
Live Streaming of 4K Ultra-High Definition Video
over the Internet

Stefano Petrangeli
∗

,
Jeroen van der Hooft,

Tim Wauters
Ghent University - iMinds

Rafael Huysegems,
Patrice Rondao Alface,

Tom Bostoen
Nokia Bell Labs

Filip De Turck
Ghent University - iMinds

ABSTRACT
HTTP Adaptive Streaming (HAS) is the de facto standard
for video streaming services over the Internet. In HAS, each
video is temporally segmented and stored in different quali-
ties. The client selects the quality level for every video seg-
ment based on network conditions, allowing a smooth play-
back with the best possible Quality of Experience (QoE). Al-
though results are promising, current solutions suffer from
two problems. First, a low quality and large end-to-end
latency are often observed in live streaming scenarios. Sec-
ond, freezes in the video playout may occur in case of sudden
drops of the available bandwidth. We reduced these issues
using two complementary approaches. First, we reduced the
live latency using the new HTTP/2 server push in combi-
nation with super-short segments. Second, we designed an
OpenFlow-based network controller that prioritizes the de-
livery of particular segments to avoid freezes at the clients.
The proof-of-concept shows the results obtained when two
clients stream a video under varying network conditions. By
monitoring the clients’ behavior, it is possible to understand
the gains brought by the proposed approaches. Particu-
larly, we demonstrate how our solutions consistently reduce
the live latency in high round-trip time networks and video
freezes caused by network congestion. These results repre-
sent a major improvement for the QoE of the final users.

CCS Concepts
•General and reference → Design; •Information sys-
tems → Multimedia streaming; •Networks → Net-
work management; Wide area networks;

Keywords
HTTP Adaptive Streaming, Live Latency, HTTP/2, Server
Push, Video Freezes, OpenFlow, Prioritization, Quality of
Experience

∗Corresponding author: Technologiepark 15, B-9052 Ghent,
Belgium. E-mail: stefano.petrangeli@intec.ugent.be

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

XXX XXX
c© 2016 ACM. ISBN XXX. . . $15.00

DOI: XXX

1. INTRODUCTION
Nowadays, video streaming applications account for the

largest portion of the Internet traffic. Particularly, HTTP
Adaptive Streaming (HAS) protocols have become very pop-
ular and are considered to be the de facto standard for video
streaming services over the Internet. Microsoft’s Smooth
Streaming, Apple’s HTTP Live Streaming, Adobe’s HTTP
Dynamic Streaming and MPEG’s Dynamic Adaptive Stream-
ing over HTTP (DASH) are examples of deployed HAS tech-
nologies. In an HAS architecture, video content is tempo-
rally segmented at different quality levels and stored on a
server. Each client requests these segments at the most ap-
propriate quality level, based on the locally perceived band-
width and the video player buffer level. In this way, video
playback dynamically changes according to the available re-
sources. Such dynamic adaptation results in a smooth video
streaming experience.

Nevertheless, several inefficiencies still have to be solved in
order to further improve users’ Quality of Experience (QoE).
For instance, the camera-to-display delay, which is the delay
between capturing an event and its playout on the client’s
display, is very important when streaming live events. In
current HAS deployments however, this delay is in the or-
der of tens of seconds. This is because a large buffer at
the client is required to prevent playout freezes and the ser-
ver only sends a new video segment once a request is is-
sued by the client. Moreover, as reported by Akshabi et
al., current rate adaptation heuristics perform quality se-
lection sub-optimally, especially when a sudden bandwidth
drop occurs [1]. This leads to unnecessary quality switches
and video playout interruptions, which negatively affect the
overall QoE of the users. Similar conclusions are drawn in
the 2015 Conviva report on HAS [3]. The report reveals that
almost 29% of the analyzed HAS sessions exhibit at least one
video freeze. This problem is mainly due to the unmanaged
nature of current HAS technologies, as the clients are only
aware of the local perceived bandwidth conditions and can-
not be assisted in improving the delivered QoE. This issue is
aggravated in case of live streaming, where the client buffer
has to be kept as small as possible in order to reduce the
live latency.

