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Abstract—This paper presents an improved hardware imple-
mentation of a 16-bit ARX (Add, Rotate, and Xor) engine for
one of the CAESAR second-round competition candidates, π-
Cipher, implemented on an FPGA. π-Cipher is a nonce-based
authenticated encryption cipher with associated data. The
security of the π-Cipher relies on an ARX based permutation
function, which is denoted as a π-function. The proposed ARX
engine has been implemented in just 266 slices, which includes
the buffers of the input and the output. It can be clocked at
347 MHz. Also, in this paper, a message processor based on
the proposed ARX engine is introduced. The message processor
has been implemented in 1114 slices and it can be clocked at
250 MHz. The functionality of the proposed ARX engine was
verified on the Xilinx Virtex-7. The new design of the ARX
engine allows for almost four times speedup in performance
while consuming only 17% larger area than previously pub-
lished work. We extend our message processor implementation
by using parametrized reconfiguration technique after which
an area reduction of 27 slices is observed.

Keywords-FPGA; Authenticated encryption; CAESAR;
Cryptographic competitions; π-Cipher; TLUT; micro-
reconfiguration; parameterized configuration;

I. INTRODUCTION

Cryptography is essential to the modern IT society. In

2013, the National Institute of Standards and Technology

NIST funded a new Competition for Authenticated Encryp-

tion: Security, Applicability, and Robustness (CAESAR) [1]

to identify a portfolio of authenticated ciphers that offer

advantages over the current AES-GCM and are suitable

for widespread adoption as a next-generation standard. In

addition to security considerations, availability of an efficient

hardware implementation will be a factor in the full CAE-

SAR selection. A popular way to construct simple operations

and fast cryptographic primitives is the so-called ARX

design, where the construction only uses Additions (A � B),
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Rotations (A ≪ r), and Xors (A ⊕ B). These operations are

very simple and can be implemented efficiently in software

or compactly in hardware. As a proof of concept two of the

SHA-3 finalists, Blake [2], [3] and Skein [4], follow this

design strategy, also MD/SHA family [5] [6] are referred to

as ARX, stream ciphers such as Salsa20 [7] and ChaCha [8],

and block ciphers, such as TEA [9] and HIGHT [10]. In the

ongoing CAESAR competition, few of the candidates that

passed in the second round are ARX based. One of them

is π-Cipher, which we use to drive the design of a generic

ARX crypto-processing architecture that can therefore sup-

port a variety of crypto-ARX primitives. In this paper, we

introduce the first implementation of the π-function with 16-

bit words using the new compact ARX engine. Although the

introduced custom ARX engine has less flexibility compared

to prior work [11] [12] [13], the proposed engine allows for

almost four times speedup in performance while consuming

only 17% larger area than previously published work [11].

The message processor, π-function, and ARX engine for

16-bit version of π-Cipher are implemented and evaluated

in an FPGA using a Xilinx Virtex-7. In order to optimize the

implementation of the processor on the FPGA, we make use

of parameterized configuration technique [14] that optimizes

the key generation module and contributes in the reduction

of the resource utilization of the processor.

The rest of the paper is organized as follows: in Sec-

tion II, we present a detailed description on π-Cipher. In

Section III, we present the ARX engine architecture that

creates cryptographic primitives followed by the description

of the π-function IV. The π-function encapsulates the ARX

engine and together with key generator forms the message

processor that is presented in Section V. In Section VI, we

present the hardware implementation and the results of the

encryption processor and discuss more them. In Section VII

we briefly describe the parameterized configuration tool flow

along with the improvements in the results followed by we

conclude in Section VIII.
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Table I: An algorithmic description of the ARX operation ∗
for 4-tuples of 16–bit words (X ∗ Y ).

Input: X = (X0, X1, X2, X3) and Y = (Y0, Y1, Y2, Y3)
where Xi and Yi are 16–bit variables.
Output: Z = (Z0, Z1, Z2, Z3) where Zi are 16–bit variables.
Temporary 16–bit variables: T0, . . . , T11.

