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1. Introduction 

Runaway Electron (RE) mitigation after disruptions presents one of the key challenges for 

safe operation of future fusion reactors. In support of related research efforts (see e.g. [1][7]) 

systematic studies of RE generation and losses in the COMPASS tokamak started in early 

2014 in the Framework of the EUROfusion WP14-MST2-9 research project. The COMPASS 

tokamak features ITER-relevant geometry with R = 0.56 m, a = 0.23 m, Ip < 400 kA, 

BT ~ 1.15 T, up to 2x 350 kW of Neutral Beam Heating and typical pulse length around 

300ms. It can operate with inner limiter or single null (divertor) plasma configuration. In the 

latter case, routine operation in the H-mode was achieved. Plasma edge studies and the related 

diagnostic development are in the main focus of the 

COMPASS research team [8]. The RE research 

relevant diagnostics is rather sparse at present (see 

Fig. 1), however, it has been extended in 

collaboration with the NCBJ Poland (development 

of the Cherenkov detector) and the Czech Technical 

University (NaI(Tl) detector, MediPix pinhole 

camera), while further investments are foreseen (e.g. 

the neutron detector). The hard X-ray (HXR) 

scintillation detectors present the key diagnostic 

tool in this work. These detectors measure non-

collimated radiation that originates mostly from RE 

collisions with the tokamak inner wall 

 

Figure 1.  Setup of the diagnostic systems  

for the RE studies at COMPASS tokamak. 
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(bremsstrahlung and deexcitation in solid components). One HXR detector is located outside 

the tokamak so that its threshold for the HXR energy is above 50 keV. The second HXR 

detector is at a similar distance from the tokamak, however it is shielded by 10 cm Pb box; its 

lower energy threshold is therefore well above 500 keV. In the RE dominated COMPASS 

discharges, the RE generated synchrotron radiation was directly measured by infrared camera, 

see [9]. These observations indicate that the maximum energy of the Runaway Electrons 

(REs) is around 25 MeV. RE beams after argon triggered plasma disruptions were 

successfully observed in the current ramp-up phase of the COMPASS plasma discharge, 

which opened new prospects for ITER-relevant studies on RE control and mitigation at 

COMPASS [10]. In this contribution, it is demonstrated that the RE seed production during 

plasma breakdown plays a key role in formation of the RE population observed in the current 

plateau and current ramp-down of the discharge. Next, the observed dependences of the RE 

confinement on plasma shaping and plasma current are presented.   

             

 2. Plasma deuterium fuelling and generation of the Runaway Electrons 

Experiments with plasma fuelling were aimed at improving our understanding of the impact 

of the initial (seed) RE generation on the overall properties of REs in the subsequent current 

plateau phase of the discharge. The results are also applicable to other COMPASS research 

programmes where the early RE mitigation may improve plasma parameters and/or diagnostic 

performance. In the experiments, the plasma border was defined by high-field side limiter and 

plasma density was feedback controlled in the current plateau at a level far from the RE 

dominated discharges in order to minimise RE production in the plateau phase.  First, 

discharges with circular cross-sections and plasma density ne ~ 3.1.1019 m-3 were studied, see 

Fig. 2a. It can be seen that a single initial puff of fuel at plasma breakdown resulted in 

generation of an intense RE population, which is due to high Uloop and low density in the 

current ramp-up phase. In the discharge plateau, however, REs got mitigated in a relatively 

high plasma density; this process is witnessed by the exponential decrease of the HXR 

radiation. Under the same conditions, a secondary fuel puff during the early current ramp-up 

completely mitigated the RE seed and, consequently, no HXR radiation was observed. In 

either case the Pb shielded HXR detector registered no useful signal.  Second, discharges with 

elongated plasmas and density ne ~ 2.5.1019 m-3 were examined, see Fig. 2b. These 

experiments confirmed importance of the initial RE seed for the subsequent evolution of REs. 

Furthermore, acceleration (and possibly avalanching) of the RE population in the discharge 

plateau is testified by loss of highly energetic REs (as observed by the Pb shielded detector) in 
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the current ramp-down phase with zero Uloop. Interestingly, the data also demonstrated that a 

low-amplitude secondary fuel puff in the early current ramp-up phase can hinder production 

of the high energy REs only.   

 

Figure 2.  Fuelling scenarios at the plasma breakdown and its impact on RE population in the COMPASS 

tokamak: (a) circular plasma ( = 1, q95 = 3.25) and (b) elongated plasma ( = 1.4, q95 = 5.50) cross-sections. 

3. Confinement of Runaway Electrons in shaped plasmas 

In order to assess influence of plasma shaping on the RE confinement, HXR data from 

discharges with circular plasma and elongated plasma cross-sections were compared, see 

Fig. 3. Notice that in these studies, plasma current was kept constant in order to maintain 

similar plasma temperatures (Te ~ 550 eV), and two levels of plasma density were examined.  

The HXR data give evidence of improved confinement in shaped plasmas. Indeed, in the low 

density case (ne ~ 1.9.1019 m-3, blue line) data from the shielded detector indicate continuous 

loss of the energetic REs in the case of circular plasmas, while in elongated plasmas the 

energetic REs are lost in a massive amount only at current ramp-down. At higher density 

(ne ~ 3.1.1019 m-3, red line) the evidence is even stronger, with early loss of all REs in the 

circular plasma, while some energetic REs survive in the elongated plasma.  

 

Figure 3.  Plasma shaping and RE confinement in the COMPASS tokamak 
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However, interpretation of these observations is challenging and beyond available models. 

Among others, a possible interplay between the safety factor (magnetic field helicity) profile 

and the RE confinement have been discussed. Notice that at a constant plasma current the 

edge safety factor q95 increases with plasma elongation, which may strongly influence MHD 

properties of the discharge. To this end, RE confinement in elongated COMPASS discharges 

was studied as a function of increasing plasma current at a constant plasma density 

(ne ~ 2.5.1019 m-3). The results confirmed that the RE losses tend to increase with decreasing 

edge safety factor q95, see Fig. 4. 

However, the HXR radiation data also 

reflected rather sudden loss of the RE 

population; at the time of the loss, a 

clear onset of MHD activity was 

observed in several discharges.  

4. Conclusions 

Dedicated experiments at COMPASS 

tokamak proved that initial fuelling of 

the discharge predetermines the RE population. Improved confinement of REs was observed 

in shaped plasmas; data indicate a significant role of the MHD effects. Future COMPASS RE 

campaigns shall be focused, among others, on benchmarking studies of the models, in 

particular on LUKE [11], and on field independent plasma heating via Neutral Beam Injector.       
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Figure 4.  RE confinement in the COMPASS 

elongated plasmas with variable edge safety factor q95 
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