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Abstract: This paper is an initial investigation of parallelization approaches for the numerical simulation of 
fretting fatigue under realistic conditions, e.g. cyclic non-proportional loading. The major difficulty in 
parallelising such simulations is the severe non-linearity of involved mechanical processes, which spans over 
multiple spatial and temporal scales. Generally, the problem comprises modelling of the contact, friction, stick 
and slip conditions that result in non-linearities localised upon the interfaces between components, the crack 
initiation phase that can be simulated using damage accumulation, and crack propagation, where the regions 
surrounding the tips of the cracks typically require a much more precise treatment and therefore present 
much higher computational burden than the rest of the domain. In general, such highly non-linear problems 
are difficult to implement in parallel, primarily due to the load-balancing issues.  
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1 INTRODUCTION  

Failure in mechanical components due to fretting fatigue is popular research topic due to its immediate 
practical application, e.g. aerospace riveted joints [1] and many other industrial applications in mechanical 
and civil engineering. The crack initiation, propagation and lifetime of the fretting fatigue have been studied 
both experimentally [2] and numerically, within a finite element framework [3]. Most of the numerical studies 
simulate fretting fatigue by Continuum Damage Mechanics (CDM) for the analysis of crack initiation and 
Linear Elastic Fracture Mechanics (LEFM) for the analysis of crack propagation. Assuming proportional 
loading conditions and therefore constant ratio between mode I and mode II Stress Intensity Factors (SIFs) 
enables fast simulation on a single lumped cycle only [4]. The drawback of such simplified approach is that it 
might lead to incorrect crack paths and fatigue lives as reported in [5]. The cycle-by-cycle simulations, e.g. 
using Cohesive Zone Models (CZM) [6], admit the non-proportionality, however require significantly higher 
computational power. Additionally, a significant amount of time is needed for the calculation of reliable 
stresses and for the adaptive re-meshing. For this reason, FEM could be ineffective for simulating high-cycle 
fatigue, e.g. 107 fatigue cycles [7]. A possible alternative is an explicit Meshless Local Strong Form Method 
(MLSM) that has been proven as effective in several application fields [8-10], in particular, if implemented on 
parallel computers [11, 12]. The downside of the MLSM approach is that it does not guarantee that the 
equilibrium equations are strictly satisfied at each time step, and must satisfy stability conditions which might 
induce additional complications due to the existence of cracks in the domain.  

The computational time of simulations grows rapidly with higher required accuracy, typically ensured with 
denser spatial discretization, i.e. more elements or computational nodes, and number of loading cycles. An 
important part of the numerical approach is thus the effective implementation of the solution procedure on 
modern computer architectures. The developments in the technology of the computer architectures are 
nowadays extremely vivid. The processing power can be increased either by increasing the processor’s clock 
frequency or by increasing the number of processing units. The clock frequencies are approaching their 
physical limits; therefore the second option - increased number of processing units - is becoming more 
attractive. Parallel computers, available today in most desktop computers or computer servers, can 
compensate for the lack of performance of a single computer, but only in cases where an efficient 
parallelization of the computational method is known. Various application programming interfaces (APIs) for 
parallel programming are used to maximize the performance of parallel systems. Nowadays, the most widely 
used APIs for parallel programming are MPI for distributed-memory systems, and Ptreads and OpenMP for 
shared-memory systems [13]. Moreover, using graphical processing units (GPUs) for solving parallel 
problems is widely spreading. APIs that support parallel programming on GPUs are becoming more and more 
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popular, like CUDA and OpenCL [14, 15]. Solving crack problems in parallel is intrinsically difficult, and rarely 
attempted in practice due to the implementation complexity and the learning curve involved. Besides the 
parallelization techniques for FEM that are mature [16], considerable effort has been recently invested in the 
parallelization of adaptive eXtended FEM (XFEM) [17] for simulations of composites fracture. 

This paper describes an initial investigation of the parallelization approaches and opportunities for the 
numerical simulation of fretting fatigue cracks under real conditions, e.g. high resolution cyclic non-
proportional loading, with high computational requirements that exceed the computational capabilities of a 
single computer. In Section 2, the crack simulation method is functionally decomposed. In Section 3, 
opportunities for the parallel speed-up of the crack simulations are analysed together with an approximate 
estimation of most promising numerical techniques.  

2 FRETTING FATIGUE SIMULATION    

The fretting fatigue solution methodology can be decomposed into independent functional blocks that can be 
executed on different computers. Note that the sub-functions cannot be always executed in parallel because 
of the data dependencies, i.e. results of a block are inputs of another block. Some functional blocks can be 
further decomposed by domain decomposition and implemented again in parallel on several computing cores.  

