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Abstract— The classic design- and simulation methodologies,
that are constituting today’s engineer main tools, fall behind with
industry’s ever increasing complexity. The strive for technological
advancement heralds new performance requirements and opti-
mality remains no longer a concern limited to regime operation.
Since the corresponding dynamic optimization problems incorpo-
rate accurate system models, the current techniques are plagued
by the high computational weight these multi-disciplinary and
highly dimensional system models bear with them. This imbal-
ance advocates for the need to adapt the existing approaches. In
this study we propose an algorithmic framework as an extension
of the direct transcription method, which has already proven its
usefulness concerning this matter. It is suggested to construct
a surrogate model of the derivative function that is iteratively
refined in a region of interest. Thereafter the method will be
illustrated on an academic yet nonlinear example.

Index Terms— Direct transcription, Dynamic optimization,
Nonlinear mechatronic systems, Surrogate models

I. INTRODUCTION

Optimality of regime operation no longer suffices and
transient phenomena are gaining fast importance in nowadays
industry, even more for those applications where regime oper-
ation loses all meaning and operation merely entails transient
behaviour. Optimality has now direct bearing to the realised
state trajectory and therefore they should be addressed within
the corresponding optimality formulation. Techniques that
cope with such problem formulations require the availability
of a dynamic model. Whilst dynamical accuracy benefits from
increased model complexity - by including multiple modelling
disciplines, and considering high dimensionality and nonlin-
earity - the solution techniques do not and the designated
influence can no longer be evaluated analytically; especially
when no analytical expression is available and evaluations
correspond with numerical computer experiments [1], [2].

For the purpose of fast and reliable dynamic optimization
of yet complex and accurate systems, it is necessary to
accommodate this computational burden without affecting op-
timality. From the successful and repeated application within
several engineering disciplines, the computational strength of
surrogates already appeared [3]. To that end, we will try to
incorporate these surrogate modelling techniques within the
framework and methods addressing dynamic optimization.

This article provides a brief introduction to these separate
research areas and proposes an algorithm to bridge the gap.

II. TRAJECTORY OPTIMIZATION

Whenever it is one’s desire to optimize a system in such
manner that the time evolution of states - governed by the
system dynamics - is of significance to the interpretation of
optimality, it is classified as a dynamic optimization problem
[4], [5]. A special class of dynamic optimization problems
is referred to as trajectory optimization [6]. Whilst closely
related to optimal control problems, trajectory optimization
is most often practiced offline and before actual system
operation, as part of the design process. The online problem
addressing the realisation of the optimized trajectory, as in
a tracking problem, is then referred to as the corresponding
optimal control problem. So while the input sequence will be
considered within trajectory optimization in general, it does
not embody its main result.

A. General formulation

A general formulation is presented in (1), where x ∈ Rnx

and u ∈ Rnu , represent state- and input variables respectively.
Each state- and input combination is related to an instanta-
neous cost L(·), the term E(·) expresses a possible additional
cost related to the end state of the system. The total cost
related to a specific time evolution of u(t) over the time
interval [t0, tf ] is denoted by J . Moreover, the state- and input
variables can be subject to constraint functions g(·) and h(·).
It is assumed that dynamics are governed by the derivative
nonlinear function f(·) and matrix B(·).

min
u(·)

J =

∫ tf

t0

L(x(τ),u(τ))dτ + E(x(tf ))

s.t.


ẋ = f(x) +B(x)u

g(x,u) = 0

h(x,u) < 0

(1)

This mathematical formulation can be moulded to fit a vast
amount of existing and powerful optimization algorithms; yet,
dynamic optimization of physical plant and control system
of today’s mechatronical applications remains a challenging
problem for which the availability of an assessable dynamic
system model, and thus function f(·) and B(·), is of vital
essence.
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B. Direct Transcription
Direct transcription (DT) has proven to be a helpful instru-

ment for solving nonlinear dynamic optimization problems.
Its principle is founded on the idea of transcribing the infinite
into a finite dimensional problem, resulting into a discretised
problem that can be approached as a Nonlinear Program
(NLP). The NLP is solved thereafter by practice of an effective
nonlinear programming technique.

