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Detection and localization
 of early- and late-stage
cancers using platelet RNA
Graphical abstract
Highlights
d Eighteen tumor types are identified by blood platelet RNA

analysis with high specificity

d Tumor-type-associated platelet RNA profiles allow for tumor-

site-of-origin analysis

d Platelets may be educated by multiple locations of tumor

activity

d Platelet RNAs may complement the field of liquid biopsies
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In brief

In ’t Veld et al. employ blood platelet RNA

profiles to develop a highly specific pan-

cancer blood test covering 18 different

tumor types and enabling localization of

the primary tumor. This study highlights

the value of platelets for early cancer

detection and can serve as a

complementary biosource for ‘‘liquid

biopsies.’’
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SUMMARY
Cancer patients benefit from early tumor detection since treatment outcomes are more favorable for less
advanced cancers. Platelets are involved in cancer progression and are considered a promising biosource
for cancer detection, as they alter their RNA content upon local and systemic cues. We show that tumor-
educated platelet (TEP) RNA-based blood tests enable the detection of 18 cancer types.With 99% specificity
in asymptomatic controls, thromboSeq correctly detected the presence of cancer in two-thirds of 1,096
blood samples from stage I–IV cancer patients and in half of 352 stage I–III tumors. Symptomatic controls,
including inflammatory and cardiovascular diseases, and benign tumors had increased false-positive test re-
sults with an average specificity of 78%. Moreover, thromboSeq determined the tumor site of origin in five
different tumor types correctly in over 80% of the cancer patients. These results highlight the potential prop-
erties of TEP-derived RNA panels to supplement current approaches for blood-based cancer screening.
INTRODUCTION

Several sequencing technologies enable in-depth analysis of

protein and nucleic acids circulating in blood, including

plasma-derived cell-free (cf) DNA and RNA molecules that are

also used for minimally invasive cancer detection. However, in
Cancer Cell 40, 999–1009, Septem
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patients with early-stage cancer, the level of plasma-derived

mutant cfDNA is relatively low, depending on the cancer type,

and its detection is complicated by the natural presence of

non-cancerous cfDNA variants attributed to aging-related pro-

cesses (Heitzer et al., 2019). Consequently, complementary

liquid biosources are desired to enable detection of cancer in
ber 12, 2022 ª 2022 The Author(s). Published by Elsevier Inc. 999
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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an early stage, when treatment outcomes are more favorable

(Cho et al., 2014).

Platelets are considered as an alternative biosource for the

detection of cancer. Their role in cancer was established more

than a century ago (Sabrkhany et al., 2019; In ’t Veld and Wur-

dinger, 2019). Apart from their function in blood clotting, the

involvement of platelets in inflammation, cancer progression,

and metastasis has been extensively studied (Haemmerle

et al., 2018; Jiang et al., 2017; McAllister and Weinberg, 2014).

Platelets are present in the bloodstream in large numbers and

can be easily isolated. They lack a nucleus but do contain mega-

karyocyte-derived pre-mRNA transcripts that, upon stimulation,

can be spliced into mature mRNA (Denis et al., 2005) and trans-

lated into thousands of different proteins (Nassa et al., 2018). In

addition, platelets can sequester (mutant) tumor-derived RNAs

(Nilsson et al., 2011). Although the exactmechanisms of targeted

pre-mRNA splicing and its driving cues remain largely unknown,

it provides platelets with an abundance of potential spliced-RNA

biomarkers and surrogate RNA profiles for the detection of can-

cer. It was demonstrated that indeed tumor-educated platelet

(TEP)-derived RNA profiles can be employed to differentiate

early- and late-stage cancer patients from healthy controls

for several (individual) tumor types (Best et al., 2015, 2019; Hein-

huis et al., 2020; Pastuszak et al., 2021; Sabrkhany et al., 2017;

Shen et al., 2021; In ’t Veld and Wurdinger, 2019; Vernooij et al.,

2009; Xing et al., 2019). Here, we show the potential of TEP-

derived RNAprofiles for the detection of up to 18 different cancer

types.

RESULTS

Platelet collection for pan-cancer detection
Due to the unique capability of circulating platelets to harbor and

splice �5,500 different RNAs (Bray et al., 2013; Nassa et al.,

2018; Rowley et al., 2011), they have a valuable set of highly mul-

tiplexed biomarkers, of which the most relevant and discrimi-

nating spliced RNA levels can be selected by intelligent selection
software (Best et al., 2017, 2019). Themore samples that are em-

ployed in the biomarker panel selection process, the more

concise and precise the panel will be and the more computa-

tional power and time are required. Therefore, we determined

by iterative modeling an optimum of 20 samples for pan-cancer

algorithm training (training series) and another 20 samples for al-

gorithm optimization (evaluation series; Figure 1). Therefore, we

collected platelet samples from over 2,400 individuals from all

ages (range 18–92) and both sexes from European and North

American populations representing 18 different tumor types,

asymptomatic controls (ACs), or symptomatic controls (SCs)

(Tables 1, S1, and S2). Following stringent quality controls after

platelet RNA sequencing, 2,351 samples were included for anal-

ysis (�3% dropout rate; Figures S1A–S1D). The cancer series

(n = 1,628) included the most prevalent tumor types (Tables 1,

S1, and S2). The blood samples were collected at the moment

of diagnosis or during treatment. For a subset of samples, tumor

stages were unknown (n.a.; n = 124) or not informative (n.i.; e.g.,

gliomas and multiple myeloma; n = 132; in total n = 256; 16% of

all cancers). The asymptomatic controls included male and fe-

male individuals from all ages from the general population who

reported having no history or signs of cancer or other severe dis-

eases (n = 390). The symptomatic controls were diagnosed with

specific symptomatic diseases, including a cardiovascular dis-

ease, a benign mass, or an inflammatory condition, but did not

have a diagnosis of cancer (n = 333 in total). The platelet samples

were isolated using a standardized differential centrifugation

protocol within 48 h after blood draw, with low nucleated-cell

contamination and low platelet activation (Best et al., 2017,

2019). We noticed slightly different platelet RNA compositions

from asymptomatic controls between the different sample-sup-

plying institutions (Figure S1E), potentially attributable to

different sample-handling manners, with residual blood cell

and/or plasma cfDNA contamination (Chebbo et al., 2022). To

minimize this effect, we included data correction steps (Best

et al., 2017) (Figure S1F) and followed a step-by-step standard-

ized protocol (Best et al., 2019).
Cancer Cell 40, 999–1009, September 12, 2022 1001
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Figure 1. Iterative modeling to estimate the

number of tumor samples required for

thromboSeq pan-cancer algorithm training

Iterative determination of biomarker panel satura-

tion using TEP RNA data from 244 asymptomatic

controls and 532 cancer patients. Per iteration (x

axis), a new sample from each tumor type was

added, plus a similar number of asymptomatic

controls for ANOVA comparison. The top indicates

the ANOVA false discovery rate (FDR) values color

coded for high values (toward 1, red) and low

values (toward 0, blue). The bottom indicates the

size of the biomarker panels in the boxplots among

10 repetitions of this iterative experiment, sum-

marized by an average panel size using loess

regression (black line). The boxplots report the

25% (lower hinge), 50% (median), and 75%

quantiles (upper hinge). The lower whiskers indi-

cate the smallest observation greater than or equal

to the lower hinge = 1.5 3 interquartile range; the

upper whiskers indicate the largest observation

less than or equal to the upper hinge =

1.5 3 interquartile range. See also Figure S1.
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Development and validation of a pan-cancer
detection test
The full dataset (n = 2,351 samples) was split into age-matched

training (n = 391) and evaluation (n = 385) series to iteratively train

the pan-cancer thromboSeq algorithm (see STAR Methods).

