the other loop
with a relay feedback like in Figure 5. Take again a note of
the relay loop the magnitude and phase of the oscillations
in the first output.

Fig. 5. Proposed MIMO auto-tuning algorithm - Step 5

Step 6 : Add a delay after the relay block in the closed
loop of the first output (i.e. Figure 6), while maintaining
the PID2 controller on the second loop (as in Step 5). Take
a note of the amplitude and period of the oscillations for
the relay+delay loop.

Fig. 6. Proposed MIMO auto-tuning algorithm - Step 6

Step 7 : Compute a PID1 controller for the first loop using
the MM algorithm.

Step 8 : Repeat steps 5-7. The convergence of the algorithm
is established when the output magnitude and phase
values in the relay+delay test vary less than 5% from
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those obtained in the relay test, i.e. this will result in
similar PID parameters as in the previous iteration of the
corresponding loop.

Notice that the entire procedure can be easily automated.
However, a condition for convergence is that minimum one
of the loops in the system has a characteristic locus with
at least 180 degrees phase lag (Wang et al. (2008)). This
condition is not a problem in process industry where high
order dynamics are present.

3. CONTROLLER DESIGN

The development of the proposed autotuning algorithm is
based on imposing a user-specified robustness, as in (De
Keyser et al. (2012)). The robustness specification can
be translated using Nyquist plots as a circle of specified
radius (r) around the point -1 as drawn in Figure 7 (r=the
Modulus Margin, 0 < r < 1).

Fig. 7. Supporting figure for the MM algorithm develop-
ment.

The algorithm searches for the angle α under which the
Nyquist curve of the process and controller P (jω)C(jω)
touches the circle in A. The parameters for the PID
controller:

Kp =
M

MP
cosϕ, Td =

1 + sinϕ

2ωc cosϕ
, Ti = 4Td (2)

with MP defined in Appendix. The values for M and ϕ are
obtained from Pythagorean Theorem applied in Figure 7:

M =
√
r2 − 2r cosα+ 1 (3)

ϕ = arctan
r sinα

1− r cosα
(4)

In (Mantz and Tacconi (1989)), it has been shown that
optimization of PID free controller parameters leads to
complex conjugated zeros, which may induce oscillations
in the closed loop performance. To reduce the number
of tuning parameters and to have two real zeros in the
PID at same location, we impose the rule Ti = 4Td.
Also, we do not tackle here the influence of noise and the
possibility to use the derivative filter in the design (Segovia
et al. (2014)). Although in (Kristiansson and Lennartsson
(2006)) it has been shown that imposing Ti = 4Td does
not lead to optimal trade off between robustness and low
frequency load disturbance rejection, it will be illustrated
in this paper that the obtained performance is satisfactory
for a challenging process.

The entire procedure of the algorithm can be summarized
as: 1) Find ωc and MP (ωc) via relay test [ϕc = −180◦]

2) Find ω′c, MP (ω′c) and ϕP (ω′c) via a relay+delay test

3) Calculate ∆MP

∆ω and ∆ϕP

∆ω

4) For α = 0...90◦, calculate M(α), ϕ(α) and δ (α) =∣∣∣∣ dMdϕ ∣∣∣
ωC

− dM
dϕ

∣∣∣
A

∣∣∣∣
5) Calculate M(α∗) and ϕ(α∗) with α∗ = argminαδ(α)

6) Calculate {Kp, Ti, Td}.
This method of PID autotuning has been successfully
validated on numerous examples depicting various types
of processes for single input-single output (SISO) systems
(De Keyser et al. (2012); Joita and De Keyser (2012)).The
novelty of the proposed method is taking the modulus
margin algorithm developed and tested on SISO processes
and using it iteratively for tuning the PID controllers in
MIMO systems. A robustness curve may be calculated, but
it requires the knowledge of the process model ((Arbogast
et al., 2008)). In our methodology this is not possible since
we do not perform identification of the process.

