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A custom pack combines medical disposable items into a single sterile package that is used for surgical procedures.
Although custom packs are gaining importance in hospitals due to their potential benefits in reducing surgery setup
times, little is known on methodologies to configure them, especially if the number of medical items, procedure types
and surgeons is large. In this paper, we propose a mathematical programming approach to guide hospitals in developing
or reconfiguring their custom packs. In particular, we are interested in minimising points of touch, which we define as a
measure for physical contact between staff and medical materials. Starting from an integer non-linear programming
model, we develop both an exact linear programming (LP) solution approach and an LP-based heuristic. Next, we also
describe a simulated annealing approach to benchmark the mathematical programming methods. A computational experi-
ment, based on real data of a medium-sized Belgian hospital, compares the optimised results with the performance of
the hospital’s current configuration settings and indicates how to improve future usage. Next to this base case, we intro-
duce scenarios in which we examine to what extent the results are sensitive for waste, i.e. adding more items to the cus-
tom pack than is technically required for some of the custom pack’s procedures, since this can increase its applicability
towards other procedures. We point at some interesting insights that can be taken up by the hospital management to
guide the configuration and accompanying negotiation processes.

Keywords: health care services; combinatorial optimisation; integer linear programming; case study

1. Introduction

The provision of accessible and cost-efficient health care is seen as one of the major service challenges of today’s
society. In 2012, member countries of the Organisation for Economic Co-operation and Development spent on average
9.5% of their gross domestic product on health care (OECD 2012). Hospitals contribute for about one-third of these
national health expenditures (Poisal et al. 2007). One unit that is of particular interest within hospitals is the operating
theatre. Since this facility generates about 42% of a hospital’s revenue and a proportionate share of its costs, it has a
significant impact on financial performance. Improving the surgical throughput by just one additional case per day per
operating room may generate additional revenue of 4—7 million dollar for an average-sized hospital (HFMA 2005).
Multiple strategies exist to increase patient throughput in the operating room. First, one can adjust the planning and
scheduling practice within the operating theatre and its related facilities. Zhang et al. (2009) show how an improved
assignment of capacity to specialties reduces inpatient’s length of stay (LOS) waiting for the surgery. By reducing
unnecessary LOS and increasing operating theatre utilisation, they positively impact patient throughput. We refer to
Cardoen, Demeulemeester, and Belién (2010), Guerriero and Guido (2011) and May et al. (2011) for recent literature
reviews on surgery planning and scheduling contributions. Second, one can impact the operative time. Technological
advances such as robotics may shorten the required surgical time, which enables the steady shift from inpatient surgery to
outpatient surgery (Toftgaard and Parmentier 2006). Third, one can focus on the non-operative time in the operating the-
atre. Harders et al. (2006) define non-operative time as the room turnover time plus anaesthesia induction and emergence
time, in which the room turnover time encompasses the time to clean and ready an operating room for the next case.
Improvements in non-operative time can be obtained, for instance, by reassigning tasks amongst nursing and logistics per-
sonnel, by introducing lean techniques and therefore excluding unnecessary steps and actions in the according processes,
or — as explained in this paper — by introducing custom procedure trays or custom packs during the setup of the surgery.
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In its strict sense, a custom pack is defined as a single, sterile, customised, disposable pack that contains all the
supplies needed for a particular surgical procedure. It is assembled by a vendor to the specifications of the health care
facility (Gellman 1988). However, custom packs may also include only a subset of the supplies needed for a specific
surgery. In this case, single-item picking or even a selection of other custom packs may complete the required set of
medical items for the surgery. Moreover, custom packs do not have to be developed for a single surgical procedure: they
can be used for a set of surgical procedures, or for a specific surgeon instead of a specific procedure. This study deals
with the configuration of custom packs for a given set of surgical procedures, surgeons performing these procedures and
medical items required for the procedures so that the physical contact between staff and the medical materials during
setup of the surgery is minimised. We will measure this physical contact through what we will refer to as points of
touch. Obviously, the minimum requirement of medical items for a procedure using a pack should be present at the time
of surgery (i.e. included into the custom pack or additionally picked). Also, the number of custom packs to be
configured is limited and therefore custom packs should be shared as much as possible among different surgeons and/or
procedures.

The custom pack decision problem incorporates a set covering optimisation problem, which is known to be NP-hard
(e.g. Garey and Johnson 1979). In Section 2, we describe how we extend the traditional set covering problem due to
the allowance of excess items to custom packs. The introduction of waste is a counter-intuitive feature that seems of lit-
tle use in optimisation problems where the objective is defined by efficiency. Making this feature explicit in the model,
though, we show when and to what extent this strategy might prove useful. Although the optimisation problem is diffi-
cult, we describe easy modifications to an exact mixed integer linear programming (MILP) approach and hence con-
tribute to a better understanding of heuristics based on linear programming (LP) on top of commonly applied
metaheuristics (such as simulated annealing (SA), tabu search or genetic algorithms) or methods like branch-and-price.

The remainder of this paper is organised as follows. In Section 2, we further describe the concept of custom packs,
show that it is both medically and financially interesting to examine, and provide a focused literature review. A mathe-
matical formulation of the optimisation problem is introduced in Section 3, followed by the development of solution
approaches in Section 4. We test the solution approaches both using a real case and a set of scenarios derived from the
case to understand the sensitivity of the results. Section 5 introduces the test setting and reports on the computational
performance of the solution procedures, whereas Section 6 is mainly directed to the managerial learning that stems from
the case and the comparison of the scenarios. Section 7 concludes this paper and addresses some directions for future
research.