These series included 16 of 18 tumor types (n = 270 for training

series; n = 262 for evaluation series) and asymptomatic controls

(n = 121 for training series; n = 123 for evaluation series). The

training and evaluation series together had, depending on avail-

ability, approximately 40 samples per tumor type included, as

concluded from iterative modeling (Figure 1). Symptomatic con-

trols were not included in the training and evaluation series

because of their overrepresented prevalence as opposed to

the asymptomatic controls, compared with a real-world setting.

During the training process, the algorithm was geared toward

99% specificity, to reduce false-positive test results as required

for population-based screening, with particle-swarm optimiza-

tion (PSO)-guided enhancement of the detection sensitivity

(Figures S1G–S1H). The remaining 1,575 samples were assigned

to the validation series (n = 1,096 cancer patients, n = 146

asymptomatic controls, and n = 333 symptomatic controls).

This training process resulted in a 493-pan-cancer-platelet

RNA biomarker panel (training series: area under the curve

(AUC) 0.91, 95% confidence interval (CI) 0.88–0.94, n = 391,

dashed line; evaluation series: AUC 0.87, 95% CI 0.84–0.91,

n = 385, gray line; Figures 2A and S2A). We observed variable

overlay between this 493-pan-cancer-platelet RNA biomarker

panel and those from patients with various types of cancer pre-

viously identified in other platelet RNA studies (Figures S2B–

S2D). The pan-cancer thromboSeq algorithm was subsequently
1002 Cancer Cell 40, 999–1009, September 12, 2022
validated in the validation series, resulting

in a specificity of 99% in asymptomatic

controls (n = 146; 95% CI 95%–100%),

overall sensitivity of 64% (n = 1,096;

95% CI 61%–66%), and 46%–72%

detection accuracy in the four tumor
stages (46% for stage I [n = 65; 95% CI 34%–59%], 47% for

stage II [n = 112; 95% CI 38%–57%], 54% for stage III [n =

175; 95% CI 46%–61%], 72% for stage IV [n = 617; 95% CI

68%–75%], 61% for unknown stage [n.a./n.i.; n = 127; 95% CI

52%–70%], validation series: AUC 0.91; 95% CI 0.89–0.92; n =

1,242; red line; Figures 2A–2C and S2E–S2F). Of interest, when

testing the platelet RNA profiles of individuals with various

non-cancerous diseases, e.g., cardiovascular disease, a benign

mass, or an inflammatory condition (i.e., symptomatic controls),

the pan-cancer thromboSeq algorithm performance showed a

decreased specificity of 78% (n = 333; 95% CI 73%–82%;

Figures 2D andS2G–S2H), indicating that the pan-cancer throm-

boSeq algorithm may result in increased false-positive test re-

sults in patients with an underlying disease or reduced detection

accuracy once symptomatic controls are included in the training

process. We cannot rule out that the two asymptomatic controls

who tested positive for cancer in thromboSeqmay have clinically

undetected cancer.

Sample-supplying-institute subgroup analysis of both cancer

and control samples in the validation series indicated that the al-

gorithm can be accurately validated in samples collected in an

institute that has primarily contributed to the training process

(‘‘institute 13’’), as well as an institute from which only two sam-

ples contributed to the training process (‘‘institute 3’’; Figure 3),

indicating the generalizability of the pan-cancer test. Of note,

random sample selection and algorithm training employing

1,000 unique compositions of the training and evaluation series

from the same dataset, while locking the biomarker panel and

validation series, showed similar classification strength (median

AUC validation series: 0.87; (interquartile range (IQR) 0.01), as



Table 1. Overview of included tumor types, patient characteristics, and performance in pan-cancer thromboSeq test

Group

(n)

Sex (F/M/

unknown)

Median

age (IQR)

Validation

AUC (95%

CI; n)

Prediction rate

(95% CI; n)

Prediction rate

Stage I

(95% CI; n)

Stage II

(95% CI; n)

Stage III

(95% CI; n)

Stage IV

(95% CI; n)

Unknown

stages

(95% CI; n)

BRCA

(93)

100%,

0%, 0%

58 (15.5) 0.81 (0.74–

0.88; 53)

40% (0.26–

0.54; 53)

0% (0.00–

0.45; 6)

17% (0.02–

0.48; 12)

50% (0.01–

0.99; 2)

52% (0.33–

0.70; 31)

100% (0.15–

1.00; 2)

CHOL

(85)

55%,

45%, 0%

68 (14.5) 0.91 (0.86–

0.97; 46)

59% (0.43–

0.73; 46)

50% (0.01–

0.99; 2)

50% (0.21–

0.79; 12)

67% (0.22–

0.96; 6)

58% (0.36–

0.78; 24)

100% (0.16–

1.00; 2)

CRC

(85)

41%,

59%, 0%

67 (15.5) 0.88 (0.83–

0.94; 46)

50% (0.35–

0.65; 46)

0% (0.00–

0.97; 1)

50% (0.1–

0.99; 2)

33% (0.09–

0.99; 3)

50% (0.32–

0.68; 32)

62% (0.24–

0.91; 8)

ENDO

(39)

100%,

0%, 0%

64 (14) 0.78 (0.63–

0.93; 12)

42% (0.15–

0.72; 12)

57% (0.18–

0.90; 7)

0% (0.00–

0.97; 1)

25% (0.006–

0.80; 4)

N/A N/A

ESO

(15)

20%,

80%, 0%

68 (13) 0.80 (0.68–

0.92; 15)

40% (0.16–

0.67; 15)

N/A 0% (0.00–

0.97; 1)

40% (0.12–

0.73; 10)

0% (0.00–

0.97; 1)

67% (0.09–

0.99; 3)

GLIO

(132)

32%,

68%, 0%

53 (23) 0.87 (0.82–

0.93; 73)

51% (0.38–

0.62; 73)

N/A N/A N/A N/A 51% (0.38–

0.62; 73)

HCC

(23)

26%,

74%, 0%

63 (12) 0.96 (0.89–

1.00; 8)

87% (0.47–

0.99; 8)

N/A 100% (0.02–

1.00; 1)

100% (0.15–

1.00; 2)

100% (0.29–

1.00; 3)

50% (0.01–

0.99; 2)

HNSSC

(101)

28%,

72%, 0%

63 (13) 0.92 (0.88–

0.96; 61)

57% (0.44–

0.70; 61)

50% (0.1–

0.99; 2)

100% (0.29–

1.00; 3)

35% (0.15–

0.59; 20)

67% (0.49–

0.81; 36)

N/A

LYM

(20)

45%,

55%, 0%

43 (32) 0.92 (0.83–

1.00; 20)

70% (0.45–

0.88; 20)

50% (0.1–

0.99; 2)

80% (0.28–

0.99; 5)

80% (0.28–

0.99; 5)

67% (0.22–

0.95; 6)

50% (0.01–

0.99; 2)

MELA

(68)

35%,

65%, 0%

62 (23) 0.90 (0.83–

0.96; 28)

57% (0.37–

0.75; 28)

N/A N/A 0% (0.00–

0.97; 1)

61% (0.40–

0.80; 26)

0% (0.00–

0.97; 1)

MM

(31)

48%,

52%, 0%

59 (13) 0.99 (0.97–

1.00; 11)

91% (0.58–

0.99; 11)

N/A N/A N/A N/A 91% (0.58–

0.99; 11)

NSCLC

(522)

45%,

54.2%,

0.8%

64 (13) 0.94 (0.92–

0.95; 482)

74% (0.70–

0.78; 482)

50% (0.24–

0.75; 16)

70% (0.44–

0.89; 17)

63% (0.49–

0.74; 62)

77% (0.73–

0.81; 372)

73% (0.45–

0.92; 15)