Let us consider a generic simulation of a high number of cycles in fretting fatigue crack life. A birds view on 
such a functional decomposition results in (i) modelling of domain geometry, crack initiation, crack 
propagation and loading cycle, which mostly needs human resources, (ii) discretization, numerical solution, 
and parameter sweep, which require computational resources. Each block can be further decomposed. For 
example, the crack initiation phase is usually composed of (i) determination of geometry, (ii) modelling and 
simulation of contact's dynamic, (iii) testing of initiation criteria. The crack propagation phase is usually 
composed of the following steps: (i) computation of the stress intensity factors, (ii) verification of the crack 
stability, and (iii) computation of the direction of crack propagation. A principal functional decomposition of a 
fretting fatigue crack simulation is shown in Fig. 1. The blocks that can run in parallel are shown on a symbolic 
time axis.  
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Fig. 1 Main functional blocks of the simulation of crack propagation under high-cycle fretting fatigue 
conditions 

3 PARALLELIZATION AND COMPLEXITY ESTIMATION  

In order to simulate millions of nodes and millions of fretting cycles, the parallelization of the fretting fatigue 
cracks simulation programs is required. Thousands of computing cores are available today in distributed-
memory computing clusters with interconnected processing nodes that incorporate a multiple shared-memory 
processors and optionally also many-core accelerators, such as GPUs, for number crunching. Such hybrid 
architectures requires also hybrid parallelization strategy that incorporates thread-level parallelization, e.g. 
OpenMP in each computing node, combined with a node-level parallelization, e.g. problem decomposition 
and message passing communication (MPI). There exist some successful attempts to address the non-linear 
mechanics problems with the hybrid parallelization approach [18], with the aim to preserve acceptable 
computational scalability with high number of computational nodes in a wide area of applications. It seems 
that adaptivity [19] and XFEM [20] are appropriate solution methodologies for the parallel simulation of the 
fretting fatigue crack propagation. However, alternative algorithms can be used that are less optimal on a 
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single computer but very scalable and therefore appropriate for the parallel computers. For example, the 
limitations posed by re-meshing after each propagation of the crack can be solved by the local meshless 
method [21], which enables relatively simple and efficient adaptive implementation either in weak or strong 
formulation [22].  

Another important aspect of the parallelization is the load balancing and minimal requirement for global 
communication [23]. Unbalanced system will suffer from increased computational time, since overloaded 
processors will be late with their output, on the other hand, global communication could limit the scalability 
because of congested communication network. Both aspects must be considered during the parallelization 
process. For example, in numerical solution of a crack simulation, the solution of the system of Partial 
Differential Equations (PDE) represents one of the major parts of the solution procedure. There are several 
possible approaches of addressing this problem; one possibility is to use a MLSM with the shared memory 
parallelization [11]. A complete localization of numerical treatment in MLSM enables directly applied 
parallelization through the OpenMP API on multi core CPUs and many-core accelerators. The OpenMP 
enabled program forks on request into several threads and processes the assigned task concurrently on 
multiple processor cores. The run time environment allocates the threads to the available processor cores. 
After the execution of the parallel sections of the code, OpenMP joins threads back into a single thread and 
the program continue with sequential execution. The schematic block diagram of the parallel solution based 
on MSLM is shown in the left part of Fig 2.   

Another approach is to solve PDEs on distributed system such as a computer cluster with appropriate domain 
decomposition as shown in the right part of Fig 2. An important part of the implementation is the 
communication between computing nodes. In efficient distributed algorithms, the communication load must 
be minimized while the computation load must be well balanced between processors; otherwise, some 
computers would mostly wait for jobs. Although the communication plays an important role also in shared 
memory, in terms of data access latencies on different memory levels, it is much more pronounced in the 
distributed execution, where the interconnection topology plays a crucial role [23]. Note that significant speed-
ups which scale on thousands of computing nodes are only possible on distributed computers. 

The computational and memory cost of the solution procedure are mostly governed by the complexity of the 
numerical method used. In general both, memory and computational complexities, are functions of the 
number of discretization nodes N  [11], however, there could be a significant difference in the constant. For 

example, estimated computational complexity of FEM system matrix construction is ( [ ])eO N logN n , where 

en  is the number of discretization nodes per element, while the complexity of the meshless local Petrov-

Galerkin (MLPG) method, which is basically a meshless variant of FEM, is 2( [ ])q sO Nn logN n m , where qn  

is the number of quadrature points, sn  is the number of support nodes and m  is the order of shape function 

basis; alternatively, the complexity of MLSM, a meshless variant of FDM [21], is 2( [ ])sO N logN n m . All 

methods ultimately result in a sparse and possibly banded non-linear system that can be solved by an iterative 

method with ( )O Nd operations, where d is the width of system matrix band. 

 
Fig. 2 A block diagram of OpenMP parallel solution based on MLMS on multicore computers (left) and a 
problem domain decomposition for parallel solution on interconnected computing nodes (right). 
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4 CONCLUSIONS  

This paper is a short review of possibilities for speeding up the fretting fatigue simulations in order to approach 
the real situations with millions of fatigue cycles. The functional decomposition followed by the parallelization 
of numerical solution of each cycle, on a heterogeneous computer with hundreds of interconnected nodes, 
each with several cores, seems to be a viable approach. Near ideal speed-ups, as reported for other solid 
mechanics simulations, can be expected for the simulation of a single fatigue cycle, if using methodologies 
with local approach that reduce the frequency or complexity of re-meshing. The problem of inherently 
sequential nature of the fatigue simulation seems to remain a serious bottleneck, unless the crack history 
could be modelled differently, for example by a simulation of only few consecutive cycles and extrapolation 
of the results. On the other hand, multiple simulations with different parameters, which are often used in the 
real problem, are trivial for parallelization. 
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