T0 ← ROTL1(const1 + X0 + X1 + X2);
T1 ← ROTL4(const2 + X0 + X1 + X3);
T2 ← ROTL9(const3 + X0 + X2 + X3);
T3 ← ROTL11(const4 + X1 + X2 + X3);
T4 ← T0 ⊕ T1 ⊕ T3;
T5 ← T0 ⊕ T1 ⊕ T2;
T6 ← T1 ⊕ T2 ⊕ T3;
T7 ← T0 ⊕ T2 ⊕ T3;

T0 ← ROTL2(const5 + Y0 + Y2 + Y3);
T1 ← ROTL5(const6 + Y1 + Y2 + Y3);
T2 ← ROTL7(const7 + Y0 + Y1 + Y2);
T3 ← ROTL13(const8 + Y0 + Y1 + Y3);
T8 ← T1 ⊕ T2 ⊕ T3;
T9 ← T0 ⊕ T2 ⊕ T3;
T10 ← T0 ⊕ T1 ⊕ T3;
T11 ← T0 ⊕ T1 ⊕ T2;

Z3 ← T4 + T8;
Z0 ← T5 + T9;
Z1 ← T6 + T10;
Z2 ← T7 + T11;

II. π-CIPHER

π-Cipher is a nonce-based authenticated encryption cipher

with associated data. This cipher is a parallelizable and

incremental, sponge-based design. It is designed to accom-

modate words and blocks with different sizes, and different

security levels [15], [16]. π-Cipher’s design is based on sev-

eral canonical cryptographic concepts but has some intrinsic

new features. The encryption/authentication operation of π-

Cipher can be described in five phases:padding, initializa-

tion, processing the associated data, processing the secret

message number (SMN) and processing the message. In all

of them a main role in the security and design perspective

has the permutation function, denoted as π-function. It is

an ARX-based permutation function that consists of three

rounds, while each round consists of eight ARX operations

blocks, denoted as ∗ operations. Every ∗ operation has as

input two 4-tuples of ω-bit words (ω = 16, 32, 64) and

performs in total 52 ARX operations on them. An algorith-

mic description of the ∗ operation is given in Table I. The

∗-operation operates with 8 constants (const1, . . . , const8)

consuming 8× ω bits of memory.

One round of the π-function uses two consecutive trans-

formations on the input string chunks (I1, . . . , IN ). A

generic description of the algorithm for one round of the

π-function is given in Table II. This round is sequentially re-

peated three times. For every round, different pairs (C1, C2)

of the round constants are used. The total memory space that

is occupied by them is 8× 4× ω bits.

Table II: A generic algorithmic description of one round of

the π-function

Input: I1, . . . , IN and C1, C2 where Ii are input string chunks
(4-tuples of 16-bit words) and C1 and C2 are round constants
(4-tuples of 16-bit words).
Output: J1, . . . , JN

J1 = C1 ∗ I1
For i = 2 to N do

Ji = Ji−1 ∗ Ii
JN = JN ∗ C2

For i = N − 1 downto 1 do

JN = JN ∗ JN+1

More details about the π-Cipher can be found in the

official documentation of the cipher [15].

III. ARX ENGINE ARCHITECTURE

Because of the nature of the π-function, to process two

inputs X and Y with the transformations μ and ν indepen-

dently, the ARX engine consists of a dual core processor,

with the cores running in parallel. Each core has a 64-bit

buffer and receives the data from one 16-bit input port. Also

it has sixteen read ports, where each port is controlled by 2-

bit address bits. The total width of the address port is 32 bits,

with each bit coming from the control unit as it is shown in

Figure 1. Once the data is written on the reading ports, they

are then processed by four 16-bit adders. Next, the results

of the adders are processed by the 16-bit rotator unit. Every

core needs to do XOR operations before outputs the result.