OVCAR

(144)

100%,

0%, 0%

62 (15) 0.89 (0.84–

0.93; 104)

59% (0.48–

0.68; 104)

48% (0.28–

0.68; 25)

50% (0.18–

0.81; 10)

58% (0.40–

0.74; 36)

69% (0.50–

0.83; 32)

100% (0.02–

1.00; 1)

PDAC

(126)

40.5%,

59.5%, 0%

68 (14) 0.81 (0.76–

0.87; 86)

42% (0.31–

0.52; 86)

0% (0.00–

0.97; 1)

40% (0.26–

0.55; 47)

30% (0.11–

0.54; 20)

61% (0.36–

0.82; 18)

N/A

PRCA

(35)

0%,

100%, 0%

70 (7) 0.98 (0.93–

1.00; 12)

92% (0.61–

0.99; 12)

N/A N/A N/A 100% (0.48–

1.00; 5)

86% (0.42–

0.99; 7)

RCC

(28)

43%,

57%, 0%

62.5 (16) 0.87 (0.74–

1.00; 9)

66% (0.30–

0.99; 9)

N/A N/A N/A 67% (0.30–

0.99; 9)

N/A

SARC

(53)

49%,

51%, 0%

60 (17.5) 0.96 (0.91–

1.00; 21)

76% (0.53–

0.92; 21)

100% (0.29–

1.00; 3)

0% (1.00–

0.97; 1)

100% (0.39–

1.00; 4)

69% (0.38–

0.91; 13)

N/A

URO

(28)

32%,

68%, 0%

65 (16.5) 0.99 (0.97–

1.00; 9)

89% (0.52–

0.99; 9)

N/A N/A N/A 89% (0.52–

0.99; 9)

N/A

AC

(390)

55.6%,

40.6%,

3.8%

52 (26) N/A (N/A;

146)

99% (0.95–

0.99; 146)

N/A N/A N/A N/A N/A

SC

(333)

55.5%,

44.2%,

0.3%

53 (24) N/A (N/A;

333)

78% (0.73–

0.82; 333)

N/A N/A N/A N/A N/A

Cancer

(1,628)

50.2%,

49.5%,

0.3%

63 (15) 0.91 (0.89–

0.92; 1,096)

63% (0.61–

0.66; 1,096)

46% (0.34–

0.59; 65)

47% (0.38–

0.57; 112)

54% (0.46–

0.61; 175)

72% (0.68–

0.75; 617)

61% (0.52–

0.70; 127)

BRCA, breast cancer; CHOL, cholangiocarcinoma; CRC, colorectal cancer; ENDO, endometrial cancer; ESO, esophageal cancer; GLIO, glioma; HCC,

hepatocellular carcinoma; HNSSC, head and neck squamous cell carcinoma; LYM, lymphoma; MELA, melanoma; MM, multiple myeloma; NSCLC,

non-small cell lung cancer; OVCAR, ovarian cancer; PDAC, pancreatic ductal adenocarcinomas; PRCA, prostate cancer; RCC, renal cell carcinoma;

SARC, sarcoma; URO, urothelial carcinoma; AC, asymptomatic control samples; SC, symptomatic control samples.
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Figure 2. Pan-cancer detection of early- and

late-stage tumors using TEP RNA

(A) Receiver operating characteristics curve of the

pan-cancer thromboSeq algorithm of the training

(dashed gray line), evaluation (gray line), and vali-

dation (red line) series. Indicated are sample

numbers, AUC values, and the 95% confidence

intervals.

(B) Coxcomb plot of the detection accuracies per

tumor type included in the validation series, at 99%

specificity in the asymptomatic controls. For each

group, the 95% CI is indicated. AC, asymptomatic

controls; PRCA, prostate cancer; MM, multiple

myeloma; URO, urothelial carcinoma; HCC, he-

patocellular carcinoma; SARC, sarcoma; NSCLC,

non-small cell lung cancer; LYM, lymphoma; RCC,

renal cell carcinoma; CHOL, cholangiocarcinoma;

OVCAR, ovarian cancer; HNSCC, head and neck

squamous cell carcinoma; MELA, melanoma;

GLIO, glioma; CRC, colorectal cancer; PDAC,

pancreatic ductal adenocarcinoma; ENDO, endo-

metrial cancer; ESO, esophageal cancer; BRCA,

breast cancer.

(C) Bar plot of the pan-cancer thromboSeq algo-

rithm results shown at 99% specificity for stages I,

II, III, and IV and n.a. and all stages included. The

detection accuracy with 95% confidence intervals

is indicated.

(D) Detection accuracy (pan-cancer algorithm at

99% specificity) of symptomatic control samples

grouped into cardiovascular disease, 65% (95%CI

51%–78%); benign tumors, 79% (95% CI 62%–

91%); and inflammatory conditions, 87% (95% CI

80%–93%). See also Figure S2.
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opposed to random classification (median AUC validation series:

0.50; IQR 0.07; p < 0.001).

Also, in order to estimate the robustness of the biomarker

panel, random selection of training and evaluation series while

maintaining the same PSO-selected parameters, and retraining

of the algorithm, resulted in �40%–50% overlay of the

biomarker panels, compared with only �10% overlay with the

biomarker panels once 493 random RNAs were selected from

the full platelet RNA repertoire. This highlights the added value

of parameter selection by PSO for biomarker panel composi-

tion. Prostate cancer was the most abundantly detected tumor

type, with 11 of 12 cases (92%) detected at 99% specificity,

whereas breast cancer was detected in approximately 40% of

the cases, indicating that not all tumor types were detected at

the same rate (Figures 2B and S2E, Table 1). Post hoc statistical

modeling of the validation series showed there is no correlation

between the RNA-sequencing library size and the algorithm’s

output. However, we observed a contribution of the clinical vari-

ables ‘‘age,’’ with older individuals having on average increased

pan-cancer scores for cancer patients and asymptomatic con-

trols separately, and ‘‘sex,’’ which is most pronounced in pa-

tients with breast cancer, potentially enhanced by a possible

technical pre-analytical variable, ‘‘sample-supplying institu-

tion,’’ to the algorithm’s output (Figures S3A–S3C). Here, it

seems that breast cancer is intrinsically more complicated to

detect, as had also been noted for other liquid biopsy bio-
1004 Cancer Cell 40, 999–1009, September 12, 2022
sources, including cfDNA (Cohen et al., 2018; Klein et al.,

2021). Despite this, iterative addition of these factors to a gener-

alized linear model with the cancer presence as output measure

showed that none of these factors changed the strong predic-

tive power of the algorithm’s cancer score. However, a contri-

bution of such potential confounding variables to the algorithm

cannot be ruled out and requires thorough evaluation in follow-

up studies. Of note, whereas samples from patients with lym-

phoma (n = 20) or esophageal cancer (n = 15) were not included

in the training process due to the low number of samples avail-

able, they classified well in the validation series (Figure 2B), thus

indicating that a general platelet RNA pan-cancer profile was

identified and enabled the detection of cancer types not limited

to those included in the training process. It was also evident that

late-stage cancers exhibited higher detection rates compared

with early-stage cancers (Figure 2C). Finally, storage of whole

blood samples for different times (less than 3 to over 48 h)

and transfer of whole blood tubes via mail within 24 or 48 h

did not result in significant disturbance of the measured platelet

RNA profiles as classified by the pan-cancer test (all compari-

sons p > 0.05 compared with isolation <3 h, except for isola-

tion <8 h, p < 0.05 with lower classification scores [i.e., less can-

cer signal], Student’s t test, Figure S3D). These results indicate

that whole-blood samples may be shipped before sample pro-

cessing. In all, we developed a platelet RNA-based test for pan-

cancer detection.