2. Literature review

The introduction of custom packs into the operating theatre is beneficial for the clinical quality of care (see, e.g. Baines
et al. 2001). Since custom packs directly reduce material handling effort, they decrease the risk that nurses contaminate
sterile products. Also, less unwrapping of medical items is required, which results in a more stable air flow within the
operating room and hence less impact of, for instance, dust particles. Custom packs also allow for a quick response to
material intensive emergency services, such as a Caesarean section, due to speeding in surgery setup. Yet, the most
important driver for using custom packs is the gain in operational efficiency and the resulting cost savings (Baines et al.
2001; Birk 2009; Gellman 1988; Normén and Evans 2013). As mentioned, custom packs are effective in reducing the
time needed for surgery setup, for mainly two reasons. First, items are no longer individually packaged so that unwrap-
ping the custom packs replaces the individual unwrapping of all medical items that are included. Second, medical items
do not have to be sorted anymore since they are organised and sequenced within the custom pack, irrespective of the
nurse who is in charge of this process. A decrease in non-operative time may translate in reduced operating room staff-
ing costs (Dexter et al. 2003) or additional surgical caseload (e.g. Kharraja, Albert, and Chaabane 2009; Krupka,
Sathaye, and Sandberg 2008). Less material handling is not only beneficial in the operating room during setup, but also
reduces the effort of storing and picking disposable items. Moreover, the chance of not picking a requested item or pick-
ing wrong items is strongly reduced. Custom packs also seem to simplify tracking and tracing of materials as a single
registration of the pack suffices for adequate billing, whereas this task can be cumbersome in the case of a single-pull
system and hence prone to errors or omissions.

Unfortunately, not all consequences of custom pack usage are perceived as a clear advantage. Although custom
packs reduce waste related to packaging as there is no need to package individual items, they often trigger the replace-
ment of reusable items with disposable items. Linen aprons, for instance, are replaced by paper ones, ready to be thrown
away after surgery. Another example of waste is mentioned by Gellman (1988) who states that if a custom pack proves
to be unsterile (e.g. due to transportation), all items included into the custom pack are wasted. Also, waste may stem
from exceeding the required number of medical items in a custom pack for a given procedure (Akridge 2005). Although
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one may consider this as bad practice, it can broaden the reach of a custom pack and increase its applicability over
different procedures. We will elaborate on this idea and explicitly incorporate this option in our problem definition (see
Section 3). Through a single-site, observational study conducted on the surgical instrumentation at a large academic
medical centre in Chicago, Stockert and Langerman (2014) found that the per cent use of instruments across surgical
specialties and multiple tray types is extremely low (13-22%). A similar observation was made by Chin et al. (2014)
who found that the average instrument utilisation rate at the Department of Otolaryngology- Head and Neck Surgery at
St Joseph’s Hospital (London, ON, Canada) was less than 30%. The authors conclude that attention to tray composition
may result in immediate and significant cost savings. Similar to the discussion on waste, it is unclear whether custom
packs really contribute to the inventory holding process of hospitals. On the one hand, custom packs may reduce the
single-pull inventory (working capital reduction) and reduce the number of stock keeping units, freeing up some of the
limited space and reducing the effort of stock counting. On the other hand, the risk-averse character of medical
institutions will not entirely eliminate single-pull inventory, so that space conditions may even deteriorate despite the
often frequent delivery of packs. It should be noted that the vendor takes up an important role in the custom pack
design and delivery. Since they sell their packs as custom-made, it is hard for hospitals to quickly substitute suppliers.
This dependency also makes hospitals vulnerable towards out-of-stock. Therefore, vendors typically accumulate inven-
tory of custom packs, though this action implies that requests of hospitals for changes to the content may result in a
long depletion lead time until the new configuration will be put in place (Gellman 1988). Although vendors are nor-
mally considered to be sole suppliers of custom packs, Birk (2009) recently reports on an initiative in which several
hospitals and facilities join forces to produce their custom packs in-house.

The configuration process of custom packs involves many stakeholders and consecutive phases in order to agree
upon the content and the variety of custom packs to be developed. Akridge (2005) concludes that the degree to which
disposable items can be standardised is crucial to the success of custom packs. In other words, to what extent can differ-
ent surgeons use a uniform set of medical items to perform the same procedure type. Three important questions here are
(1) is the medical item really needed (ii) is the number of a particular item appropriate and (iii) can we rationalise items
with the same functionality but with, for instance, a different brand or size. Standardisation as such is a difficult task as
stakeholders have different interests: surgeons prefer to use their own and familiar disposable items, the hospital prefers
cost efficiency while vendors try to standardise over multiple hospitals to achieve economies of scale. Not only agreeing
upon standardisation seems problematic, also assessing the efficiency impact of standardisation and the identification of
potentially interesting custom pack configurations is difficult and time consuming. This paper introduces a model that
deals with the underlying optimisation problem and hence may contribute in facilitating this negotiation process.

Literature provides a range of contributions in the field of product platform architecture (Jiao, Simpson, and Siddique
2007) that are related to our problem when we think of platforms being custom packs, products being procedures and
components being medical items. While these contributions generally focus on a manufacturing or technological environ-
ment with a clear focus on a production cost function minimisation, we provide a service setting and introduce a proxy
that, among other, indirectly includes costs, namely the points of touch. Our main reason to do so is that many outcomes
in our surgery setting are financially difficult to estimate, such as clinical quality improvement realised by using custom
packs. Also, contributions in the field of platform architecture see platforms for immediate use and benefit of supplier’s
in-house production, whereas in our case platforms are developed from a customer’s point of view.