Transcription is achieved by partitioning and successively
parameterizing the continuous problem, leading to the desired
discrete equivalent representation. Agreement with dynamics
is governed by a set of nonlinear constraints that wards
continuity of the time evolution of states.

The technique sets off by partitioning the time interval into
nt time segments, Ik, for which the boundaries are denoted
by tk and tk+1, respectively:

Ik = [tk, tk+1], k ∈ χ = {0, ... , nt − 1}
For each time interval we introduce a parameterized zero-

order hold representation of the control variables, uk(t), t ∈
Ik, that is uniquely defined by the parameters, qk. Such is
an accurate approximation of realistic control scenarios. More
elaborate representations exist yet would distract more than
they would contribute.

uk(t) = qk

The major trick entails the parameterisation of the state
trajectory by introducing nt + 1 state node values, sk, as
additional function handles and considering an initial value
problem for each time segment. Numerical solution yields the
trajectory pieces, xk(t|sk, qk):{

ẋk = f(xk) +B(xk)qk, t ∈ Ik
xk(tk) = sk

Continuity of the state trajectory is enforced by introducing
nt constraints, ζk, demanding that the propagation of the state
trajectory starting at time instant tk is equal to the state value
at time instant tk+1:

ζk(sk+1, sk, qk) ≡ sk+1 − xk(tk+1|sk, qk) = 0

Arranging these ingredients to our liking allows to cook up
a formulation of the problem, that can be approached as a
NLP. For a more extensive elaboration of the family of direct
dynamic optimization methods, we refer to [7].

min
sk,qk

nt∑
j=1

∫ tj+1

tj

L(xj(τ),uj(τ))dτ + E(snt
)

= min
sk,qk

nt∑
j=1

Lj(sj , qj) + E(snt)

s.t.


ζk(sk+1, sk, qk) = 0

g(sk, qk) = 0

h(sk, qk) < 0

(2)

We end this section by noting that the numerical propagation
can be as simple as trapezoidal quadrature, simplifying the
computation of constraints yet at the cost of an increased
discretization error [8].

III. SURROGATE APPROXIMATIONS IN DIRECT
TRANSCRIPTION

The direct transcription methodology offers a powerful
instrument to handle challenging optimization problems and
opens the door to dynamic optimization of systems that exhibit
strong nonlinearity. Nonetheless, is does not omit evaluation of
the derivative function which is often found to be computation-
ally cumbersome; when for example function evaluations cor-
respond with a finite element analysis. Moreover, algorithms
that deal with the resulting NLP, such as Sequential Quadratic
Programming (SQP), depend inherently on reliable gradient
evaluations of the nonlinear constraints; and thus by action of
the chain rule, the gradient of the derivative function.

To accommodate both of these challenges we suggest to
replace the functions f(·) and B(·) by means of the approx-
imated but computationally beneficial models f̂(·) and B̂(·):

ẋ(x,u) = f(x)+B(x)u → ˆ̇x(x,u) = f̂(x)+B̂(x)u (3)

In this way evaluations of the derivative function and its
gradient are computationally effortless albeit with a loss of
accuracy. Subsequently, the NLP can be solved at lower
computational cost, thus resulting in shorter computation
times, therewith making the direct transcription methodology
applicable for computationally burdened problems.

A. Surrogate modelling

Surrogate modelling techniques address the approximation
of computationally cumbersome computer models that effec-
tuate a deterministic input-output relation, ω → φ; based on a
limited number of known input-output couples. The techniques
aim to construct an elementary model that mimics the generic
relation whilst omitting its complex underlying structure, such
that the complex model can be evaluated at untried parameters
sites with less extensive computational force.