Figure 3. Sample-supplying-institute subgroup analysis

Bar plots of the pan-cancer thromboSeq algorithm results shown at 99%

specificity for stages I and II combined, stages III, IV, and not available/not

informative (n.a./n.i.) combined, and all stages combined for the full pan-

cancer validations series (left), for an age- and sex-matched selection of

samples collected at institute 13 (included in the training process, middle), and

all samples collected at institute 3 (largely excluded from the training process,

right). See also Figure S3.
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Development of a tumor-site-of-origin classifier
Next, we sought to identify tumor-type-specific profiles in the

TEP RNA profiles so as to identify the tumor site of origin. To

simplify the highly complex machine learning task to construct

an algorithm discriminative for multiple classification groups

(i.e., groups that need to be discriminated from one another)

compared with the binary pan-cancer test and to maintain a

reasonable number of samples per group (minimum of 100 sam-

ples), we included the tumor types non-small cell lung cancer

(n = 522), ovarian cancer (n = 144), glioma (n = 132), pancreatic

cancer (n = 126), and head-and-neck cancer (n = 101; n =

1,025 cancer samples in total). In addition, to improve the algo-

rithm’s training power, we adopted a 5-fold cross-validation

approach in which 80% of the samples were assigned to a

training and evaluation series and the remaining 20%of the sam-

ples were used for validation purposes. The tumor-site-of-origin

thromboSeq algorithm resulted in themost optimal cross-valida-

tion with an overall accuracy of 85% by reporting the first and

second algorithm predictions (Figures 4A–4C, n = 208 validation

series, 95% CI 79%–89%; median of 5-fold cross-validation

85% [min-max 84%–86%]; overall accuracy from first prediction

only, 68%, 95% CI 61%–75%; random classification [n = 1,000]

median accuracy validation series, 65%, IQR 3%, p < 0.001;

random sample selection [n = 1,000] median accuracy validation

series, 82%, IQR 3%) by employing a biomarker RNA panel of 93

RNAs in total. Of note, a tumor-site-of-origin thromboSeq algo-

rithm including tumor types with a lower number of samples in

the dataset, requiring some anatomically closely related tumors

to be grouped together, resulted in similar classification perfor-

mance combining first and second predictions (n = 323 valida-

tion series, 95%CI 67%–77%; median of 5-fold cross-validation
70% [min-max 67%–72%]; random classification [n = 1,000]

median accuracy validation series, 47%, IQR 1%, p < 0.001;

random sample selection [n = 1,000] median accuracy validation

series, 66%, IQR 4%; Figures S4A–S4B). Here, we cannot

exclude that part of the classifications can be confounded due

to skewed sample numbers in the classification model. The

five-group tumor-site-of-origin thromboSeq algorithm resulted

in increased classification accuracies among the metastasized

tumors (stages I–III [n = 67], 75%, 95% CI 63%–84%; stage IV

[n = 109], 89%, 95% CI 82%–94%; stage n.a. [n = 32], 91%,

95% CI 75%–98%; Figure 4B). There was only minimal overlap

(10 RNAs) between the 93-RNA biomarker panel for the tumor-

site-of-origin test with the 493-RNA biomarker panel from the

pan-cancer test (Tables S3–S4), as can be expected because

of the nature of swarm intelligence to optimize the biomarker

panel for different purposes. Inclusion of organ-relevant symp-

tomatic diseases in the tumor-site-of-origin algorithm training

process resulted in slightly improved classification accuracies

for the cancer samples, which suggests that the symptomatic

conditions can also result in a specific phenotype in the platelet

RNA profiles (Figure S4C). We conclude that platelet RNA may

be employed for identifying the primary tumor site of origin.

Platelets from patients with a brain metastasis may be
educated by both the primary and the metastatic
tumor sites
Due to the systemic nature of platelet education, the TEP RNA

profiles in patients with metastasized cancer could be

educated by both the primary and the metastatic tumor sites.

Therefore, we investigated whether the classification score of

a primary tumor with a metastasis to the brain was correlated

to the classification score of a primary brain tumor, i.e., glioma

(Figure 5A). We observed that the classification score pointing

toward glioma was higher on average for patients with a brain

metastasis compared with patients without a brain metastasis

(n = 57; 0.15 versus 0.08, p = 0.04, Student’s t test, Figure 5B).

Next, we performed a three-group ANOVA differential RNA-

level analysis between 132 glioma patients, 93 patients with

a metastasis to the brain, and 299 cancer patients with a

metastasized tumor. The last group of metastasized tumors

included patients with a tumor in a primary organ that is

also represented in the 93 patients with a metastasis to the

brain (i.e., non-small cell lung cancer [NSCLC], melanoma,

breast cancer, colorectal cancer, esophageal cancer, pancre-

atic cancer, and renal cell carcinoma). This resulted in a total

of 1,322 RNAs (false discovery rate [FDR] < 0.05) that showed

a gradually increasing or decreasing RNA level per condition

(Figure 5C). Subsequent hierarchical clustering of this RNA

panel, enhanced by swarm optimization (Best et al., 2019),

showed a distinction between samples with cancer originating

primarily from the brain and those originating extracranially,

and the samples with a brain metastasis diffusely clustered

in between (p < 0.0001; Fisher’s exact test, Figure 5D). Alto-

gether, this indicates that, at least for brain metastases,

platelet RNA profiles may be influenced by both the primary

tumor and the metastasis.

The performance of the test described in this study shows re-

sults in line with other published liquid biopsy tests (Table S5).

Large studies including thousands of individuals are available
Cancer Cell 40, 999–1009, September 12, 2022 1005
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Figure 4. thromboSeq tumor-site-of-origin algorithm performance

(A) Detection accuracy of five tumor sites. Indicated are first (dark red) and

second (light red) classifications of the algorithm and 95% confidence in-

tervals.

(B) Detection accuracy of the five tumor sites per tumor stage (I–III, IV, and

n.a.). Detection accuracy and 95% confidence interval are indicated.

(C) Confusion matrix of the thromboSeq tumor-site-of-origin algorithm

predictions for the first algorithm’s prediction. The real groups (rows) and

predicted groups (columns) are indicated. Percentages indicate the per-

centage of correctly classified samples. See also Figure S4 and Tables S3

and S4.
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for cfDNA analysis, both mutation analysis and copy number

analysis, and methylation patterns, potentially in combination

with protein biomarkers (Chen et al., 2020; Cohen et al., 2018;

Gao et al., 2021; Klein et al., 2021; Lennon et al., 2020; Liu

et al., 2020; Stackpole et al., 2021).Most studies were performed

prospectively, although none have investigated in depth the po-

tential false-positive test results from non-cancerous diseases

(Table S5). The number of tumor types included also varies

among the published studies. Similar to what was observed in

this study, certain tumor types seem to be inherently difficult to

detect, such as breast cancer, possibly related to the organ’s

physiology or cancer-intrinsic mechanisms. It remains to be

investigated whether platelet RNA analysis is complementary

to or interchangeable with the other biomolecules.

DISCUSSION

Platelet RNA enables blood-based cancer detection and tumor-

site-of-origin identification. Non-cancerous diseases, including
1006 Cancer Cell 40, 999–1009, September 12, 2022
inflammatory conditions, negatively affect the specificity of the

pan-cancer thromboSeq test. Further in-depth analysis of

various (a)symptomatic populations is warranted, potentially

including a broader selection of non-cancerous diseases

adjusted to the prevalence in the intended screening population.

Therefore, a prospective validation study applying the pan-can-

cer thromboSeq test should be performed in asymptomatic set-

tings that mimic the cancer screening population, e.g., people

older than 50 years of age, to rule out spectrum bias (Young

et al., 2018). However, taking into account the population’s prev-

alence of cancer, a first validation studymay focus on individuals

already being monitored because of a cancer predisposition

syndrome, such as individuals with Li-Fraumeni syndrome or

BRCA1/2 mutation carriers.