The optimisation problem at hand is related to the set covering problem, which we can define as follows (e.g. Bautista
and Pereira 2007): Given a set or universe M, |[M| = m and n subsets S; C M, j € N, N = {1, ..., n} each with a non-
negative cost ¢;, the objective is to find a minimum cost family of subsets S; such that each element i € M belongs to at
least one subset of the family. Set covering problems appear across different sectors, including health care (see, e.g.
Stolletz and Brunner (2011) and Belién et al. (2013) for recent examples). The custom pack problem, however, modifies
the traditional set covering problem due to the restrictions on waste, originating from adding excess items to custom
packs. This makes that solution approaches to the set covering problem are not readily applicable and justifies the
development of an alternative solution approach. Considerable attention has been directed towards the development of
efficient solution approaches for the set covering problem (Caprara, Toth, and Fischetti 2000). Given the complexity and
relation to platform architecture, metaheuristic solution approaches such as SA (e.g. Agard and Penz 2009), tabu search
(e.g. Khalaf, Agard, and Penz 2011) or genetic algorithms (e.g. Qu et al. 2011) might prove useful. Yet, we show that
also LP can contribute to finding adequate solutions and hence provide an LP-based heuristic to solve large instances.

Recently, the application of optimisation techniques applied to the configuration of custom packs has been addressed
by Dobson et al. (2014). They present a column generation approach and a heuristic algorithm for finding a low-cost
trays configuration taking into account surgeons’ preferences and surgical schedules. Another paper that uses a
cost-driven objective function was introduced by Reymondon, Pellet, and Marcon (2008). The authors propose a
methodology for grouping reusable medical devices (RMD) into packages so that costs, related to the sterilisation of
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medical equipment, are minimised. Note that this context differs from ours as custom packs only consider disposable
items, eliminating the need to relate the problem to the sterilisation unit of the hospital. Reymondon, Pellet, and Marcon
(2008) formulate a monetary multiobjective cost function comprising four elements: costs of RMD storage, cost of box
package storage (i.e. type of wrapping), costs of process times and costs of non-used RMD. This cost is similar to our
(disposable) waste cost, though we incorporate waste through a constraint and include that costs may vary according to
the item that is not used. In doing this, we obtain a single-objective function that is not expressed in monetary value but
in countable movements (i.e. the points of touch) and hence introduce an alternative to a cost-driven objective function.
Interviews with field experts of multiple hospitals in Flanders indicate that estimating the true economic value of time
of resources in the operating theatre or perioperative setting (e.g. storage processes) — and especially clinical outcome
measures -may turn out to be difficult in practice for our custom pack setting. Using points of touch as a performance
measure provides a means to impact many objectives at once. Also, including waste as a constraint and having a single
objective can facilitate the translation of results to managerial insights (see Section 6) for our particular setting. Our
objective does not include inventory, though we control for the number of custom packs to be configured through a
constraint. Again, this may lead to interesting insights and also provides a mechanism to assess the marginal value of
adding one more pack while keeping track of the increase in stock keeping units. Reymondon, Pellet, and Marcon
(2008) mention a two-stage approach though only discuss the first stage in which the problem size is reduced by
exploiting sharing potential of RMD, which they test on real size, though not real case, data. The second step, introduc-
ing an optimisation method, constitutes future research, though they already indicate that SA may prove useful based on
previous work (Reymondon and Marcon 2005). Having both an exact and two heuristic approaches, we are able to
numerically assess the heuristic performance. Also, we apply all solution methods to a real case, which should add value
to the managerial insights stemming from the computational experiment.

3. Problem definition

Let x;, denote an integer decision variable that equals the number of a medical item i in pack p. The pack p is used for
procedure j when its binary decision variable y,; is equal to 1. The binary consequence variable w, equals 1 if at least
one procedure is using pack p. We also introduce a parameter weight to define the trade-off between points of touch
and the introduction of one additional custom pack. We represent the number of single-pulled items of type i for proce-
dure j by the integer decision variable z; and the number of excess items of type i for procedure j by the integer conse-
quence variable red;;. Furthermore, let D; be the annual demand for procedure j, C; the cost of one item of type i, N;
the required number of items of type i for procedure j and B the total budget that is allowed to be spent on redundant
or excess items. We refer to Table 1 for an overview of all indices, sets, parameters and variables.
Now we can formulate the model as follows:

Minimise Zp Zj (Dj -ypj) =+ Zi Zj (D; - ziy) + weight Zp Wp (1)
ST.Y Zi C;-red;-D;<B )

>, W <IPl 3)

Table 1. Overview of the indices, sets, parameters and variables.

iel Index and set Disposable items

peP Index and set Custom packs

jeJ Index and set Procedures

Vpj Variable Equals 1 if pack p is used for procedure j, 0 otherwise
Xip Variable Number of items i in pack p (€ N)

Wy Variable Equals 1 if pack p is in use, 0 otherwise

z; Variable Number of items i single-pulled for procedure j (€ N)
red;; Variable Number of excess items i for procedure j (€ N)

D; Parameter Demand for procedure j

C; Parameter Cost of item i

Ny Parameter Required number of items i needed to perform procedure j
B Parameter Allowed cost associated with excess items

weight Parameter Trade-off between points of touch and an additional custom pack
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wp—yijO VpeP, jeJ “4)

Zp (x,»p -ypj) +zj—redy =Ny Viel, jeJ (5)
vy €{0,1} VpeP, jeJ 6)
w, € {0,1} VpeP 7

xp €N Viel, peP ®)

zj,red; €N Yiel, jeJ )