φ = φ(ω) → φ̂ = φ̂(ω)

The overarching principle originates from the notion that the
distance between input sites is a measure for the correlation
between the resulting output values. This dissertation considers
the Kriging predictor and it is assumed that we have a set of m
training sites Ω =

[
ω1 ... ωm

]′
, ωi ∈ Rn, and responses

Φ =
[
φ1 ... φm

]′
, φi ∈ Rq , to our disposal.

The predictor is premised on a model that expresses the de-
terministic response, φ(ω), as the superposition of a regression
model, F(ω), and stochastic process, z(ω). The regression
model embodies a linear combination of base functions, ψ(ω),
whilst the stochastic process is characterised by a mean value
equal to zero and the following covariance expression:

F(ω) = ψ(ω)′β and E(zi(v)zi(w)) = σ2
iRθ(v −w)

Where σ2
i expresses the process covariance for the ith com-

ponent of the response andRθ(v−w), defines a parameterized
correlation model. As was noted the correlation model depends
explicitly on the distance between parameter sites. Further, we
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introduce following notations for the design matrix, Ψ, the
correlation matrix, Π, and correlation function, π(s):

Ψ =
[
ψ(ω1) ... ψ(ωm)

]
,

Πij = Rθ(ωi − ωj) and

π(s) =
[
Rθ(ω1 − ω) ... Rθ(ωm − ω)

]
Kriging considers the linear predictor:

φ̂(ω) = α(ω)′Φ

A definition for the function, α(ω), can be obtained by
expressing the error ε(ω) = φ̂(ω)−φ(ω). Given the stochas-
tic interpretation of φ(ω), we can define the mean squared
error (MSE): E

(
ε(ω)2

)
. Minimization of this expression to

the designated model parameters, yields the desired expression
for α(s), and thus φ̂(s):

φ̂(ω) = ψ(ω)′β̃ + π(s)′Π−1(Φ−Ψβ̃)

Where β̃, σ̃2 and θ are determined by means of a maximum
likelihood estimation. It is easily seen that the predictor entails
the superposition of the regression model, and a distance based
weighing of the observed deviation between output values and
the regression model at training sites. For a more extensive
elaboration of the methodology and an exposition of typical
regression and correlation models, we refer to [9].

B. Sketch of an algorithmic architecture

Since the surrogate model has to be initiated with no
prior knowledge available about the solution nor the generic
dynamical behaviour, a space filling approach ought to be pre-
ferred. Amongst these space filling methods Latin Hypercube
Sampling (LHS) is most common practice [10].

The resulting surrogate solution, {x̂∗}, will in general,
however optimal under the surrogate dynamics, not be in
agreement with the simulated trajectory, xsimû∗ , - that is the
trajectory resulting from simulation of the optimized control
sequence with real dynamics - since the surrogate dynamic
model is only an approximation, and as such only reliable
close to sampled sites. This clearly indicates that the sampling
strategy is of crucial importance when surrogate models are
included within the trajectory optimization framework.

An iterative solution approach (Fig. 1) is proposed that
assesses the surrogate performance along the momentary tra-
jectory. Whenever it is found necessary, the surrogate model
shall be refined in the neighbourhood of the optimal trajectory
resulting from the optimization with the current surrogate
model. A similar approach has been suggested by Allison and
Deshmukh [11] but has not yet been elaborated.

IV. THE ADAPTIVE SURROGATE REFINEMENT ALGORITHM

The proposed algorithm starts by initialising ns training
sites - by application of the LHS strategy - in the training set,
Dini, where we evaluate the functions {f ,B}. These evalua-
tions are used to construct initial surrogate models {f̂0, B̂0}
by use of Kriging. Each step is illustrated unambiguously
hereafter:

x3

x2

x1

{x∗}

{x̂∗}i

{x̂∗}i+1

Fig. 1: Illustration of the iterative solution approach through the
feasible solution space. The white dots denote the evaluation sites

whilst the yellow present a possible refinement sampling plan.