The continuous optimization of the pan-cancer test, facili-

tated by machine learning technologies, will potentially enable

more accurate identification of cancer patients as the reposi-

tory of platelet RNA samples increases. This rationale is sup-

ported by the correct identification of the two tumor types

that are not included in the pan-cancer test development.

Also, additional research is required to investigate whether

thromboSeq may correctly diagnose tumor types and histolog-

ical and molecular cancer subtypes that are not included

during the algorithm development phase. Due to the nature

of high false-positive test results in patients with non-

cancerous diseases, the current pan-cancer test is practically

applicable only to asymptomatic individuals. Potentially, this

may be extended once more reference data points from non-

cancer-afflicted individuals are added to the continuously

optimizing pan-cancer test. Such optimization processes may

be guided by the same PSO-enhanced machine learning

algorithms. However, due to its time- and computational

resource-consuming nature, other approaches can also be

considered, for example, random forest and linear regression

algorithms.

As unprocessed blood can be stored up to 48 h, the blood

samplesmay be shipped before the isolation procedure. This en-

ables blood processing at both local and central institutes. It

should be noted that the isolation has to be performed carefully

to reduce potential contamination with erythrocytes and leuco-

cytes and residual plasma, including extracellular vesicles and

cfDNA, and to prevent potential activation of platelets during

the isolation procedure, storage, and transport. Alternatively,

thromboSeq may be fully automatized, including the platelet

isolation process, using dedicated wet-lab reagents, software,

and hardware, minimizing the influence of pre-analytical vari-

ables on the platelet RNA profiles and also to rule out ‘‘known

diagnosis bias.’’ And last, follow-up research should be per-

formed to further decipher the origin and education of the surro-

gate platelet RNA profiles, including the relative contributions of

megakaryocyte-derived RNAs, blood platelet subpopulations,

alternative splicing programs, splicing cues, and RNA-binding

protein patterns.

Although we aimed to rule out potential bias introduced by

different sample handling during the collection procedure at

different hospitals, additional variation in the platelet RNA pro-

files introduced by other systemic differences between cancer

patients, symptomatic, and asymptomatic controls cannot be

excluded. These include, for example, the use of specific
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Figure 5. Brain metastatic localization may educate the TEPs

(A) Schematic representation of the metastasis analysis. Samples from two patients with stage IV metastasized NSCLC were used. Patient #1 has a brain

metastasis, while patient #2 does not have a brainmetastasis. Classification (probability) scores from the tumor-site-of-origin algorithm showboth a high value for

NSCLC and glioma in patient #1, whereas no brain-derived signal is present in the classification scores for patient #2.

(B) Boxplot of classification scores for glioblastoma (GLIO) of samples metastasizing toward the brain (+; n = 57) or not (�; n = 128).

(C) Individual boxplots of the expression values of most significantly enriched or decreased RNAs (indicated on the x axis) among patients with glioma (n = 132;

blue) or brain metastasis (n = 93; orange), and the primary localizations of tumors that did have metastasis to the brain (n = 299; brown). The boxes in Figures 5B

and 5C report the 25% (lower hinge), 50% (median), and 75% quantiles (upper hinge). The lower whiskers indicate the smallest observation greater than or equal

to the lower hinge = 1.53 interquartile range; the upper whiskers indicate the largest observation less than or equal to the upper hinge = 1.53 interquartile range.

(D) Heatmap and unsupervised hierarchical clustering analysis of RNAs with differentially spliced RNA levels among patients with glioma (n = 132; blue) or brain

metastasis (n = 93; orange), and the primary localizations of tumors that did have metastasis to the brain (n = 299; brown). Columns indicate samples, rows

indicate RNAs, and color intensity represents the Z-score transformed RNA expression values. Clustering of samples showed non-random partitioning

(p < 0.00001, Fisher’s exact test). See also Figure S5.
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medications, physical exercise, diets, and mental status,

including a recent diagnosis of having cancer. Such potential

confounding factors should be further addressed in a pro-

spective clinical trial and should be standardized during the

blood collection process.

Taken together, large-scale external validation in a dedicated,

well-powered, blinded, and population-targeted prospective

clinical trial of the pan-cancer thromboSeq test is required.

Such trial should also investigate the added benefit of a blood

test on clinical outcome parameters such as tumor stage at diag-

nosis and/or survival taking lead-time bias into account. Platelet

RNAs may supplement other liquid biopsy biosources and bio-

molecules for early cancer detection.
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T.A., Zhu, Y., Vesterlund, M., Lehtiö, J., et al. (2018). Splicing of platelet resi-

dent pre-mRNAs upon activation by physiological stimuli results in functionally

relevant proteome modifications. Sci. Rep. 8, 498.

Nilsson, R.J.A., Balaj, L., Hulleman, E., Van Rijn, S., Pegtel, D.M., Walraven,

M., Widmark, A., Gerritsen, W.R., Verheul, H.M., Vandertop, W.P., et al.

(2011). Blood platelets contain tumor-derived RNA biomarkers. Blood 118,

3680–3683.

Pastuszak, K., Supernat, A., Best, M.G., Stokowy, T., In ’t Veld, S.G.J.G., qa-
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

2,351 blood platelet samples This study See Table S2

Chemicals, peptides, and recombinant proteins

RNAlater stabilization solution Ambion cat. no. AM7020

Acid–phenol:chloroform Ambion

RNAseZap Sigma-Aldrich cat. no. R2020

Agencourt AMPure XP PCR purification

system

Beckman Coulter cat. no. A63880

Nuclease-free H2O Thermo Fisher cat. no. AM9937

Critical commercial assays

mirVana miRNA Isolation Kit Ambion cat. no. AM1560

SMARTer Ultra Low RNA Kit for Illumina

sequencing v3

Clontech Laboratories cat. nos. 634,848–634853

TruSeq Nano DNA Library Prep kit Illumina cat. no. FC-121-4001

Agilent RNA 6000 Pico Kit and reagents,

Bioanalyzer 2100

Agilent Technologies cat. no. 5067–1513

Agilent High Sensitivity DNA kit and

reagents, Bioanalyzer 2100

Agilent Technologies cat. no. 5067–4626

Agilent DNA 7500 kit and reagents,

Bioanalyzer 2100

Agilent Technologies cat. no. 5067–1506

Deposited data

Raw and processed RNA-seq data This study GEO: GSE183635

Software and algorithms

Trimmomatic (version 0.22) (Bolger et al., 2014) http://www.usadellab.org/cms/?

page=trimmomatic

STAR (version 2.3.0) (Dobin et al., 2013) https://github.com/alexdobin/STAR

HTSeq (version 0.6.1) (Anders et al., 2015) http://www-huber.embl.de/HTSeq/doc/

overview.html

Picardtools (version 1.115) Broad Institute, USA https://broadinstitute.github.io/picard/

Samtools (version 1.115) (Li et al., 2009) http://samtools.sourceforge.net

Bedtools (version 2.17.0) (Quinlan and Hall, 2010) http://bedtools.readthedocs.io/en/latest/

MATLAB (version R2015b) The MathWorks Inc., USA https://nl.mathworks.com/products/

matlab.html

R (version 3.3.0) (Andy Bunn, 2017) https://www.r-project.org

R-studio (version 0.99.902) (RStudio, 2015) https://www.rstudio.com

Bioconductor package edgeR

(version 3.12.1)

(Robinson and Oshlack, 2010) https://bioconductor.org/packages/

release/bioc/html/edgeR.html

Bioconductor package EDASeq

(version 2.4.1)