Expression (1) introduces the objective function in which the annual number of points of touch over all procedures is
minimised. Points of touch may originate from the use of custom packs and from single-pull inventory. Next to the points
of touch, also the number of custom packs to be developed and configured can be minimised whenever the weight is set
to a non-zero positive number. This weight should then reflect how many touch points the introduction of an extra custom
pack is worth. Unfortunately, in reality, this trade-off is difficult to assess. For the remainder of this paper, we assume this
weight to be zero and solely focus on the points of touch resulting from the custom pack design choices. Inequality (2)
restricts the annual spent on redundant items to be less than or equal to the foreseen budget. Equation (3) fixes the maxi-
mum number of packs to be configured to |P|. Note that there is no use in setting |P| > |J|, as all procedures would
already have their own, tailored pack. Constraint set (4) ensures that, if a custom pack is used for a given procedure, this
pack has to be configured. Equation set (5) imposes that for each procedure at least the minimum requirement of all of its
medical items should be covered, either through the use of custom packs and/or single-pull units. Redundant items occur
when this supply exceeds the medically required number of the item, though redundancy will reasonably only materialise
when no single-pull units for the item are needed, as enforced for the optimal solution by the objective function. The
domains of the different decision and consequence variables are described by Expressions (6)—(9).

The model described by Expressions (1)—(9) is non-linear due to Expression (5), which exhibits a multiplication of
two decision variables x;, and y,,. Let v;,; denote a new decision variable to represent the number of items i in a pack p
that is used for procedure j. In order to obtain a linear model, we can now substitute Expression (5) by Expressions
(10)—(14):

>, Vi Tz —redy=N; Viel, jeJ (10)
Vi <xp Viel, peP, jeJ (11)

Vi <y, M Vi€el, peP, jeJ (12)

Vi 2Xp =M +y,,-M Niel, peP, jeJ (13)
viy ERY Viel, peP, jeJ (14)

Expression (10), similar to Expression (5), implies that for each procedure at least the minimum requirement of all of its
medical items should be covered. Excess supply is captured by the consequence variable red;;. The relationship between
the variables x;,, y,; and v;,; is described by Expressions (11)—(13). If a pack p is used for a procedure j (equivalently, if
¥y = 1), the corresponding v;,; will take the value of x;,. Else, if y,; = 0, all corresponding v;,; will be set to 0. Note that
we cannot discard the x;, variables as they ensure that the number of an item i in pack p is constant over all procedures
for which the pack is used. The linear transformation provides a MILP formulation which will serve as a basis for the

development of a two-phase heuristic in Section 4.

4. Solution methodology

We propose a two-phase heuristic that builds upon the strengths of mathematical programming without engaging into
advanced modelling techniques. Despite the fact that heuristics cannot prove optimality of solutions, they might provide
an adequate answer to finding good solutions when the exact procedure would get computationally too time consuming.
In essence, the heuristic generates in a first phase a set of custom packs that might prove useful in minimising the points
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of touch. In a second phase, a MILP is defined which selects the best combination of custom packs defined in the first
phase, while keeping the flexibility to still configure some custom packs completely from scratch during optimisation.
In doing so, we include an opportunity for the algorithm to discover a custom pack configuration which we might have
missed during the first phase and would contribute to the overall solution. As we only incrementally allow for additional
packs in the second phase, we limit the number of variables and constraints needed due to linear transformation (see
Section 5) and increase the probability to find a qualitative solution within a limited time frame. Pseudocode 1 illustrates
the heuristic procedure and describes in further detail how to determine a set of predefined custom packs in the first
phase, which actually is a structured repetition of the exact method for smaller subproblems of the original problem.
The number of subproblems or subsets |S| is determined by a random procedure that divides the original set of proce-
dures into 2, 3 or 4 subsets (e.g. in case of 2 subsets and 16 procedures to be allocated over the subsets, a subset will
contain on average about 8 procedures). The more procedures are grouped into a subset, the better the interplay between
procedures can be taken into account. However, this comes at a higher computational cost as the number of variables of
the MILP problem to be solved will be higher. However, when too few procedures are grouped, computational effort
will be low but the interplay might be lost as one procedure might be very dominant given its volume and item usage
compared to the others. The random repartition hence creates all kinds of subsets and provides the opportunity to find a
diverse set of interesting custom pack configurations. Note that each subproblem is only solved once, keeping the num-
ber of custom packs to be configured low (random, but maximum 4 custom packs) to increase computational tractability.
The first phase of the heuristic is limited to 60 s, and the time for solving the MILP of a subproblem is limited to 5 s.
The parameters of the algorithm were set by insights resulting from a factorial design (see Section 5). When the set of
predefined packs is generated, the second-phase optimisation loop is initiated for the original full problem. Initially, the
problem is solved using the set of predefined packs plus one additional pack that can be configured from scratch. Upon
completion of the MILP search, and if time is allowing, we add another additional pack to be configured from scratch
(so two packs from scratch by now, next to the fixed set of predefined packs of phase 1) and repeat the MILP search,
and so forth.

Pseudocode 1: Predefining potentially interesting custom pack configurations (phase 1) and the global MILP problem
loop (phase 2).