We solved the aforementioned problems using two com-
plementary approaches. First, we reduced the live latency
using the server push feature of the HTTP/2 protocol to-
gether with super-short segments with a duration of 100 to
500 ms, compared to traditional values of at least 1 second.
Super-short segments allow reducing the client buffer and,
consequently, the live latency. Unfortunately, the number

of HTTP GET requests increases in this case, resulting in
a large network and server overhead and a lower bandwidth
utilization in high round-trip time (RTT) networks, such
as wireless networks. By actively pushing segments from
the server to the clients using the HTTP/2 protocol, it is
possible to eliminate these drawbacks. Second, we designed
an OpenFlow-based framework to help the clients avoiding
video freezes caused by network congestion. The main ele-
ment of this framework is a controller, which prioritizes the
delivery of particular HAS segments in order to avoid video
freezes. This decision is based on the HAS clients’ status and
on measurement data collected from the network nodes.

Within the V-FORCE1 project, a Proof-of-Concept (PoC)
has been developed to demonstrate the gains brought by the
proposed approaches. The demo is composed by two video
clients, streaming a video simultaneously. By varying the
available bandwidth and RTT, we can demonstrate that (i)
our HTTP/2 solution significantly reduces the live latency
and startup delay in high-RTT networks and (ii) network-
based prioritization can effectively prevent the occurrence of
freezes, without decreasing the video quality.

The remainder of this paper is structured as follows. Sec-
tion 2 reports related work on HAS optimization. Next,
Section 3 details the proposed HTTP/2 push-based solution
and the OpenFlow-based framework. In Section 4, the demo
setup is presented, while Section 5 concludes the paper.

2. RELATED WORK
Wei et al. are the first to explore how the new HTTP/2

push feature can be used to improve HAS [10]. By reduc-
ing the segment duration from five seconds to one second,
they reduce the camera-to-display delay to about ten sec-
onds. They avoid an increased number of GET requests by
pushing k segments after each request, using HTTP/2 ser-
ver push. This approach has the disadvantage that when
a client switches to another quality level, the push stream
for the old quality level is in competition with the segments
downloaded at the new quality level. Cherif et al. propose
DASH fast start, in which HTTP/2’s server push is used to
reduce the startup delay in a DASH streaming session [2].
The adaptation logic is also moved from the client to the
server. In our approach instead, the classical HAS principle
is not altered.

The use of an OpenFlow controller to optimize the be-
havior of the HAS clients has been studied by Egilmez et
al. [4]. They propose to dynamically re-route HAS traf-
fic to avoid congested links. As traffic re-routing is only
possible in the core Internet Service Provider network while
congested links mainly arise in the edge network, this ap-
proach is not able to fully optimize the behavior of the HAS
clients. Several other works apply traffic-shaping techniques
to limit the bandwidth assigned to each client and to drive
them to request a target bit rate [5, 6]. This entails that
the network de-facto decides which quality level the clients
can download. Moreover, this approach is not designed to
foresee the occurrence of video freezes and avoid them. In
our solution instead, the quality level decision is completely
left to the clients. The OpenFlow controller supports the
delivery of particular segments to avoid a freeze but does
not have any active role in the quality decision process of
the clients.

1https://www.iminds.be/en/projects/2014/09/23/v-force

Client

Server

RTT

MPD

MPD

RTT

sn−m+1

sn−m+1

RTT

sn

sn

RTT

sn+1

sn+1

...

rn+1 rn+2 rn+3 rn+4

...

(a)
Client

Server
MPD sn−m+1 sn sn+1 sn+2 sn+3

RTT

MPD quality
qm

...

rn+1 rn+2 rn+3 rn+4

...

(b)

Figure 1: An example live video scenario for
HTTP/1.1 (a) and HTTP/2 (b), where the client re-
quests m available segments to ramp up the buffer.
Note that ri denotes the release of segment i at ser-
ver side, si its request/download by the client and qj
indicates that the server should change the quality
of pushed segments to j.