(Risso et al., 2011) http://bioconductor.org/packages/release/

bioc/html/EDASeq.html

Bioconductor package PPSO (version

0.9–9991)

(Tolson and Shoemaker, 2007) https://www.rforge.net/ppso/

Bioconductor package RUVSeq

(version 1.4.0)

(Risso et al., 2014) http://bioconductor.org/packages/release/

bioc/html/RUVSeq.html

R-package e1071 (version 1.6–7) CRAN https://cran.r-project.org/web/packages/

e1071/index.html

R-package Caret (version 6.0–71) CRAN https://cran.r-project.org/web/packages/

caret/index.html

(Continued on next page)

e1 Cancer Cell 40, 999–1009.e1–e6, September 12, 2022

http://www.usadellab.org/cms/?page=trimmomatic
http://www.usadellab.org/cms/?page=trimmomatic
https://github.com/alexdobin/STAR
http://www-huber.embl.de/HTSeq/doc/overview.html
http://www-huber.embl.de/HTSeq/doc/overview.html
https://broadinstitute.github.io/picard/
http://samtools.sourceforge.net
http://bedtools.readthedocs.io/en/latest/
https://nl.mathworks.com/products/matlab.html
https://nl.mathworks.com/products/matlab.html
https://www.r-project.org
https://www.rstudio.com
https://bioconductor.org/packages/release/bioc/html/edgeR.html
https://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/EDASeq.html
http://bioconductor.org/packages/release/bioc/html/EDASeq.html
https://www.rforge.net/ppso/
http://bioconductor.org/packages/release/bioc/html/RUVSeq.html
http://bioconductor.org/packages/release/bioc/html/RUVSeq.html
https://cran.r-project.org/web/packages/e1071/index.html
https://cran.r-project.org/web/packages/e1071/index.html
https://cran.r-project.org/web/packages/caret/index.html
https://cran.r-project.org/web/packages/caret/index.html


Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

R-package pROC (version 1.8) CRAN https://cran.r-project.org/web/packages/

pROC/index.html

R-package ROCR (version 1.0–7) CRAN https://cran.r-project.org/web/packages/

ROCR/index.html
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Thomas

Wurdinger (t.wurdinger@amsterdamumc.nl).

Materials availability
This study did not generate new unique materials.

Data and code availability
d The raw sequencing data FASTQ-files are deposited in the NCBI GEO database under accession number GEO: GSE183635

and is publicly available as of the date of publication. Within this repository, a count table that served as input for the analyses

is available as ‘TEP_Count_Matrix.RData’.

d The code used to generate the thromboSeq algorithms including the thromboSeq dry-lab pipeline and a code reproducing the

main manuscripts’ figures is available via GitHub (https://github.com/MyronBest/thromboSeq_source_code_v1.5 and https://

github.com/MyronBest/InTVeld_Pancancer_TSOO), is available as of the date of publication, and is for research pur-

poses only.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Clinical sample collection
Peripheral whole blood was drawn by venipuncture from cancer patients, patients with inflammatory and other non-cancerous

conditions, and asymptomatic individuals at various medical institutions in Europe and the USA. Whole blood was collected in

4-, 6-, or 10-mL EDTA-coated purple-capped BD Vacutainers containing the anti-coagulant EDTA. Cancer patients were diag-

nosed by clinical, radiological and pathological examination, and were confirmed to have at moment of blood collection detectable

tumor load. Samples for both training, evaluation, and independent validation series were collected and processed similarly and

simultaneously. Age-matching was performed retrospectively, iteratively matching samples by excluding and including patients

with cancer and asymptomatic controls, aiming at a similar median age and age-range between groups. A detailed overview of

the included samples, demographic characteristics, the hospital of origin, as well as an overview for which series (i.e. training,

evaluation or validation) the samples were used is provided in Table S1. Asymptomatic and symptomatic controls were at the

moment of blood collection, or previously, not diagnosed with cancer, but were not subjected to additional tests confirming

the absence of cancer. This study was conducted in accordance with the principles of the Declaration of Helsinki. Approval for

this study was obtained from the institutional review board and the ethics committee at each participating hospital. Clinical

follow-up of asymptomatic controls is not available due to anonymization of these samples according to the ethical rules of

the hospitals. A subset of the samples included were part of previously published studies (Best et al., 2015, 2017, 2019; Heinhuis

et al., 2020; Smits et al., 2022; Sol et al., 2020a, 2020b).

METHOD DETAILS

Whole blood processing
Whole blood samples were processed using the standardized thromboSeq protocol within 48 h after blood collection, as described

previously (Best et al., 2019). To isolate platelets, platelet rich plasma (PRP) was separated from nucleated blood cells by a 20-min

1203g centrifugation step, after which the platelets were pelleted by a 20-min 3603g centrifugation step. Removal of 9/10th of the

platelet rich plasma was performed carefully to reduce the risk of contamination of the platelet fraction with nucleated cells, pelleted

in the buffy coat. Centrifugations were performed at room temperature. Platelet pellets were carefully resuspended in RNAlater (Life

Technologies) and after overnight incubation at 4�C frozen at �80�C.
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Platelet RNA isolation, amplification and labelling for thromboSeq
Preparation of samples for sequencing was performed in batches, and included per batch a mixture of clinical conditions. All sam-

ples have been subjected to the identical standardized thromboSeq protocol, including SMARTer cDNA amplification. For platelet

RNA isolation, frozen platelets were thawed on ice and total RNA was isolated using the mirVana miRNA isolation kit (Ambion,

Thermo Scientific, cat nr. AM1560). Platelet RNA was eluated in 30 mL elution buffer. We evaluated the platelet RNA quality using

the RNA 6000 Picochip (Bioanalyzer 2100, Agilent), and included as a quality standard for subsequent experiments only platelet

RNA samples with a RIN-value >7 and/or distinctive rRNA curves. All Bioanalyzer 2100 quality and quantity measures were

collected from the automatically generated Bioanalyzer result reports using default settings, and after critical assessment of

the reference ladder (quantity, appearance, and slope). The Truseq cDNA labelling protocol for Illumina sequencing requires

�1 mg of input cDNA. To have sufficient platelet cDNA for robust RNA-seq library preparation, the samples were subjected to

cDNA synthesis and amplification using the SMARTer Ultra Low RNA Kit for Illumina Sequencing v3 (Clontech, cat. nr.

634853). Prior to amplification, all samples were diluted to �500 pg/mL total RNA and again the quality was determined and quan-

tified using the Bioanalyzer Picochip. For samples with a stock yield below 400 pg/mL, a volume of two or more microliters of total

RNA (up to �500 pg total RNA) was used as input for the SMARTer amplification. Quality control of amplified cDNA was measured

using the Bioanalyzer 2100 with DNA High Sensitivity chip (Agilent). All SMARTer cDNA synthesis and amplifications were per-

formed together with a negative control, which was required to be negative by Bioanalyzer analysis. Samples with detectable frag-

ments in the 300–7500 base pair (bp) region were selected for further processing. For labeling of platelet cDNA for sequencing, all

amplified platelet cDNA was first subjected to nucleic acid shearing by sonication (Covaris Inc) and subsequently labeled with sin-

gle index barcodes for Illumina sequencing using the Truseq Nano DNA Sample Prep Kit (Illumina, cat nr. FC-121-4001). To ac-

count for the low platelet cDNA input concentration, all bead clean-up steps were performed using a 15-min bead-cDNA binding

step and a 10-cycle enrichment PCR. All other steps were according to manufacturer’s protocol. Labeled platelet DNA library

quality and quantity was measured using the DNA 7500 chip or DNA High Sensitivity chip (Agilent). High-quality samples with

product sizes between 300-500 bp were pooled (12–19 samples per pool) in equimolar concentrations for shallow thromboSeq

and submitted for 100 bp Single-Read sequencing on the Illumina Hiseq 2500 or 4000 platform using version 4 sequencing re-

agents. Precise and accurate quantification of the barcoded sample libraries and careful equimolar pooling is required to obtain

equal total sequencing reads counts for all samples.