First phase:
procedure < 1;
while (procedure < |J|) do
register the custom pack p that exactly matches the item requirements for the procedure (easy to retrieve from data file);
end while
elapsed_time < 0;
start_time <— time;
while (elapsed_time — start_time < 60 seconds) do
split set of procedures J randomly into |S| smaller subsets;
subset < 1;
while (subset < |S| and elapsed_time — start_time < 60 seconds) do
calculate total annual cost of required items of procedures in the subset;
waste <— 0% total annual cost;
while (waste < 2% of total annual cost) do
nr_packs_to_be_configured <— random integer in [1, max(4, # procedures in subset)]
solve exact MILP model with time limit of 5 seconds;
register any new custom pack p retrieved from solution;
waste <— waste + 1% of total annual cost;
end while
elapsed time <— time;
subset <— subset + 1;
end while
end while

Second phase:

additional packs < 1;

while (elapsed time — start_time < 300 seconds) do
solve adjusted MILP model with predefined and additional packs for global problem;
register best solution found,
additional packs <— additional _packs + 1;

end while
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We will compare the quality of the two-phase heuristic with solutions generated by a SA approach. As mentioned in
Section 2, SA seems to be a promising methodology for problems showing some similarity with our setting (see, e.g.
Reymondon and Marcon 2005). We restrict the technical discussion of the SA algorithm and only aspire here to convey
its main decision steps. A matrix describing the pack—procedure combinations is at the base of the algorithm. In order
to determine the content of a given pack for a given (set of) procedure(s), the algorithm checks the maximum number
of each item to be included in the pack so to avoid any waste and ensuring feasibility. If possible and allowed, the num-
ber of a particular item in the pack can be further increased (this means introducing waste for at least one of the proce-
dures using the pack). This is done in an iterative way as long as budget allows, starting with adding items that exhibit
the highest marginal contribution, determined by the gain in points of touch relative to the cost of adding waste. The
SA updates its best solution found whenever it finds a solution that exhibits a lower number of points of touch. Depend-
ing on the cooling scheme (linear), it could be that the configuration of a pack is accepted although it is leading to a
worse solution in terms of points of touch. The SA applied to our problem is a multistart algorithm, meaning that it
restarts with an empty pack-procedure matrix when there is no further improvement after a predetermined number of
iterations.

Next to the SA, we will also test two priority rules which are easy-to-implement in practice. The first rule (Rule 1)
sequences the procedures in decreasing order based on their annual volume of surgeries. If a custom pack is introduced,
it will be assigned to the first procedure of the list and the content of the pack will exactly match the material require-
ments of the particular procedure. If a second pack is introduced, it will be assigned to the second procedure on the list,
and so forth. The second rule (Rule 2) is similar to Rule 1, except for the sequencing system. In Rule 2, procedures are
sequenced in decreasing order of the multiplication of the annual volume with the total number of required items for
that procedure. In other words, the order is determined by the annual volume of items needed for a particular procedure.

5. Computational results

In Section 5.1, we discuss the data gathering phase and the construction of the test set, whereas we report on the perfor-
mance (in terms of gap analysis) of the solution approaches in Section 5.2. All experiments were performed on an
2.67 GHz PC with 4 GB RAM and the windows 7 Operating system. The algorithm is coded using MS Visual C++
2012 Express and is linked with the IBM ILOG CPLEX 12.6 library to execute the optimisation.

5.1 Data gathering

We obtained data from a medium-sized Belgian hospital that provides a wide range of medical disciplines. The hospital
currently consists of two campuses that will be merged into a single facility on the short term. Both campuses have an
operating theatre, but only one currently uses custom packs. With the upcoming restructuring, the hospital is particularly
interested whether they can also use the current set of custom packs in the new setting or if they have to rethink their
configurations. We limit the scope to orthopaedic surgery types for which a pack is currently used or viable (standard-
ised procedures for which many medical items are required). The main problem consists of 16 different procedures,
which we define as different ‘surgeon-surgery type’ combinations. In total, four surgery types (Hip replacement, Knee
replacement, Arthroscopy knee and Arthroscopy shoulder), 7 surgeons and 137 different medical items with associated
unit prices are incorporated. The annual total number of cases incorporated by the test problem equals 2715, which
represents about 18% of the total surgical volume of the hospital, leading to a maximum of 83,100 individual items
needed to be picked for surgery.

The data gathering phase was executed in multiple phases so to overcome various problems. One major issue was
that the required sets of medical items were not electronically available but had to be identified using paper picking lists.
This process, however, resulted in listing items that were already discarded from the hospital’s SKU-portfolio, or having
duplicate names for the same item. Corrections, in cooperation with the operating theatre head nurses, reduced the num-
ber of different medical items significantly. In addition to that, some unit prices were not always readily available. For
those items without unit price, we set the price to zero and ensured that no waste is allowed in solutions (so no excess
items). It is currently unclear whether custom packs, as they provide additional service to the organisation, are always
more expensive than buying single items. Based on our data, we noticed that the custom pack of the knee arthroscopy
was about 8% more expensive than buying its constituting items on an individual basis, whereas the custom pack of the
shoulder arthroscopy was about 20% cheaper than the reference.

In testing the case, we differentiate between three different waste levels which can respectively amount to 0%, 1%
(€2854) or 2% (€5708) of the total budget required for medical material. Solving the case with 1 up to 16 custom
packs, for three different waste settings, eventually results in solving /6*3 = 48 instances. Since the case exhibits a low
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commonality of medical item usage between procedures, a large discrepancy between the annual number of medical
items to be picked for procedures, and a set of medical items for which the cost per item can significantly differ, we
developed next to the real setting some alternative scenarios to assess the sensitivity of results following these three
characteristics. This implies that the test set consists of 2 (high or low commonality) * 2 (unequal or approximately
equal annual volume of medical items per procedure) * 2 (unequal or equal cost of medical items)=8 scenarios, for
which each time 48 instances are solved. In generating the scenarios, we did control for the total number of surgeries to
be performed (2715) and the total number of medical items needed to do so (83,100). Balancing the annual volume of
items per procedure was achieved by changing the number of surgeries per procedure, not by changing the number of
medical items needed for the procedure. Equal cost of medical items implies assigning the average cost (€3.5). In the
remainder of the paper, we refer to a scenario as e.g. LEU — standing for low commonality (L), equal annual volume of
items among procedures (E) and unequal item cost (U), or e.g. HUE — standing for high commonality (H), unequal
annual volume of items among procedures (U) and equal item cost (E). A scenario name therefore always consists of
three letters describing the characteristics in a fixed order.