3. IMPROVED DELIVERY OF LIVE VIDEO
In this Section, we highlight the main elements and com-

ponents of our HTTP/2 based solution and OpenFlow-based
prioritization framework. We refer to our previous works by
Huysegems et al. and Petrangeli et al. for a more extensive
view on the matter [7, 9].

3.1 Reducing the live latency with HTTP/2
In HAS, a video streaming session starts with the client

sending a request for the video’s media presentation descrip-
tion (MPD). Based on the contents of the MPD, the client
requests video segments one by one, typically ramping up
the buffer by downloading segments at the lowest quality.
The main drawback of this approach is that multiple RTT
cycles are lost to download the MPD and the segments,
which has a significant impact on the startup time in high-
RTT networks. An illustration of this behavior is shown
in Figure 1a, where the first phase of an HTTP/1.1 live
streaming session is shown.

In the HTTP/2 full-push approach, the server pushes m
segments to the client as soon as the MPD request is re-
ceived, where m corresponds to the number of segments
that fit into a preferred buffer size defined by the client.
Since state-of-the-art rate adaptation heuristics ramp up the
buffer by downloading segments at the lowest quality, these
segments are pushed at the lowest quality as well. Note that
the client cannot select another quality anyway, since the
MPD defining all quality levels has not yet been received.
As illustrated in Figure 1b, at least one RTT cycle is gained
in the reception of the first video segment, and multiple RTT
cycles are gained during the buffer ramp up phase. Once the
manifest and the first m segments are sent, the server peri-
odically pushes a new segment to the client at the specified
quality level, whenever a new segment is available. At any
time, the client can send a request to change the bit rate of
pushed segments, if required. The proposed approach has
a number of advantages. Since the first m segments are
pushed back-to-back when the manifest is requested, the
client’s startup delay can be significantly reduced in high-
RTT networks. Since no RTT cycles are lost to request the
video segments, super-short segments can be used, which
further reduces the startup delay. Using a smaller buffer,
the approach can effectively reduce the overall camera-to-
display delay as well.

Figure 2: The OpenFlow controller intercepts
clients’ requests and decides whether the requested
segment should be prioritized or not.

3.2 Reducing video freezes with OpenFlow
In order to help clients avoiding freezes in case of band-

width drops, we designed an OpenFlow controller that pri-
oritizes the delivery of video segments. Prioritization is en-
forced in the network by using an OpenFlow-enabled switch,
the so-called prioritization switch, which is equipped with a
best-effort and a priority queue. An illustrative sequence
diagram of the proposed framework is shown in Figure 2.

The OpenFlow controller intervenes each time a client
requests a new segment from the HAS server and decides
whether the analysed segment should be prioritized or not.
To perform this decision, the controller obtains relevant mea-
surements from both the prioritization switch and the HAS
client requesting the new segment. Network measurements
are obtained through the OpenFlow protocol, which pro-
vides well-defined APIs to collect data from the OpenFlow
switches. More specifically, the controller periodically polls
the prioritization switch to compute the average throughput
of the best-effort and prioritized queue (not shown in Figure
1). Given the overhead and complexity of implementing a
direct communication channel between the clients and the
controller, client related measurements are transmitted by
introducing an additional field in the header of the HTTP
GET message sent by the client when requesting a new seg-
ment. The information signalled by the clients is the current
buffer filling level and the size and duration of the requested
segment. The prioritization switch is configured to forward
the HTTP GET header to the controller via an OpenFlow
rule. The decision on which segment to prioritize is carried
out by computing an estimate of the segment download time
in the best-effort and prioritized queue. If a best-effort de-
livery does not guarantee a timely download of the segment,
i.e., if the download time is larger than the client buffer fill-
ing level, the segment is prioritized. Next, the controller
installs a new OpenFlow rule on the prioritization switch to
guarantee the proper delivery of the analysed segment.