Assessment of pre-analytical variables by transport and incubating blood tubes
To assess the effect of several storage conditions, we designed an experiment in which blood samples were subjected to multiple

environments and movements with whole blood collected in EDTA-coated tubes from asymptomatic controls and patients with

stage IV non-small-cell lung cancer. Blood was collected according to the regular blood drawl procedures. Following, blood

was maintained on the bench for <3 h (n = 21), <8 h (n = 14), <12 h (n = 10), <24 h (n = 44), and <48 h (n = 38), or transferred

via mail for one night (24h, n = 5) or during the weekend (48h, n = 7). In the latter conditions, the samples were also subjected

to irregular movement, mimicking the transfer of samples from a peripheral blood drawl location towards a central processing lab-

oratory. Whole blood was subjected to the same platelet isolation and RNA-sequencing protocol as described above and previ-

ously (Best et al., 2019). Samples were classified in the pan-cancer thromboSeq algorithm and classification scores are reported in

the boxplots.

Processing of raw RNA-sequencing data
Raw RNA-sequencing data of platelets encoded in FASTQ-files were subjected to a standardized RNA-sequencing alignment pipe-

line, as described previously (Best et al., 2015, 2017, 2019; Heinhuis et al., 2020; Sol et al., 2020a, 2020b) In summary, RNA-

sequencing reads were subjected to trimming and clipping of sequence adapters by Trimmomatic (version 0.22) (Bolger et al.,

2014), mapped to the human reference genome (hg19) using STAR (version 2.3.0) (Dobin et al., 2013), and summarized using HTSeq

(version 0.6.1), which was guided by the Ensembl gene annotation version 75 (Anders et al., 2015). All subsequent statistical and

analytical analyses were performed in R (version 3.3.0) and R-studio (version 0.99.902). Sample filtering was performed by assessing

the library complexity, which is partially associated with the intron-spanning reads library size. First, we excluded the genes that

yielded <30 intron-spanning reads in >90% of the dataset for the samples in the pan-cancer training and evaluation series. This filter

step was subsequently applied to the validation series. To ensure that RNAs that are uniquely present in a certain classification group

(e.g. a specific tumor type) are not excluded following this filtering step, this filter-rule was applied to each group (i.e. tumor type)

separately. Next, for each sample we quantified the number of genes for which at least one intron-spanning read was mapped,

and excluded samples with <1500 uniquely detected high confidence genes. To exclude platelet samples that have low intersample

correlation, we performed a leave-one-sample-out cross-correlation analysis. Following data normalization, for each sample in the

training and evaluation series of the dataset, all samples except the ‘test sample’ were used to calculate the median counts-per-

million expression for each gene (reference profile). Following, the comparability of the test sample to the reference set was

determined by Pearson’s correlation. Samples with a correlation <0.5 were excluded. Principal component analyses were performed

using the prcomp-function in R (stats-package), and the RLE-plots were generated using the plotRLE-function available in the

RUVSeq-package in R. Data was corrected using the default ‘perform.RUVg.correction’-algorithm from our software package

(Best et al., 2019), using ‘lib.size’ as ‘variable to assess’, and a threshold of 0.8.
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Pan-cancer and tumor-site-of-origin classifier development
thromboSeq classification software

For the pan-cancer thromboSeq algorithm, methods previously described were used (Best et al., 2019). In short, the algorithm em-

ploys training and evaluation series for gene panel selection and algorithm development, of which specific selection parameters are

optimized by PSO. The samples in the training series served as reference samples for the iterative correction module that aims at

reducing the influence of confounding factors on the dataset by RUV-normalization (Risso et al., 2014). Next, this training series is

employed for gene panel selection by a likelihood ratio ANOVA test. Following, highly correlated RNAs within the preliminary

biomarker panel are filtered. Next, a preliminary SVM-classification algorithm is trained and most contributive RNAs to this algorithm

are identified and filtered, employing a recursive feature elimination-algorithm. Following, before building the final SVM algorithm, the

cost and gamma parameters within the SVM-algorithms are optimized by a grid search. Using PSO we optimize four steps of the

generic classification algorithm, i.e. (i) the iterative correction module threshold used for selection of genes identified as stable genes

among the library size, (ii) the FDR-threshold included in the differential splicing filter applied to the results of the likelihood ANOVA

test, (iii) the exclusion of highly correlated genes selected after the likelihood ANOVA test, and (iv) number of genes passing the recur-

sive feature elimination algorithm. Predefined ranges were submitted to the PSO-algorithm for every classification task presented in

this study. With each PSO iteration, the output of the previous iteration(s) is employed to optimize the input variables, mimicking the

swarm of birds into the air at dusk. The samples assigned to the validation series did not have any influence on the platelet RNA

filtering and QC-steps and the algorithm development process.

This studies optimization steps of the classification software

In this study, several optimization steps were implemented for this specific purpose of a highly specific pan-cancer algorithm; 1) for

filtering of low-abundant RNAs, now each classification group in the training and evaluation series was assessed separately, in order

to primarily in themulticlass tumor-site-of-origin algorithm ensure that RNAs that are enriched in especially one group are erroneously

filtered out, 2) use of only the training and evaluation series as a reference group during the quality controls steps (thromboSeqQC-

function), thereby ensuring that the validation series is fully independent from the analyses and algorithm training, 3) instead of

passing a false discovery ratio (FDR)-threshold to the PSO algorithm, absolute gene counts were provided as determined by

ANOVA-analysis, and 4) class weights were introduced in the support vector machine (SVM) training process to correct for imbal-

anced group sizes, especially beneficial in the pan-cancer classifier with nearly twice the number of cancer samples as compared

to asymptomatic controls in the training series. The algorithm is able to process both binary comparisons (e.g. asymptomatic controls

versus cancer) and multiclass comparisons (e.g. tumor-site-of-origin). In the latter process, a one-versus-one ANOVA comparison is

employed.

Classification group setup and algorithm settings

Samples assignment to the training, evaluation, and validation series was performed in a stratified though random way based on the

total number of samples available per tumor type, and aiming for equal distribution of the samples characteristics age, sex, tumor

type and tumor stage. Preferably at least 40 samples per tumor type were included for the training and evaluation series together,

however if that would result in no samples for that particular tumor type available in the validation series, less samples were assigned

to the former series. The tumor types lymphoma and esophageal cancer were left out of the training and evaluation series, in order to

evaluate the performance of the algorithm on tumor types not included in the training process and because too little samples were

available to include them in all three series. Thereby, the algorithm was trained on 16 out of 18 tumor types. The sample IDs included

in the training, evaluation and validation series, respectively, are listed in Table S2. The number of asymptomatic controls were

equally separated among the series. It was aimed to obtain as much as possible age-matched series, though it should be noted

that due to the inherent nature of some cancer types, some tumor types had on average younger patients as compared to the other

tumor types and control groups. The swarm-variables for the pan-cancer algorithm were: ‘lib.size’, ‘fdr’, ‘correlatedTranscripts’, and

‘rankedTranscripts. The employed boundaries were �0.1–1.0, 50 – FDR <0.005, 0.5–1.0, and respectively 50 – FDR<0.005, respec-

tively. Training of a rule-in classifier was enabled, optimizing the training process towards highest sensitivity, at 99% specificity in the

evaluation series. A coxcombplot (Figure 2B) was created using the polar coordinate system of the R-package ggplot2

(version 3.3.5).