5.2 Comparison of the solution approaches

We will express performance in terms of a relative solution gap, defined as the ratio of (i) the difference between a solu-
tion’s number of points of touch and the optimal number of points of touch, and (ii) the difference between the single-
pull solution’s number of points of touch (i.e. 83,100) and the optimal number of points of touch. If we were unable to
identify the optimal points of touch for an instance within 24 h of runtime (less than 20% of the instances, all of them
with allowance of waste and listed under the high commonality scenarios), we did opt to use the current best solution
found as an approximation of the optimal one since the lower bound that was returned by the MILP approach appears
to be weak and unrealistically low. In Section 6, we graphically show that this seems to be an acceptable policy. Note
that a gap of 100% would imply that the method was unable to identify a solution that performs better than the one in
a single-pull system, hence leading to 83,100 points of touch. In this computational testing of the solution methods, the
parameters of the two-phase heuristic were validated using a factorial design. We examined the impact of changes in
time split between the two phases (60/240; 150/150; 240/60) and the maximum runtime in seconds of a MILP problem
in phase 1 (5;30;60). This exercise included 216 instances in which 8 custom packs had to be configured. Instances
stem from all different scenarios and waste policies. From Table 2, we conclude that the smallest average solution gap
occurs when the time in phase 1 is limited to 60 s, and the maximum time for solving a MILP problem in phase 1 does

Table 2. Average solution gap (%) of factorial design for two-phase heuristic

Time limit (s) for solving a MILP model in phase 1

5s 30s 60 s
Time phase 1/time phase 2 (s) 60 s/240 s 0.10% 0.15% 0.16%
150 s/150 s 0.14% 0.14% 0.14%
240 s/60 s 0.12% 0.11% 0.12%

Note: The parameter settings of the bold value equal those of the computational experiment.

Table 3. Performance of solution methods over all scenarios (runtime limited to 300 s).

. Positive solution gap
Zero solution gap

Method Waste (%) % instances % instances Average gap (%) Standard deviation gap (%)
Exact 0 59 41 21.8 28.5

1 15 85 39.1 42.4

2 17 83 35.9 41.7
Two-phase 0 97 3 1.5 0.9

1 70 30 0.7 0.7

2 60 40 0.7 1.0
SA 0 16 84 7.1 7.6

1 10 90 5.8 5.7

2 9 91 6.2 6.7
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Table 4. Performance of solution methods according to the different scenarios (runtime limited to 300 s).

Zero solution Positive solution gap

gap
Waste % Average gap  Standard deviation

Methods (%) % instances  instances (%) gap (%)
LUU Instances (%) with known optimal Exact 0 81 19 42.8 442
solution: 100% 1 25 75 23.1 36.5
2 19 81 12.4 26.7
Two- 0 100 0 NA NA
phase 1 88 13 0.4 0.3
2 81 19 0.9 0.5
SA 0 19 81 6.9 59
1 13 88 5.4 4.4
2 13 88 5.2 4.1
LUE Instances (%) with known optimal Exact 0 81 19 42.8 44.2
solution: 100% 1 13 88 58.1 48.3
2 13 88 46.5 43.8
Two- 0 100 0 NA NA
phase 1 88 13 0.0 0.0
2 81 19 0.1 0.0
SA 0 13 88 7.2 7.3
1 13 88 6.7 4.7
2 13 88 5.6 4.9
LEU Instances (%) with known optimal Exact 0 75 25 60.0 19.9
solution: 100% 1 6 94 31.8 35.7
2 13 88 26.1 35.6
Two- 0 100 0 NA NA
phase 1 63 38 0.3 0.3
2 50 50 0.4 0.3
SA 0 19 81 143 10.0
1 13 88 10.4 6.7
2 6 94 12.5 7.9
LEE Instances (%) with known optimal Exact 0 75 25 60.0 19.9
solution: 100% 1 19 81 59.2 41.0
2 13 88 48.0 46.2
Two- 0 100 0 NA NA
phase 1 100 0 NA NA
2 75 25 0.2 0.2
SA 0 13 88 15.2 9.4
1 13 88 12.8 7.5
2 13 88 15.1 8.7
HUU Instances (%) with known optimal Exact 0 50 50 4.4 8.8
solution: 71% 1 6 94 5.4 54
2 25 75 5.9 4.6
Two- 0 100 0 NA NA
phase 1 25 75 0.7 0.6
2 25 75 0.6 0.5
SA 0 13 88 2.3 1.9
1 6 94 1.6 14
2 13 88 1.5 1.3
HUE Instances (%) with known optimal Exact 0 50 50 4.4 8.8
solution: 56% 1 13 88 45.0 43.9
2 19 81 52.1 46.6
Two- 0 100 0 NA NA
phase 1 100 0 NA NA
2 63 38 0.1 0.1
SA 0 19 81 3.1 2.1
1 6 94 2.0 1.3
2 6 94 2.3 2.0
HEU Instances (%) with known optimal Exact 0 31 69 14.8 22.2
solution: 63% 1 25 75 23.5 36.1

(Continued)
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Table 4. (Continued).