4. METHOD USED FOR COMPARISON

From the extensive comparison presented in (Menani and
Koivo (2001)), it was suggested that the following al-
gorithm could give the best results in terms of relay-
based feedback autotuners for MIMO systems. The tuning
procedure consists of four steps. In the first step, the
critical point of each possible loop is identified using the
conventional relay feedback test. In this phase, a set of
critical frequencies is formed. In the second step, a design
frequency is chosen from the set based on the interac-
tion percent (i.e. least interaction). In the third step, the
process steady-state and frequency response matrices are
estimated with sufficient accuracy. In the fourth step, the
information about the process is used to tune a MIMO
PID controller of the form:

Kc(s) = Kp +KI
1

s
+KDs (5)

with

KI = ρ det[G(0)]G−1(0), KD = KI/4 (6)

and

Kp = ρdet ||G(jωb)||||G−1(jωb)|| (7)

where G denotes the process transfer matrix. The parame-
ter ρ is used to fine tune the closed loop performance, but
there are no specific rules for it. Stability is not guaranteed,
but it is suggested to use a ωb at which the interaction
is minimal, therefore diminishing the risk of closed loop
instability. The advantage of the method over the one
proposed in our paper is that it takes interactions into
account, hence delivers a controller matrix.

5. RESULTS

For testing the proposed algorithm, we make use of the
quadruple water tank benchmark from Quanser. Figure 8
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presents the schematic overview of the setup. The control
objective is to regulate the level of the water in the
lower tanks L2 and L4 (expressed in cm) by manipulating
the water flows of the two pumps, i.e. the voltages of
the two pumps Vp1(t) and Vp2(t) (expressed in Volts).
There is a strong coupling effect between the inputs and
the outputs and the current setup exhibits non-minimum
phase dynamics; a benchmark that has been investigated
by several groups (Johansson (2000); Gatzke et al. (2000);
Vadigepalli et al. (2001)).

Fig. 8. Schematic diagram of the quadruple tank process
from Quanser.

Autotuning of the PID controller via the MM algorithm
described in section 2 has been performed using a relay
test on the real plant for each loop, giving a robustness
specification of 0.7 (i.e. 70%). The final controller parame-
ters were obtained after six iterations and are reported in
Table 1. On the real process, the time for one experiment
took 5 minutes.

Table 1. PID controller parameters. MM - con-
troller designed via the autotuning method.
Subscript denotes the water tank where con-

trolled level was achieved.

Kp Ti Td

MM2 0.27 10.85 2.71
MM4 0.27 12.81 3.02

The MIMO PID controller parameters for the autotuner
from (Menani and Koivo (2001)) are:

Kpp = 0.001 ∗
[

0.7719 0.5481
0.5940 0.7666

]
(8)

Kdd =

[
0.0022 −0.0044
−0.0048 0.0031

]
(9)

Kii =

[
0.0090 −0.0174
−0.0193 0.0125

]
(10)

Figure 9 depicts the results for setpoint tracking in water
reservoir #2. The reference is changed from 5 cm to 6 cm,
while keeping the reference for the water level L4 constant
to 5 cm. Figure 10 depicts the results for disturbance
rejection in water reservoir #2. The disturbance consists
in eliminating the water from reservoir #1 directly in the
water pool, without going trough Tank2. This represents a
load step disturbance. As a result, the level L2 drops and
the controller changes the pump voltage to recover the
reference value of 6 cm. Due to the coupling between the
pumps (recall Figure 8), the level L4 will also be disturbed;
results are not shown since the performance is similar.

Fig. 9. Setpoint change experiment in nominal operating
point.

Fig. 10. Disturbance rejection experiment in nominal op-
erating point.

One may conclude that both auto-tuning control loops
perform similarly.

A verification that the MM auto-tuner fulfils the robust-
ness specification of 70% is done through the Nyquist plot
in Figure 11. It can be observed that this specification is
fulfilled.

In order to test the robustness of the two control strategies,
we re-make the setpoint and disturbance rejection tests
at a significantly different operating point (15 cm). The
results are given in Figures 12 and 13, where we could
conclude that our method outperforms that from (Menani
and Koivo (2001)).

Also, a mean squared error (MSE) index was used to
indicate the performance of each autotuner in both ex-
periments (i.e. the nominal case and the robustness test).
The results are given in Table 2.

6. CONCLUSIONS

The auto-tuning method proposed in this paper for robust
PID controllers is based on relay feedback and can be eas-
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Fig. 11. Nyquist plot of the closed loop for modulus margin
specification validation.

Fig. 12. Robustness test - setpoint tracking at 15cm.

Fig. 13. Robustness test - disturbance rejection at 15cm.

ily implemented in PLCs. The method has been success-
fully validated on a multivariable, strongly coupled, non-
minimum phase system, i.e. the quadruple tank system
from Quanser.