For the five-groups tumor-site-of-origin algorithm, the tumor types with at least 100 samples in total available were included, i.e.

non-small-cell lung cancer, glioma, ovarian cancer, head and neck cancer, and pancreatic cancer.

For the eleven groups tumor-site-of-origin algorithm, we decided to group anatomically closely located tumors and hematological

malignancies together, resulting in larger classification groups for algorithm training and validation. The following tumor sites were

grouped together, i.e. multiple myeloma plus lymphoma, prostate cancer plus renal cell carcinoma plus urothelial cell carcinoma,

hepatocellular carcinoma plus cholangiocarcinoma plus pancreatic ductal adenocarcinomas, and endometrial cancer plus ovarian

cancer. Patients suffering esophageal carcinomas were not included because of low sample numbers (n = 15), and males were not

diagnosed with breast, endometrial or ovarian cancer.

For the tumor-site-of-origin algorithm the same swarm variables as for the pan-cancer algorithm were employed except that the

FDR-value was decreased to 1 3 10�10. For both the pan-cancer algorithm and tumor-site-of-origin algorithm 60 swarm particles

were employed, with eight iterations for the pan-cancer algorithm and six iterations for the tumor-site-of-origin algorithm. All other

settings were following the default settings as previously published (Best et al., 2019).

Output of the classifiers is summarized in the metrics sensitivity, specificity, area-under-the-curve from receiver-operating-curves

(ROC-curves), and precision-recall curves, all with the R-package ROCR (v.1.0–7).
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Algorithm control experiments
To support interpretability of the develop algorithms, multiple control experiments were performed. First as a control for internal

reproducibility, we randomly sampled training and evaluation series, while maintaining the validation series and the swarm-guided

gene panel of the original classifier, and perform 1000 training and classification procedures. This should ideally result into similar

classification accuracies, emphasizing the correctness of the biomarker panel. Second, as a control for random classification,

class labels of the samples used by the SVM-algorithm for training of the support vectors were randomly permutated, while main-

taining the swarm-guided gene list of the original classifier. This process was performed 1000 times and should ideally result into

diminished classification accuracies, indicating the added value of the true labels of the included samples. Third, as a control for

the robustness of the 493 RNA biomarker panel, selection of new training and evaluation series using the same group-size compo-

sition and from the same pool of training and evaluation samples was performed, followed by gene panel selection and algorithm

training according to the PSO-parameters set in the pan-cancer algorithm. Subsequently, an overlay was made between the re-

sulting biomarker panel and the 493 RNA biomarker panel, and 1000 randomly selected panels from the full platelet RNA reper-

toire (n = 5440 RNAs). This should ideally show overlay between the true biomarker panel and the iteratively developed new

biomarker panels, and very little overlay with a randomly selected biomarker panel from all platelet RNAs. P-values were calcu-

lated accordingly.

Brain metastasis analysis
To identify similarities in the platelet RNA profiles in patients who had ametastasis to the brain versus those with a glioma, all patients

with metastasized disease and with a known metastasis to the brain were selected and their GLIO classification score derived from

the five-groups tumor-site-of-origin-analysis was compared to those without a known metastasis to the brain at moment of blood

drawl. Both groups were compared using a Student’s t-test. Differential platelet RNA profiles were identified by ANOVA-statistics,

employing all patients with a glioma, those with a known metastasis to the brain including the full dataset, and stage IV patients

with a tumor type similar as the tumor types included in the ‘brain metastasis’-group, but without a known brain metastasis. Unsu-

pervised hierarchical clustering of heatmap row and columndendrogramswas performed byWard clustering and Pearson distances.

Non-random partitioning and the corresponding p-value of unsupervised hierarchical clustering was determined using a Fisher’s

exact test (fisher.test-function in R), of which the most optimal threshold for RNA panel selection was optimized by PSO.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were performed in R (v. 3.3.0) or MATLAB (v. R2015b). Continuous data was compared using a Student’s

t-test. 95%-confidence intervals were calculated using binominal statistics. Gene panels were calculated using ANOVA-statistics.

The output of the classifiers was summarized in the metrics sensitivity, specificity, area-under-the-curve from receiver-operating-

characteristics-curves (ROC-curves), and precision-recall curves, all with the R-package ROCR. 95-% confidence intervals of the

ROC-curves was calculated according to the method of Delonge using the R-package pROC. A p-value and FDR-value <0.05

was considered as statistically significant.

Statistical details of the analyses can be found in the results-section of the specific experiment, as well as the figure legend.

ANOVA iterative modeling
To investigate the stability of a biomarker panel by increasing the number of samples per condition, iterative analyses were per-

formed. For this, all samples assigned to the training (n = 391) and evaluation series (n = 385) were included. Initially, a group of

cancer samples containing one sample for each tumor type (of which at least 20 samples are available), an ANOVA comparison

between these cancer samples and asymptomatic control samples was performed. Subsequently, during each iteration one sam-

ple per tumor type and a similar number of asymptomatic control samples were added to the initial dataset. This results into 40

iterations in total. Tumor types that had less than 20 samples in these series due to smaller total group sizes in this study were

included according to their prevalence in the dataset. Per cancer sample added, a similar number of asymptomatic controls was

added, till a maximum of 244 asymptomatic controls in these series, which is reached in iteration 20. The ANOVA comparison was

performed using the default thromboSeq.ANOVA-function from our software package (Best et al., 2019), with ‘lib.size’ as ‘varia-

ble.to.assess’ (threshold: 0.8). Per ANOVA the FDR output was stored. This process was repeated 10-times with for each repeat a

shuffle of the ranking of samples per tumor type. A representative heatmap is shown, with the rows including all 5440 detected

RNAs sorted according to a decreasing ANOVA FDR in the final iteration. The number of RNAs with an FDR<0.05 is summarized

for the 10-times repeated process in boxplots, and a trend line of the median values per iteration was fitted by the loess-function

in R.

Post-hoc statistical modeling of potential confounding variables
To evaluate whether RNA-sequencing library size, age, and sex may be confounding variables in the pan-cancer thromboSeq algo-

rithm output a linear model was employed. For these analyses, all cancer samples and asymptomatic controls of the validation series

were selected. Samples with unknown patient age and/or sex status (n = 14) were excluded, resulting into 1,107 cancer samples and

120 asymptomatic controls. Linear models were created with the pan-cancer thromboSeq algorithm score as the outcome. The pre-

dictors included a fixed term for the potential confounder, a fixed term for group (cancer or control) and the interaction between the
e5 Cancer Cell 40, 999–1009.e1–e6, September 12, 2022
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confounder and group. Second, we estimated and visualized marginal means for the group comparisons and interactions of interest

with the emmeans package (emmeans_1.6.2–1) in R. In order to estimatewhether potential confounding factors, i.e. age, sex, sample

supplying institution, and RNA-sequencing library size, contributed to the overall predictive value of the algorithm, a generalized

linear model (GLM) was fitted that included both these factors and the algorithm score as predictors and the presence of cancer

as the outcome (R-base package ‘‘stats’’; R version 3.6.1). For this, only samples from the institutes that isolated both asymptomatic

controls and cancer samples were included to allow for institute correction, limiting overfitting caused by sample types originating

from only one institute. The analysis included 521 cancer samples and 100 asymptomatic controls, isolated in five different institutes

(i.e. VUMC, AMC, RAD, VIENNA and UMEA). With this selection, 15 different tumor types were included (i.e. breast cancer, cholan-

giocarcinoma, colorectal cancer, esophageal cancer, head and neck squamous cell carcinoma, lymphoma, melanoma, multiple

myeloma, non-small-cell lung cancer, ovarian cancer, pancreatic ductal adenocarcinomas, prostate cancer, sarcoma, urothelial car-

cinoma, and glioma).
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