The XOR Bank is also controlled by the signals from the

control unit, and it is responsible for mixing the output from

the Rotator unit. The results from the processor’s cores are

sent to the other four ripple-carry 16-bit adders, and after

that stored into the 64-bit buffer FIFO. Once the Z buses

data are stored in the FIFO, the control unit sets its flag

Arx_flag high. This is for denoting that the ARX engine has

processed the data and it is ready to receive new data from

the input ports.

A. Adder

The 16-bit ARX engine relies on using eight 16-bit adders

to process the data that comes out of the buffers, and other

four 16-bit adders that calculate the final result, as shown in

Figure 1. Each four-input port in the 16-bit adders consist

of three 16-bit ripple-carry adders. The first two adders are

used to add the buffer results, and the last adder is used to

sum the two results from the previous adders. All adders in

the engine are controlled by several control bits from the

control unit.
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Figure 1: A 16-bit ARX Engine

B. Rotator

The rotator is responsible for left rotating the adder’s

outputs by different rotation values based on the algorithmic

description of the π-Cipher [15].

C. XOR Bank

The XOR banks, as shown in Figure 2a and Figure 2b,

are intermediate stages between the rotators outputs and the

final stage of the engine, to maximize the diffusion of the

bits [15]. The output data of both XOR banks are added to

each other by using four 16-bit parallel ripple-carry adders,

as shown in Figure 2c. Next, the adders output data is stored

in the FIFO.

D. ARX Control Unit

The ARX control unit has been built based on a Moore

finite state machine. It consists of six sequential states, which

are controlling the operation from the buffers to the adding

bank stage. The buffer state consists of two counters, one

for receiving the data from the input ports and store it in the

buffer, and the other counter is used to read the stored data

on the buffers reading ports. This operation is followed by

rotators state, which controls the several parallel left rotation

operations from the buffer side to the XOR bank. Once the

rotators state is completed, the XOR state starts to control

the four 16-bit parallel XOR operation. At the end of the

state there is an internal signal, which it initiates the FIFO

state, that controls the storing process on the FIFO. In total,

the ARX engine takes seven cycles to execute the input data

sets.

IV. THE π-FUNCTION

The ARX engine introduced in Section 3 is used to imple-

ment the π-function. As shown in Figure 3, a π-function core
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(a) X-direction (b) Y-direction
(c) Adding Bank

Figure 2: XOR & Add Banks for both processors

Figure 3: π-function core

consists of 128 byte memory (π-function buffer) and it stores

the 256-bit input data along with the internal constants (six

64-bit constants). As described in Section 2, the π-function

consists of three rounds, where each round consists of eight

ARX engines running sequentially as shown in Figure 4.

The π-function control unit relies on Moore-style state

machine with 32 states; each state consists of two sub-states,

one to control the data direction from the buffer to the ARX

engine, and another one to control the data flow from the

ARX engine to the memory buffer.

A. π-function Control Unit

This unit controls the π-function buffer’s input by 1-bit

signal, which chooses whether the input comes from the

input data set or ARX engine. The π-function buffer is

divided into two major parts; the first part is 96 bytes long,

and stores the π-function internal constants, and the input

data sets; the second part is 32 bytes long and it is reserved

for intermediate results between the rounds. The π-function

control unit consists of 32 states running sequentially, as

described in Section IV. Each state consists of two sub-

states. The first one controls the data flow from the input

port to the function buffer, while the second one starts by

moving from the π-function buffer to the data ARX engine

buffer. This is done by setting the ARX_Load signal to high

for one cycle. Then, the control unit of the ARX engine

will take care of the data processing, until the ARX_Flag
becomes high. That means the ARX engine has finished the

computational stage and it is ready to pass the executed data

to the π-function buffer. Meanwhile, the ARX_Flag signal

initiates the next state by rising the WRENA signal, and

choosing the looping path instead of the input path, by rising

the IOSEL signal to high. This operation performs four times
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Figure 4: π-function round

on every round. This will be followed by the exchange in

the data direction flow between the ARX engine input ports.