Zero solution Positive solution gap

gap
Waste % Average gap  Standard deviation

Methods (%) % instances  instances (%) gap (%)
2 25 75 32.9 40.8
Two- 0 100 0 NA NA
phase 1 38 63 1.2 0.8
2 31 69 1.6 1.6
SA 0 13 88 32 2.3
1 6 94 2.8 1.6
2 6 94 1.9 1.2
HEE Instances (%) with known optimal Exact 0 31 69 14.8 22.2
solution: 60% 1 13 88 66.2 45.1
2 13 88 58.5 453
Two- 0 75 25 1.5 0.9
phase 1 56 44 0.4 0.5
2 75 25 0.9 1.0
SA 0 19 81 43 2.3
1 13 88 5.7 3.1
2 6 94 5.8 3.1

not exceed 5s. Note, however, that the impact of changing parameters on the solution performance overall remains
limited (and not statistically different at 95% confidence).

Table 3 lists the performance of both the exact and the heuristic methods (two-phase heuristic and SA) over all
scenarios after 300 s of runtime, whereas Table 4 splits the results over the different scenarios. Both tables differentiate
between instances for which the methods found a solution value that equals the optimal value (zero solution gap) and
those instances exhibiting a gap between the returned solution and the optimum (positive solution gap). The average
gap and the standard deviation of the gap are calculated only including the instances that do not return the optimal
solution value. The results in Table 3 clearly indicate that the two-phase heuristic outperforms both the exact method
and the SA in finding ‘zero gap solutions’, regardless of the waste policy. Even if the two-phase heuristic did not
retrieve a ‘zero gap solution’, it outperforms the other methods in two ways. First, it returns a gap that is stable and
characterised by very small standard deviations (hence providing a reliable method). Second, the average gap that is
obtained is very small and on average only marginally above zero (hence providing a high-quality method). Although
the exact approach succeeds in optimally solving small-scale instances (see Appendix 1 which lists results for individual
instances), its performance clearly shows large average gaps and corresponding standard deviations when more custom
packs are allowed to be introduced and waste is allowed to be included into the packs. The main reason why the exact
method often fails to deliver good solutions stems from the curse of dimensionality: MILP approaches often deteriorate
in solution quality when the number of variables and constraints gets large. The heuristic does not suffer from this
drawback thanks to its decomposition approach in which only small MILP problems need to be solved. Table 3 also
shows that the SA encounters difficulties in finding ‘zero gap solutions’. Although SA cannot match the performance of
the two-phase heuristic, it clearly outperforms the exact method in terms of average solution gap and standard deviation
for those instances for which no ‘zero gap solution’ was returned. Please note that regardless the method, it seems easier
to obtain ‘zero gap solutions’ under the 0% waste policy, which limits the flexibility of the viable configurations and
restricts the search space.

From Table 4, we see that the above (aggregated) conclusions on computational efficiency and solution quality in
general hold when we differentiate between the eight scenarios. Based on the amount of ‘zero gap solutions’ and the
solution quality of the remaining instances, it seems that the two-phase heuristic is not sensitive to the scenario that is
underlying the optimisation process. Again, this increases its reliability and improves its applicability in practice: the dif-
ference over all scenarios between the lowest and highest average solution gap is only 1.6 percentage points. A similar
reasoning holds when verifying the difference for the standard deviation of the solution gap, which is also at most 1.6
percentage points. This insight does not seem to hold for the SA, where both the average solution gap and the standard
deviation are smaller for the scenarios with high commonality compared to those with low commonality. Table 4 also
shows that the exact method seems to perform better than average under the HUU scenario, partly triggered by the
absence of inferior solutions for the instances in which a high number of custom packs is allowed to be developed (see
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Appendix 1 for further details on results for individual instances). In this scenario, the procedures have a lot of
similarity regarding content but differences in terms of volume, which also increases the potential gain of adding waste
(see Section 6). When we limit the focus in Table 4 to the two-phase heuristic, we see that it is less powerful in solving
instances leading to a zero solution gap under the HUU scenario, at least for those instances in which redundancy of
items is allowed (1% waste or 2% waste). This observation also holds for the HEU scenario. When the items have an
unequal cost (U), in combination with high commonality (H), more configurations will seem viable and need
exploration, therefore impacting the efficacy of the search. Remark that the HEE scenario is the only one in which the
two-phase heuristic could not solve all instances (but still 75%) to a zero solution gap.

6. Managerial insights

The structure of the test set allows for some interpretation on how the number of custom packs actually impact the num-
ber of points of touch for the different scenarios. Figures 1 and 2 visualise this impact for the LUU (base case) and the
HEU scenario, respectively. In the interest of the paper, we do not visualise all scenarios as many insights can already
be deduced from the two selected scenarios. Both figures show the optimal points of touch curves, ranging from the sin-
gle-pull solution to the case in which all procedures have their own dedicated pack. Recall from Section 5.2 that for
some of our instances under the high commonality scenarios we did use the current best solution known as we were
unable to verify optimality within 24 h of runtime. This can be seen in Figure 2: the markers of some solutions
(between 4 and 11 custom packs under waste policies 1 and 2%) are not filled, in contrast to optimal solutions which
have a solid fill marker. From Figure 2, one can see that the markers without fill do follow the expected pattern that is
stipulated by the markers with solid fill, for which optimality has been proven. Hence, we feel this approximation is
valid for discussing our findings.