1) Acquire momentary solution: Solve the NLP of (2) with
the current surrogate dynamics using a standard NLP
solver, resulting in a momentary optimum {x̂∗, û∗}i.

2) Generation of validation sites: We generate nv time
instants tj , j ∈ ϑi = {1, ... , nv} by sampling from
a piece wise linear distribution px̂∗(tk) that relates to
the surrogate’s accuracy along the current solution, and
such that samples are more likely to be drawn at sites
where accuracy is lowest. The authors propose:

{tj}j∈ϑi
∼ px̂∗(tk) =

max(MSEf (x̂∗(tk)),MSEB(x̂∗(tk))

The accuracy of the matrix B is assessed by considering
each column individually.

3) Error estimation: Evaluate the surrogate dynamics along
the solution by defining an error estimate that compares
real derivative function evaluations with surrogate eval-
uations at the time instants tj . The authors propose:

max

 tf−t0
nv

nv∑
j=1

∣∣∣ẋ (x̂∗(tj), û
∗(tj))− ˆ̇x(x̂∗(tj), û

∗(tj))
∣∣∣


With ẋ(·) and ˆ̇x(·) defined as in in (3), x̂∗(tj) a spline
interpolation of the discrete vector function x̂∗(tk), since
generally the sampled time instants tj will not coincide
with the time nodes tk, ∃j ∈ ϑi : tj /∈ {tk}k∈χ; and
û∗(tj) an evaluation of the parameterized input.

The corresponding value can be interpreted as the
maximum integrated mean derivative error over the con-
sidered time interval, which functions as an estimate for
the expected absolute surrogate induced error between
the optimal end state, x̂∗(tnt), and xsimû∗ (tf ). As such
we will be able to define an intuitive and generic value
for the convergence threshold.

4) Surrogate refinement: As long as the convergence con-
dition has not been met, construct {f̂i+1, B̂i+1} by
adding the function evaluations from the previous step,
to the training set Di+1 = Di ∪ {x̂∗(tj)}j∈ϑi and
repeat steps 1:4. As such dynamics will become more
accurately from iteration to iteration, in that region
seems to contain the true optimum. Crucial is to initialize
the next iteration with the solution of the prior.
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The algorithm will generate a solution whose proposed tra-
jectory will be in agreement with simulation of the suggested
control sequence. That is, the trajectory resulting from the
optimization will be in a vicinity of the trajectory resulting
from simulation of the optimized control sequence and the
real dynamics, assuring practical feasibility of the optimum.

However, the solution will be optimal under the final
surrogate dynamics; which only approximate the real dy-
namics accurately in the vicinity of the surrogate optimum.
This self-referencing property will result in an optimum that
may deviate from the real optimum. For the time being no
measures are taken to drive the surrogate optimum to the real
optimum and it is assumed that the initial sampling delivers
a sufficient approximation of the global dynamics to assure
correspondence with the real optimum.

V. ILLUSTRATIVE EXAMPLES

In this section we will address a mechatronic problem to
illustrate the applicability and performance of the proposed al-
gorithm. For this problem an analytical expressions is available
and therefore no real urge is present to apply the algorithm. Yet
the example has the specific property that it exhibits heavily
nonlinear dynamics, and is as such an ideal candidate to
demonstrate the potential benefits of the algorithm. It should
be noted that for this problem no reduction of computation
time shall be observed and performance will be quantified by
examining the total number of derivative function evaluations.

The problem considers a trajectory optimization of a
whirling pendulum, to demonstrate the working principle
and iterative character of the algorithm and its handling of
nonlinear dynamics. We assumed a piecewise constant control
scenario. The resulting NLP was solved by use of fmincon,
a standard function provided by the software package MAT-
LAB (R2013a; Mathworks, Natick, MA, USA).