The exchange is made based on the mathematical model [15]

shown in Figure 3. Using the introduced scheme, the pi-
function three rounds data takes 675 cycles to complete.

V. MESSAGE PROCESSOR

The π-function core from Section IV is used to implement

the message processor. As shown in Figure 5, a message

processor consists of the initialization generator (KPIG),

Data Bus 2 × 1 multiplexer, 16-bit ALU, π-function core,

16 bytes ciphertext buffer, 16 bytes tag buffer and message

processor control unit (MPCU). The MPCU allows the user

to choose either receive key, PMN, IS, or all of them together

as inputs through the 4-bit PC control signal. While the

KPIG is storing the key and PMN, the 16-bit ALU is storing

the message in its local 32 byte buffer (the first 64 bytes from

the buffer are reserved for the counter, and the rest for the

message block).

Considering there is no associated data and SMN in this

design, the output of the KPIG is considered as the CIS

(Common Internal State) for the message blocks [15], [16].

Once the initialization phase is done, KPIG will send the

data to the π-function core through the Data Bus multiplexer.

This operation is controlled by the MPCU through DBSEL,

PF_start, and Kpmn_flag signals.

After π-function, CIS is generated and its copy is stored

for further use in the IS buffer of the KPIG.

The 16-bit ALU has a 32 bytes buffer for storing the

message block. The first 64-bits of the buffer are reserved

for the counter. Another 32 bytes buffer located in the ALU

is used for storing the result of the π-function. After the

first invocation of the π-function the result as a ciphertext

is redirected to the Ciphertext buffer, and after the second

invocation the result as a tag is stored in the Tag buffer. All

this actions are controlled with the signals from the MPCU.

A. KPIG

The KPIG contains two buffers, each of them is repre-

sented with 32 bytes. The first buffer is used to store the

key and the public part of the nonce - PMN (public message

number). The other one is used to store the result after the

initialization phase, CIS value (Common Internal State). The

KPIG has eight states that are controlled by 3-bit signals as

shown in Table III. The KPIG as a standalone unit has been

implemented in just 53 slices and can run at 460 MHz.

B. ALU

ALU contains two buffers, and each buffer is represented

in 32 bytes and arithmetic and logic unit. The rule of the

ALU is to xor the message with the selected data from the

output of the π-function or just pass the π-function’s output

without any changes based on the ALU_mode value. The

ALU as a standalone unit has been implemented in just 118

slices and can run at 408 MHz.

C. MPCU

MPCU is the control unit of the message processor. It

consists of five sequential states based on the Moore’s finite

state machine. The initial state is used to clear all the control

signals and prepare the message processor to receive new
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Figure 5: Message Processor

counter and message blocks. Once the start signal is set to

high, the load message state and generate key state control

both ALU and KPIG units to store the data based on the

value of the PC signal. In the automatic mode, the PC

value is "0000", which means that the KEY and PMN are

received from the input port. For the manual mode, the user

can choose whether he wants to upload the KPIG buffers

by the key, PMN, IS, or all of them together. When the

kpmn_flag is set high, the KPIG’s output will be processed

by the π-function through the ALU unit. Once the counter

is processed by the ALU, the ALU_flag control signal will

start a new state in MPCU to process the ALU outputs by

π-function. This is followed by another state that change

the ALU mode and process the message block by the π-

function. This time when the PF_flag becomes high, the tag

buffer will store the final data if there are no more parts of

the message that need to be processed. When the Tag_flag is

set high by the MPCU, this means the final data have been

started to be written on the Tag data bus.