If we focus in Figures 1 and 2 on the curves that are depicting the points of touch under the no waste policy (Opt
0%), we clearly see that the introduction of custom packs decreases the points of touch, though at a decreasing or
non-linear pace. In other words, with only few packs the points of touch can already be significantly lowered. Consider-
ing all scenarios, the gain of the first few custom packs is even more explicit and steeper under the high commonality
scenarios and the scenarios with an unequal annual volume of medical items. If there are already many packs in place,
the marginal gain of adding one more seems almost negligible. Comparing these results to the priority rules, which also
do not allow for the use of waste, we clearly see that Rule 2 outperforms Rule 1, though they are far off the optimal
points of touch that could be reached. Since scenario LUU, depicted in Figure 1, is reflecting the real data settings, we
are able to compare the outcome of the 0% Opt curve with the current hospital result. The room for improvement is
apparent: either the hospital should keep its 9 packs but reconfigure its content, which would lead to a decrease of more
than 40,000 points of touch, or it should reduce the number of custom packs from 9 to 2, resulting in the same points
of touch though with far less packs.

A comparison of the policy without waste with the 1% waste (Opt 1%) or 2% waste (Opt 2%) policy learns that
allowing for redundant items in packs can significantly lower the points of touch for the same number of custom packs,
especially if this number of custom packs is limited. The impact of waste seems to be bigger for those scenarios where
the cost of medical items is unequal and procedures share many items (high commonality). Regardless the waste policy
(0, 1 or 2%), having high commonality between the procedures increases the impact of custom pack usage, it is key for
hospitals to standardise the usage of their medical items over different procedures and surgeons. This is in line with the
findings of, e.g. Robertson and Ulrich (1998), which indicate the importance of commonality to achieve economies of
scale. Although standardisation seems viable and advantageous to all stakeholders, this is often a cumbersome exercise
in practice and difficult to achieve when dealing with medical responsibilities. Is a compress of size 10 % 20 really dif-
ferent from a compress of size 10 x 25? Is a compress of size 10 x 20 of brand A really different from one of brand B?
Although this standardisation effort should be executed prior to the actual custom pack configuration, it should be clear
that our algorithm can help in assessing the potential gain of such actions. This, however, is out of the research scope.
From Figures 1 and 2, it furthermore appears that the return of adding more waste, i.e. shifting from the 1% waste to
the 2% waste policy, is positive but decreasing. This implies that only a limited budget for waste could already bring
substantial gains in terms of points of touch. Note that the inclusion of redundancy implies that we can already achieve
minimal picking (i.e. 2715) with less than 16 custom packs. In Figure 2, for instance, one can see that the markers of
the 1 and 2% waste policy when 14 or 15 custom packs need to be configured are on a perfect horizontal line with the
16 pack solution under the 0% waste policy, resulting in 2715 points of touch.

Comparing Figures 1 and 2, we find that a custom pack will sooner being shared and thus impact multiple proce-
dures when the procedures exhibit a high commonality, especially in case no waste is allowed. However, one can foster
the sharing of packs significantly by adding redundant items, even for low commonality settings. In line with the
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Figure 1.
(low commonality, unequal volume and unequal cost).

findings on the number of points of touch, waste seems to be especially beneficial for sharing packs when a limited
number of custom packs is used and the waste cost is unequal (many cheap items can cover the item gaps within the
limited budget). Although not visible in the figures, we should add that our instances hardly return solutions in which
more than one custom pack is simultaneously used for one particular procedure. As such, the concept of modularity is
far from dominant based on our data settings. Note that the pattern in number of procedures using packs is quite differ-
ent between Figures 1 and 2. The content of a custom pack when only one pack is allowed to be configured can be very
different from the content when two packs can be configured and therefore also might result in very different procedures
that will use the custom packs. In other words, there is no guarantee that a procedure which is using a custom pack
when only one pack can be configured, will also use a custom pack when two packs are allowed to be configured. It
could be, but it also could be very different. This is an outcome of the interplay between procedures and (if allowed)
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the inclusion of waste. This irregular behaviour will always smooth out when more custom packs are allowed to be

configured.

7. Conclusion
Based on a real case and a structured test set, this research shows that the introduction of custom packs can significantly

decrease the points of touch needed to get medical materials ready for surgery. From the computational testing, the two-
phase MILP heuristic was shown to be a powerful solution method to solve the complex combinatorial optimisation
problem that describes the configuration of custom packs. In assessing how these custom packs should be configured to
achieve the best returns, we found that a substantial improvement could already be realised using only few packs. Also,
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though perhaps counterintuitive when it comes to efficiency, we did show to what extent the inclusion of redundant
medical items can foster the sharing of a pack among procedures, creating economies of scale. Similar to the number of
custom packs to be introduced, it appears that already a limited budget dedicated to redundant items can be beneficial
for decreasing the points of touch.

Many opportunities for future research can be listed and hence build upon the findings of this project. One major
area for further initiatives concerns the objective function to be optimised. Instead of dealing with a single unit (points
of touch), one could further explore how to define trade-offs and to evolve towards a meaningful multiobjective
approach. Also, instead of fixing the budget of waste to be incorporated, one can think of delineating the budget that
ideally should be spent. In order to achieve this, though, again a trade-off mechanism has to be specified. Also, we
would like to find out whether the heuristic approach would also support different contexts and settings and still return
near-optimal solutions as an alternative to the common set of metaheuristic procedures.
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Appendix 1

This appendix lists the solution gap (as explained in Section 5.2) for all individual instances of the test set. It is structured according
to the solution method, scenario, number of custom packs to be configured and the waste policy. Gaps of instances for which the opti-
mal solution value is unknown are italicised. All gaps are expressed in percentage.
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