Table 2. Mean Squared Error (MSE) index.
MMnom, MMrob - MSE for the autotuning
method in nominal case and robustness ex-
periment respectively. MENnom, MENrob -
MSE for the comparative method in nominal
and robustness experiment respectively. L2, L4

denotes the water tank where controlled level
was achieved.

L2 L4

MMnom 0.0430 0.0365
MMrob 0.0625 0.0702

MENnom 0.1366 0.0583
MENrob 0.1979 0.1271

APPENDIX

The algorithm searches for the angle α under which the
Nyquist curve of the process and controller P (jω)C(jω)
touches the circle in A. From Figure 7 we get:

P (jωc)C(jωc) = MP e
jϕP ∗MCe

jϕC =

= MPMCe
j(180◦+ϕC) = Mej(180◦+ϕ) (11)

where:

ϕ = ϕC and M = MPMC (12)

Next, the textbook frequency response for the PID con-
troller is written:

C (jωc) = Kp

[
1 + j

(
Tdωc −

1

Tiωc

)]
(13)

Considering

tanϕC = Tdωc −
1

Tiωc
(14)

and

MC = Kp

√
1 + tanϕ2

C =
Kp

cosϕC
(15)

and imposing two identical zeros for the controller (Ti =
4Td), we obtain

tanϕC = Tdωc −
1

4Tdωc
⇒ Tdωc =

1 + sinϕ

2 cosϕ
(16)

Replacing (15) and (16) into (12) we get the parameters
for the PID controller:

Kp =
M

MP
cosϕ, Td =

1 + sinϕ

2ωc cosϕ
, Ti = 4Td (17)

where M and ϕ are obtained from Pythagorean Theorem
applied in figure 7:

M =
√
r2 − 2r cosα+ 1 (18)

ϕ = arctan
r sinα

1− r cosα
(19)

Now we can express the variation of the modulus with the
phase, which describes the tangent to a circle of radius r
around the point −1:

dM

dϕ

∣∣∣∣
ωc

=
dM/dω
dϕ/dω

(20)
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with
dM

dω
=
d(MPMC)

dω
= MP

dMC

dω
+

M

MP

dMP

dω
(21)

and
dϕ

dω
=
d(ϕP + ϕC)

dω
=
dϕP
dω

+
dϕC
dω

(22)

In order to compute (20), we need

dMC

dω
=

dMC

d tanϕC

d tanϕC
dω

(23)

which is further equal to

Kp sinϕC
1

ω cosϕC
=
M sinϕC
MPω

(24)

and

dϕC
dω

=
d tanϕC/dω
d tanϕC/dϕC

=
1/ω cosϕC
1
/
cosϕC

2
=

cosϕC
ω

(25)

Substituting, we have

dM

dϕ

∣∣∣∣
ωC

= M

sinϕ
ωc

+ 1
MP

dMP

dω

∣∣
ωc

cosϕ
ωc

+ dϕP

dω

∣∣∣
ωc

(26)

Since for autotuning purposes we do not have a model
for the process, we will approximate the derivative of the
process frequency response in ωC using differences:

dMP

dω

∣∣∣∣
ωc

≈ ∆MP

∆ω

∣∣∣∣
ωc

=
MP (jωc)−MP (jω′)

ωc − ω′
(27)

dϕP
dω

∣∣∣∣
ωc

≈ ∆ϕP
∆ω

∣∣∣∣
ωc

=
ϕP (jωc)− ϕP (jω′)

ωc − ω′
(28)

where MP (jω′) and ϕP (jω′) are the modulus and phase of
the process at a frequency ω′ which is close to the critical
frequency ωc. This can be easily obtained using a relay test
with time delay, τd = ∆ϕP

ωC
, corresponding to a specified

∆ϕP (De Keyser et al. (2012)). Next, we compute the
variation of the modulus with the phase, in the point A,
from Figure 7:

dM

dϕ

∣∣∣∣
A

=
dM/dα
dϕ/dα

= M
sinα

cosα− r
(29)

where
dM

dα
=
r sinα

M
,
dϕ

dα
=
r (cosα− r)

M2
(30)

Finding iteratively the angle ∝∗ for which the error∣∣∣∣ dMdϕ ∣∣∣ωC

− dM
dϕ

∣∣∣
A

∣∣∣∣ is minimum implies the optimal con-

troller parameters for a specified modulus margin r.
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