VI. HARDWARE IMPLEMENTATION

The ARX engine, the π-function core, and the message

processor for 16-bit version of π-Cipher were synthesized

for and verified on the Xilinx Virtex-7 architecture specifi-

cally, a XC7VX485T-2FFG1761. They have been described

on the FPGA platform in VHDL and were synthesized using

ISE design suite 14.7.

A. ARX Performance

Throughput =
Number of input bits×Maxfrequency

Number of clock cycles per block
(1)

As discussed in Section II, the π-function consists of

3 rounds, with each round having eight ARX operation

blocks. The throughput of the design is given in Equation

1. The area, clock rate, and throughput of the custom ARX

processing units are summarized in Table IV.

B. ARX Engine Performance
The 16-bit version of the ARX engine has been imple-

mented in 266 slices running at 347 MHz, achieving 4.34

Gpbs on the Xilinx Virtex-7 platform. The input data of the

ARX engine takes around seven cycles to be executed, plus

four cycles to store the input data in the ARX buffer and

one cycle to move the executed data out of the engine. Even

though the prior work [11] is more flexible than our proposed

custom ARX engine, ours is almost four times faster than the

previous implementation, as shown in Table IV. We attribute

this to the fact that the previous implementation uses a native

64-bit Arithmetic and Logic Unit (ALU), which we suspect

lowers the achievable frequency by increasing the critical

path. The improvements we achieved with our introduced

ARX engine would certainly decrease the total execution

time that is needed to complete all three rounds of the π-

function.
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Table III: Description of the KPIG eight states

key_gen State Function
000 Initial Clear the buffers and internal control signals
001 GENKEY_ISRD Store the key, kpmn_DB data bus ← ((Key || PMN || 10*) ⊕ IS)
010 GENKEY_ISGENRD Store the key and IS. kpmn_DB data bus ← ((Key || PMN || 10*) ⊕ IS)
011 GENPMN_ISGENRD Store the key, PMN, and IS. kpmn_DB data bus ← ((Key || PMN || 10*) ⊕ IS)
100 GENPMN_ISRD Store the PMN. kpmn_DB data bus ← ((Key || PMN || 10*) ⊕ IS)
101 GENKEYPMN_GENISRD Store the PMN, Key, and IS. kpmn_DB data bus ← ((Key || PMN || 10*) ⊕ IS)
110 GENKEYPMN_ISRD Store the PMN and Key. kpmn_DB data bus ← ((Key || PMN || 10*) ⊕ IS)
111 GENIS Store IS

Table IV: The ARX Performance (π16-Cipher)

ref [11] ARX Engine
Throughput 1.2 Gpbs 4.34 Gpbs
Area(Slices) 227 266

Frequency(MHz) 250 347
Throughput/Area (Mbps/slices) 5.4 16.71

C. The π-function Performance

In this paper, the π-function has been implemented based

on the introduced 16-bit ARX engine in just 971 slices,

running at 250 MHz, and achieving 95 Mbps. The total area

of the π-function can be reduced by decreasing the states of

the π-function control unit from 32 to just 16 (total number

of ARX engines in each round × number of rounds). Even

though the ARX engine can run at 347 MHz, the π-function

can only run at 250 MHz. The drop in the frequency is due to

the additional modules needed, such as the function’s buffer

and the control unit, which controls the data flow of the

function. This might end up increasing the critical path.

D. Message Processor Performance

In this paper, the message processor was implemented in

1114 slices based on the introduced ARX engine, runs at

250 MHz and achieves 15 Mbps for a processing message

length of 128 bits in 2165 cycles. The total area used to

implement one message processor is just 1% of the whole

FPGA area. That means we can use as many as almost 100

message processors to run 1600 bytes of the message in

parallel at 250 MHz, achieving 1.5 Gbps.

VII. PARAMETERIZED CONFIGURATION

We use parameterized FPGA configuration technique to

implement the message processor as an parameterized ap-

plication. An application is said to be parameterized if some

of its input values change infrequently compared to the rest

called parameters. The technique enables us to implement

the parameterized application with less FPGA resources

(mainly Look Up Tables) compared to the classic static

(conventional) implementation. This helps in shortening the

critical path of the design and hence it also improves the

processor’s performance [17].