In our solution, the clients are aware of the prioritiza-
tion status of the downloaded segments. The prioritiza-
tion switch is configured to mark prioritized packets with
a specific DSCP field. This field is extracted by the clients
during the download of a segment to discover whether the
segment was prioritized or not. In case of prioritization,
the segments is ignored in the calculation of the estimated
bandwidth because the bandwidth perceived in case of pri-
oritization does not match the real network conditions. In
addition, the client directly requests the next segment at the
lowest quality in order to minimize the risk of freezes, which
is high as the prioritization indicates. It is worth noting that
this mechanism is independent from the actual adaptation
heuristic implemented by the client.

(a)

(b)

Figure 3: The PoC is composed by a video server,
an OpenFlow switch connected to an OpenFlow con-
troller, a layer 2 switch and two video clients.

4. PROOF-OF-CONCEPT SETUP
The network setup of the V-FORCE PoC is composed by

an HAS server, two clients, an OpenFlow switch controlled
by an OpenFlow controller and a layer 2 switch (Figure 3).

The HAS server implementation is based on the Jetty web
server, which was recently extended to provide support for
HTTP/2. Jetty’s HTTP/2 component implements a push-
based strategy, which defines all resources that need to be
pushed along with the requested resource. Such a strategy
is ideal for web-based content but not for a live-stream sce-
nario, since not all segments are available when a request
is issued. Therefore, we defined a new request handler that
processes GET requests issued by the client. This handler
allows a client to issue a live-stream request, passing along
parameters such as the maximum buffer size and quality
level. When this request corresponds to a new session, the
server starts a push thread that pushes the m last released
video segments at the lowest quality immediately. In order
to simulate a live stream scenario, a release thread makes
new segments available every segment duration. As soon
as a new segment is available, the push thread is notified
and a segment is pushed to the corresponding client. When
the client wants to change the quality level at which the
segments are pushed, a new GET request is issued and the
quality level is updated at server-side accordingly.

The HAS client is implemented on top of the libdash li-
brary, the official reference software of the ISO/IEC MPEG-
DASH standard. To make use of the server push provided by
HTTP/2, a number of changes is made. First, an HTTP/2-
based connection is added to enable the reception of pushed
segments. The nghttp2 library is used to set up an HTTP/2
connection over SSL. Note that the reference software uses
curl to issue all GET requests, yet this library does not yet
support HTTP/2 push. Second, the rate adaptation heuris-
tic is modified to recalculate the quality level every time
a segment is received and the corresponding push stream is
closed. While in HTTP/1.1 a GET request is required for ev-
ery segment, no request is sent in the HTTP/2-based scheme
if no quality change is required. Third, the perceived band-
width is estimated based on the elapsed time between the
reception of the push promise and the time the segment is
available. The Libpcap library is used to extract the DSCP
field from the received packets and thus enable prioritization

Figure 4: The HTML5 dashboard allows to fully
control the demo setup and monitor the perfor-
mance of the video clients.

awareness. The rate adaptation heuristic embedded into the
HAS clients is the FINEAS algorithm [8].

The OpenFlow controller is implemented using POX, an
extendible Python-based controller. Open vSwitch is used
to realize the prioritization switch, which is equipped with
a best-effort and a priority queue.

The considered video is the 60 fps Netflix El Fuente se-
quence, encoded at variable bit rate using H.265/HEVC in
two different versions with 2000 ms and 500 ms segment du-
rations. Seven quality levels are provided, with a nominal
bit rate ranging from 0.3 Mb/s to 20 Mb/s, and spatial res-
olution from 720p to 4K. In order to guarantee the same
visual quality for the 2000 ms and 500 ms cases, the seg-
ments were encoded with very close global Peak Signal to
Noise Ratio (PSNR) values. With PSNR differences smaller
than 0.2 dB, the encoding rates for the 500 ms case are on
average 15% higher than in the 2000 ms case. This over-
head is due to the encoding cost of four times more frequent
instantaneous decoder refresh (IDR) frames.