A. Dynamical model

The whirling pendulum can be represented by a nonlinear
4-dimensional state space model. Rotation about the z-axis
of the observers frame is denoted by φ. A coordinate frame
was fixed to the pendulum’s point of suspension and rotation
about the pendulum’s x-axis is denoted by θ, consequently the
pendulum’s state can be represented by x = [ θ θ̇ φ φ̇ ]

′. The
state space model has been derived through application of the
Euler-Lagrange principle.

L(q, q̇) = T + D− V (4a)

∂L(q, q̇)

∂q
− d

dt
∂L(q, q̇)

∂q̇
= Υ =

[
uθ
uφ

]
(4b)

Expressions for kinetic, potential and dissipative energy, are
given respectively by T, V and D:

T =
1

2
[ θ̇ φ̇ ]diag(Ix, Iy sin2 θ + Iz cos2 θ)[ θ̇ φ̇ ]

′
,

V = −mg
2
r cos θ and D =

1

2
[ θ̇ φ̇ ]diag(bθ, bφ)[ θ̇ φ̇ ]

′

The moments of inertia are defined in the coordinate system
fixed to the pendulum and located at the suspension point

parameter m r Ix = Iy = 2Iz bθ = bφ

value 10 [kg] 1 [m] 4.44
[
kgm2

]
0.5

[
kg·m

s

]
TABLE I: Parameter values of the whirling pendulum model.

with the z-axis according to the longitudinal dimension of the
cylindrical pendulum. The length of the cylindrical pendulum
is denoted by r, the mass of the system by m and the
gravitational constant by g. Values are noted in table I.

B. Optimization problem

We defined an illustrative minimal input cost problem for
which the optimal control sequence had to be determined over
a predefined time span of 1.5 seconds. Optimality had to be
achieved for the quadratic cost, Lj(qj), and was subject to the
following boundary states:

Lj(qj) = q′jqj ,

x0 =
[
π
2 0 0 0

]′
and xnt =

[
π
4 0 π

2 0
]′

Dynamics were discretised using trapezoidal quadrature
with nt = 80 steps, resulting in a step size of about 19 ms.

C. Results

The iterative character of the algorithm is illustrated in Fig.
2. As anticipated, the algorithm gradually forces the optimal
trajectory towards the true optimum. Despite the considerable
increase of necessary iterations before a feasible solution was
attained, the overall number of derivative function evaluations
is drastically diminished. A reduction of 97.57% was achieved,
having evaluated the derivative function 2880 times to obtain
the real optimum compared to 70 evaluations using ASR.
Included are 30 evaluations to initialize the surrogate models
and 5× 8 additional refinement evaluations.

The final control sequence has been simulated with the real
dynamics as a visual validation of the measure that was taken
to guarantee practical feasibility.
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Fig. 2: The true optimal trajectory, x∗, the iterative trajectories, x̂∗
i ,

and the simulated trajectory for the final control sequence, xsimû∗ ,
which coincides with x̂∗

5. (nt = 80, ns = 90, nv = 8).
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VI. CONCLUSIONS AND FUTURE DEVELOPMENT

In this treatise we proposed to tackle computational un-
wieldiness, introduced by derivative function evaluations in a
dynamic optimization context, by exploitation of the compu-
tational grace of surrogate models. The proposed algorithmic
framework managed to enforce reductions in evaluations up
to 97.57%, when applied on a highly nonlinear mechatronic
problem, and thus exhibits large potential for future appli-
cations where derivative function evaluations correspond with
extensive computation time and as such offer a lever to extend
the applicability of trajectory optimization to highly accurate
models. For the time being a self-referencing mechanism
is still inherent to the algorithm and partially subverts the
global optimization, moreover due to its stochastic nature the
solution may differ for each run. Therefore further sculpting
of the algorithm shall be required before a robust and wide
applicability will be possible. Yet the authors are confident
that within a reasonable timespan such improvements can be
obtained.
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