The tool flow used to generate the parameterized con-

figuration consists of two stages: a generic stage and a

specialization stage. In the generic stage, a parameterized

application (or design) described in a Hardware Description

Language (HDL) is processed to yield a Partial Parameter-

ized Configuration (PPC) and a Template Configuration (TC)

as depicted in Figure 6.

The following tool flow steps explains the generic stage

and are adapted from the conventional tool flow [14].

A. Synthesis

In this step, the HDL design is converted into a network

of logic gates. The parameter inputs described in the HDL

are annotated by –PARAM and this annotation makes the

difference between regular inputs and parameter inputs. The

parameter inputs are also a part of the Boolean network of

logic gates produced after synthesis.

B. Technology Mapping

During the mapping stage, the synthesized Boolean net-

work is mapped onto the available resources of the target

FPGA architecture such as LookUp Tables (LUTs), DSP

blocks and BRAMs while optimization of circuit area and

speed (LUTs depth) are being taken into consideration. The

conventional mapping tool would map to the static LUTs

and hence it would result in the conventional bitstreams

after place and route. To generate a parameterized bitstream,

authors in [17] change the conventional mapping tool to a

tunable version, TMAP, so that the Boolean functions of

parameter inputs are mapped to Tunable LookUp Tables

(TLUTs). These are virtual LUTs that differ from conven-

tional LUTs in the fact that their lookup entries are defined

as the boolean functions of the parameter inputs instead

of static ones and zeros. The truth table entries will be

reconfigured upon every change in parameter values.

Presently, the parameterization of BRAM and DSP blocks

is not yet possible but parameterization of the routing

switches called TCONs is established at the virtual FPGA

level. However, the practical implementation in commercial

FPGAs is yet to be done [18]. The TMAP mapping algo-

rithm is described in [17] and can be integrated with the

conventional Xilinx tool flow which is explained in [19].
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Figure 6: Parameterized Configuration tool flow.

C. Placement and Routing

In the placement step, the mapped resources are placed or

associated to specific blocks of the target FPGA architecture.

Extensive optimization is considered so that interconnect

wire length and interconnect delay is minimized. The router

configures the physical switch blocks to achieve the required

interconnect according to the circuit. Since the placement

and routing does not depend on parameter inputs or TLUTs,

a conventional placer and router can be used.

The final output of the generic stage is the Template

Configuration (TC) and Partial Parameterized Configuration

(PPC). TC is a static bitstream which contains static ones

and zeros, which are used for configuring during the start of

the FPGA. The PPC contains sets of multi-output Boolean

functions of the parameter inputs. The PPC needs to undergo

the specialization stage, along with parameter values to

produce an efficient specialized configuration.

In the Specialization stage, the Boolean functions are

evaluated for specific values of the parameters thus gen-

erating specialized bitstreams. For every infrequent change

in parameter values, the Boolean functions are evaluated

by a Specialized Configuration Generator (SCG). The SCG

can be implemented on an embedded processor such as the

PowerPC or the ARM cortex-A9 present within the FPGA

core.

The SCG reconfigures the FPGA via a configuration inter-

face called HWICAP, by swapping the specialized bitstreams

into the FPGA configuration memory. The HWICAP encap-

sulates the ICAP primitive (port) of the FPGA and forms

a controller that orchestrates the swapping of specialized

bitstreams via the interface port ICAP. The bitstreams are

accessed in the form of frames, and a frame is defined as

the smallest addressable element of an FPGA configuration

data. Each frame has its unique frame address that can be

used to point to the frame during the reconfiguration. The

software to implement the Parameterized Configuration is

available as an open source project on GitHub [20].