An HTML5 dashboard allows to control the network setup
and monitor the behavior of the HAS clients (Figure 4). By
using the dashboard, it is possible to dynamically change
the bandwidth and the RTT on the link connecting the two
switches (highlighted link in Figure 3a). As for the monitor-
ing, three metrics can be visualized: (i) the quality down-
loaded by the client, (ii) the index of the downloaded seg-
ment and (iii) the index of the latest released segment by the
server. The latter two metrics indicate the playout delay be-
tween the client and the live signal, i.e., the live latency. In a
first scenario, we demonstrate that our V-FORCE client ex-
periences a lower live latency and a higher quality compared
to the state-of-the-art client when the network RTT is high,
thanks to the HTTP/2 server push feature and super-short
segments. In a second scenario, we introduce drops in the
available bandwidth and show how the prioritization intro-
duced by the OpenFlow controller can reduce the occurrence
of video freezes for the V-FORCE client.

5. CONCLUSIONS
In this paper, we presented the proof-of-concept developed

within the V-FORCE project, which allows us to demon-
strate two main points. First, the server push feature of
the HTTP/2 protocol can effectively decrease the startup
delay and live latency in high-RTT networks, when com-
bined with super-short segments. Second, network-based
prioritization introduced by an OpenFlow controller can re-

duce video freezes caused by network congestion. Monitor-
ing information allow to compare the performance of the V-
FORCE optimized client and a state-of-the-art client. Prac-
tically, the optimizations implemented by the V-FORCE
client entail a consistent improvement of the users’ QoE.

6. ACKNOWLEDGMENTS
Jeroen van der Hooft is funded by grant of the Agency for

Innovation by Science and Technology in Flanders (IWT).
The research was performed partially within the iMinds V-
FORCE (Video: 4K Composition and Efficient streaming)
project under IWT grant agreement no. 130655. This work
was partly funded by FLAMINGO, a Network of Excellence
project (318488) supported by the European Commission
under its Seventh Framework Programme.

7. REFERENCES
[1] S. Akhshabi, S. Narayanaswamy, A. C. Begen, and

C. Dovrolis. An experimental evaluation of
rate-adaptive video players over http. Image
Communication, 2012.

[2] W. Cherif, Y. Fablet, E. Nassor, J. Taquet, and
Y. Fujimori. Dash fast start using http/2. In
Proceedings of the 25th ACM Workshop on Network
and Operating Systems Support for Digital Audio and
Video, 2015.

[3] CONVIVA. 2015 viewer experience report.
http://www.conviva.com/vxr-home/vxr2015/.

[4] H. Egilmez, S. Civanlar, and A. Tekalp. An
optimization framework for qos-enabled adaptive
video streaming over openflow networks. IEEE
Transactions on Multimedia, 2013.

[5] P. Georgopoulos, Y. Elkhatib, M. Broadbent, M. Mu,
and N. Race. Towards network-wide qoe fairness using
openflow-assisted adaptive video streaming. In
Proceedings of the 2013 ACM SIGCOMM Workshop
on Future Human-centric Multimedia Networking,
2013.

[6] R. Houdaille and S. Gouache. Shaping http adaptive
streams for a better user experience. In Proceedings of
the 3rd Multimedia Systems Conference, 2012.

[7] R. Huysegems, J. van der Hooft, T. Bostoen,
P. Rondao Alface, S. Petrangeli, T. Wauters, and
F. De Turck. Http/2-based methods to improve the
live experience of adaptive streaming. In Proceedings
of the 23rd ACM International Conference on
Multimedia, 2015.

[8] S. Petrangeli, J. Famaey, M. Claeys, S. Latré, and
F. De Turck. Qoe-driven rate adaptation heuristic for
fair adaptive video streaming. ACM Transactions on
Multimedia Computing, Communications, and
Applications, 2015.

[9] S. Petrangeli, T. Wauters, R. Huysegems, T. Bostoen,
and F. De Turck. Software-defined network-based
prioritization to avoid video freezes in http adaptive
streaming. International Journal of Network
Management (IJNM), 2016.

[10] S. Wei and V. Swaminathan. Low latency live video
streaming over http 2.0. In Proceedings of Network
and Operating System Support on Digital Audio and
Video Workshop, 2014.

