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Abstract: Geometrically nonlinear transient analysis of laminated composite plates is studied using 
isogeometric analysis (IGA). Herein, higher-order shear deformation theory (HSDT) is applied in 
displacement field to ensure by itself the realistic shear strain energy part without shear correction factors. 
IGA utilizing higher-order B-splines basis functions enables to satisfy easily the stringent continuity 
requirement of the HSDT model without any additional variables. The nonlinearity of the plates based on 
the von-Karman strain assumptions is solved by the Newmark time integration associated with the Picard 
method. Two numerical examples of square composite plates are provided to demonstrate the 
effectiveness of the proposed method. 
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1. INTRODUCTION 

Laminated composite plates were widely studied by various scientists with a numerous models including 3D 
elasticity model [1], layer-wise model [2] or equivalent single layer (ESL) theory. The 3D elasticity solution 
and layer-wise (LW) model can be recommended to improve the accuracy of transverse shear stresses. 
However, they have a numerous unknown variables producing much computational cost. Thus, reduction a 
3D problem to a 2D problem based on the equivalent single layer theory is considered.  

Among the ESL plate theories, classical laminate plate theory (CLPT) relied on the Kirchoff-Love 
assumptions just provides acceptable results for thin plate. First order shear deformation theory (FSDT) 
based on Reissner-Mindlin hypothesis, which considers the shear deformation effects, was therefore 
developed for thin and thick plates. Furthermore, higher order shear deformable theories (HSDT), which 
include higher-order terms in the approximation of the displacement field has then been devised. It is worth 
mentioning that the HSDT models ensure non-linear distributions of the shear strains/stresses with traction-
free boundary condition at the plate surfaces and provide better results and yield more accurate and stable 
solutions than the FSDT ones. However, the HSDT requires the C1-continuity of generalized displacement 
field which is easily satisfied by the approximated functions from isogeometric analysis (IGA). 

IGA [3] firstly proposed by Thomas Hughes fulfils a seamless bridge link between computer aided design 
(CAD) and finite element analysis (FEA). The basis idea of this approach is using the same B-Spline 
functions in describing the exact geometry of problem and constructing finite approximation for analysis. 
Being thankful to higher order continuity of B-Spline functions, IGA naturally verifies the C1-continuity of 
plates based on the HSDT assumptions. IGA has been widely applied to the plate structures with various 
plate models such as CLPT [4], FSDT[5], HSDT[6], four unknown variables refined plate theory (RPT) [7], 
layerwise [8], etc. The literatures mentioned above, however, did not take into account geometric 
nonlinearity, except two recent papers [9, 10] based on the FSDT. Therefore, our goal in this paper is firstly 
extended the HSDT model in study transient analysis of the laminated composite plates. Based on the von-
Karman strain which considers small strain and moderate rotation assumptions, the nonlinearity of the 
plates is formulated using total Lagrange approach and solved by the Newmark time integration associated 
with the Picard methods. Two numerical examples are given to show the effectiveness of the present 
formulation. 

2. ISOGEOMETRIC COMPOSITE PLATE FORMULATION FOR NONLINEAR ANALYSIS 

2.1. The higher-order shear deformation plate theory 
The displacement of an arbitrary point in plate can be expressed as: 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55872779?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

65 
 

,0

3
0 , 2

( , , )
4

( , , )
3

( , , ) 0 0

x x

y y

wuu x y z

v x y z  v z w z z
h

w x y z w

β
β

     
        = = − + −        

        
      

u  (1) 

Using the von-Karman assumptions, the nonlinear strain – displacement relation adopts here by neglecting 
second-order terms of u0 and v0 displacements 
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The Cauchy stress tensor σ is obtained from the constitutive relation based on Hooke’s law  

=σ Dε  (3) 

where D  - a square matrix of 5 5×  is the elastic constant matrix [11]. 

Neglecting the damping effect, the equation of motion obtained from Lagrange’s equation using Hamilton’s 
variation principle can be briefly expressed as [12] 

d d dT T T
sδ δ ρ δ

Ω Ω Ω
Ω + Ω = Ω∫ ∫ ∫σ u u u fɺɺε  (4) 

where ρ  and sf  are the density and the surface loads, respectively. 