D. The HWICAP driver: “XHwIcap_SetClbBits”

The HWICAP supports a reconfiguration driver function

called “XHwIcap_SetClbBits” to perform the reconfigu-

ration. The function accepts two crucial function arguments:

1) Location co-ordinates of a TLUT: This information

is used to generate the frame address that is used to

point to the frame that contains truth table entries of

the TLUT.

2) Truth table entries: These are the specialized bits

generated after the specialization stage. The TLUT

truth table entries need to be overwritten with these

specialized bits.

The reconfiguration takes place in 3 major steps:

1) Read frames: using the frame address, a set of four

consecutive frames containing the truth table entries

of a TLUT are read from the FPGA configuration

memory.

2) Modify frames: the current truth table entries of a

TLUT are replaced by the specialized bits, thus the

modified frames contain specialized bitstreams.

3) Write-back frames: using the same frame address,

the modified four frames (specialized frames) are

written back to the FPGA configuration memory, thus

accomplishing the micro-reconfiguration.

Micro-reconfiguration is a fine-grain form of reconfigura-

tion tailored to implement parameterized applications.

The reconfiguration time is a major overhead of the

parameterized configuration approach. Using the HWICAP,

the time taken to reconfigure one TLUT is 230μs. However,

with custom reconfiguration controller such as MiCAP and

MiCAP-Pro [21] and the techniques used in [22] the recon-

figuration time can be effectively suppressed by the factor

upto 37.

E. Parameterized configuration for the message processor

We make use of parameterized configuration technique

to implement the message processor with the input:

“Key&MN” as a parameter input. The input “Key&MN”

is used to generate the encryption key of the message

processor. For every change in key input, the TLUTs whose

configuration hold the key input values are reconfigured

with the new key value. This technique optimizes the Key

generator module (KPIG) and therefore reduces utilization

area by 27 slices. However, this optimization comes at the

cost of reconfiguration time. The results in terms of LUTs

resource utilization is tabulated in Table V.
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Table V: Parameterized message processor results

Implementation LUTs(TLUTs) Reconfiguration
time(ms)

Conventional 9052(0) 0

Parameterized Configuration 8942(256) 600

Clearly, we observe a difference of 108 LUTs in the

resource area optimization. Since each slice contain 4 LUTs

in the Xilinx Virtex-7, the resource optimized in terms of

slices is 27. The overall effect on the performance of the

message processor was (to be estimated). Since the key

input to the key generator module doesn’t change frequently,

it is worth to accept the performance improvement of the

message processor by (to be estimated) at the cost of

reconfiguration time of 600 ms.

VIII. CONCLUSIONS AND FUTURE WORK

This paper presents the design and analysis of the refer-

ence implementation of the ARX (Add, Rotate, and XOR)

engine of 16-bit version of π-Cipher on the FPGA platform.

π-Cipher is one of the second-round candidates of the

ongoing CAESAR competition for authenticated ciphers.

The proposed ARX engine has been implemented in just 266

slices on the Xilinx Virtex-7 platform, achieving a through-

put of 4.34 Gpbs at 347 MHz. Comparing the result with

the prior work, the introduced ARX engine is almost four

times faster. The π-function, which is the most expensive

element from the design, has been implemented as well. In

order to optimize the size, the message processor has been

implemented using parameterized configuration technique

that optimizes key generator module by saving 27 slices at

the cost of the reconfiguration time of 600 ms. Therefore,

the parameterized configuration helps to investigate the

trade-off between the reconfiguration time and the resource

utilization. However, the reconfiguration speed can be im-

proved with custom reconfiguration controllers and drivers

described in [23]. In the future, we will further optimize

the π-function implementation and the message processor

control units in order to decrease the number of the states.

This will increase the performance while decreasing the total

area of the message processor. We also plan to investigate

advantages of implementing the encryption processor on

an overlay architecture called Virtual Coarse-Grained Array

(VCGRA) [24].
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