2.2. Brief of B-spline functions 

A knot vector { }1 2 1, ,..., n pξ ξ ξ + +=Ξ is a non-decreasing sequence of parameter values iξ , 1,...i n p= + , where 

i Rξ ∈  called ith knot,  p is the order of the B-spline and n is number of the basis functions.  Using Cox-de 

Boor algorithm, the univariate B-spline basis functions ( ),i pN ξ  are defined recursively 
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The multivariate B-spline basis functions are generated by tensor product of the univariate B-splines 
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where 1, 2, 3d =  is the dimensional space. Fig. 1 illustrates an example of bivariate B-spline basis function 

from tensor product of two univariate B-splines { }1 1 3

4 2 4
0,0,0,0, , , ,1,1,1,1=ψ  and { }1 2 3 3 4

5 5 5 5 5
0,0,0, , , , , ,1,1,1=Ξ  in 

ξ  and η  direction, respectively. 
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Fig. 1 B-splines basic functions 

2.3. Discretization 
Using higher-order B-splines basis functions, the displacement field is approximated as: 

( ) ( ), ,
m n

h
A A

A

Nξ η ξ η
×

=∑u q  (7) 

where Aq  is the vector of nodal degrees of freedom associated with the control point A.  

Substituting Eq. (7) into Eq.(2), the generalized strains can be rewritten as: 
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where LB is the linear part of strain matrix [6], while the nonlinear strain matrix is given as: 
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Substituting Eq. (8) into Eq. (4), the equation of motion is written in the following matrix form: 

ext+ =Kq Mq Fɺɺ  (10) 

where K,M and extF are the global stiffness and mass matrices and force vector [13], respectively. 

2.4. Solution scheme 
From Eq. (10), it is observed that the dynamic equation is dependent upon both time domain and the 
displacements. To discretize this problem, the Newmark’s integration scheme association with the direct 
iteration method named the Picard method is employed. This solution scheme is detailed in Fig. 2. As noted 
that the Newmark’s constants β and γ  are chose as equal to 0.25 and 0.5, respectively [14] and the 
displacement, velocity and acceleration are set to zero at the initial time. 
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Fig. 2 Flow chart of Picard method. 

3. NUMERICAL RESULTS 

Firstly, an orthotropic plate [15] with dimensions as; length L = 250 mm, thickness h = 5 mm is studied for 
validation. For this problem, the fully simply supported plate is subjected to a uniform step loading of 1 
MPa. Its time history of transverse displacement /w w h=  under both linear and nonlinear analysis is 
shown in Fig. 3. It is observed that present method predicts the very close deflection response as 
compared with finite strip method (FSM) [15]. It also clearly exhibits that the magnitude and wavelength of 
the non-linear response are lower than that of linear behaviour with the same loading intensity. 
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Fig. 3 Time history of the transverse displacement of an orthotropic plate. 

Next, the dynamic response of three layer [0/90/0] thick plate [16] is investigated. The plate is square in 
dimension of h = 0.1526m, L/h = 5. The transverse load is sinusoidally distributed in spatial domain and is 
assumed to vary with time as follows 

0 0 0( , , ) sin( )sin( ) ( )
x y

f x y t q F t
a b

π π=  (11) 

in which 0 0.689 GPaq =  and value of force 0 ( )F t  depicted in Fig. 4 depends on loading types: step, 

triangular, sinusoidal and explosive blast, respectively. Once again the observation in Fig. 5 is that 
nonlinear analysis takes the lower central deflection and higher frequency than that of the linear one. 
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Fig. 4 Time history of load F0(t). 
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Fig. 5 Effect of different loadings on the deflection respond of the cross-ply [0/90/0] square laminated plate: 

(a) step; (b) triangular; (c) sine and (d) explosive blast loading. 

4. CONCLUSIONS 

An effective numerical procedure based on IGA and HSDT has been presented for geometrically nonlinear 
transient analysis of the laminated composite plates. Herein, using cubic approximation functions, the 
present method naturally satisfies the C1 continuity across inter-element boundaries without any additional 
variables. The nonlinearity of the plates based on the von-Karman strain assumptions is solved by the 
Newmark time integration associated with the Picard method. The obtained results are in good agreement 

(b) (a) 

(d) (c) 
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with available solutions in the literature. It is also concluded that the nonlinear analysis produces lower 
magnitude and wavelength of the transverse displacement as compare with linear one. 
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