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Abstract: MR scans of low-gamma X-nuclei, low-concentration metabolites, or standard imaging
at very low field entail a challenging tradeoff between resolution, signal-to-noise, and acquisition
duration. Deep learning (DL) techniques, such as UNets, can potentially be used to improve such
“low-quality” (LQ) images. We investigate three UNets for upscaling LQ MRI: dense (DUNet), robust
(RUNet), and anisotropic (AUNet). These were evaluated for two acquisition scenarios. In the
same-subject High-Quality Complementary Priors (HQCP) scenario, an LQ and a high quality (HQ)
image are collected and both LQ and HQ were inputs to the UNets. In the No Complementary Priors
(NoCP) scenario, only the LQ images are collected and used as the sole input to the UNets. To address
the lack of same-subject LQ and HQ images, we added data from the OASIS-1 database. The UNets
were tested in upscaling 1/8, 1/4, and 1/2 undersampled images for both scenarios. As manifested
by non-statically significant differences of matrices, also supported by subjective observation, the
three UNets upscaled images equally well. This was in contrast to mixed effects statistics that clearly
illustrated significant differences. Observations suggest that the detailed architecture of these UNets
may not play a critical role. As expected, HQCP substantially improves upscaling with any of the
UNets. The outcomes support the notion that DL methods may have merit as an integral part of
integrated holistic approaches in advancing special MRI acquisitions; however, primary attention
should be paid to the foundational step of such approaches, i.e., the actual data collected.

Keywords: upscaling MRI; mixed effects model; deep learning; with-prior upscaling; without-prior
upscaling

1. Introduction

While MRI is a powerful modality, its low sensitivity, inherent to the nuclear magnetic
resonance phenomenon, results in a practical tradeoff between spatial resolution, signal-to-
noise ratio (SNR), and acquisition duration [1–4]. A host of innovative and groundbreaking
techniques have been introduced to optimize this tradeoff. For example, undersampling
portions of k-space [5], compressed sensing [6], and parallel imaging [7,8] enable a reduction
of the acquisition time without substantial loss in SNR and spatial resolution. However,
when SNR is low, this tradeoff shifts towards increased acquisition duration and/or larger
voxel sizes. Such examples are the case for chemical shift imaging (CSI), especially of low-
concentration molecular species [9], imaging at low main magnetic fields [10], and X-nuclei
MRI [11]. To improve such low-resolution and low-SNR images, denoted as “low quality”
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(LQ) from now on, various methods have been introduced, such as multiple- and single-
image super-resolution reconstruction [12–16], density-weighted k-space scanning [17],
and denoising techniques applied to both the spatial and k-space domains [18–20].

To enhance the range of options in managing the aforementioned tradeoffs and im-
proving LQ MRI, investigators have pursued deep learning (DL) methods including U-Net
convolutional networks [21–28], MRI-specific DL architectures [29], and generative adver-
sarial networks (GANs) [13,30–32]. The inputs to these trained networks are the physically
collected LQ MR data and the output is a higher resolution and/or higher SNR image; a
high quality (HQ) MRI. Motivated by the potential benefit of using DL to upscale low main
magnetic field [21–27] and X-nuclei MRI, we first evaluated UNets, a robust performer
in medical image segmentation [33–38], as well as having shown its utility in upscaling
MR data, such as CSI [21], diffusion weighted imaging [26] and real time imaging [39].
The versatile and widely used state-of-the-art UNet offers a simple and intuitive neural
network framework, originally designed for image segmentation, which can be modified
to include and link substantially different operations and functions. Examples of UNet
architectural modifications include work that uses double convolutions, dense connections,
residual addition, and pixel shuffle, to improve the quality of diffusion weighted MRI [26],
or substitute the max-pool with an average pooling layer [25]. Other works have further
explored the UNet framework, such as Ding et al., who used global residual to enhance the
quality of images in [27], while Nasrin et al. used a residual architecture in UNet to enhance
resolution and denoise medical images in [28]. This diversity enables high versatility in
capturing context or features [33] in the input LQ images and then combines spatial and
contextual information to generate the output HQ image.

Secondary to the established performance of UNets, there is an ever-growing number
of U-Net architectural modifications that exhibit good performances for the tested datasets
and employed metrics [21–28,33,34]. With such a great number of UNet variants, it be-
comes increasingly challenging to identify the most useful architecture and/or training
pipeline. Interestingly, a recent study has also pointed to the importance of loss functions as
compared to architectural modifications [40]. These observations led us to the present study,
which focuses on aspects of the performance of three UNet architectures on upscaling LQ
MRI: a dense (DUNet) [21], a robust (RUNet) [22], and an anisotropic (AUNet) [23]. These
were selected since, firstly, they have previously been explored for improving LQ MRI,
and secondly, they have quite different architectural layers, which is a starting point in
assessing the differential benefit of such architectural modifications.

Within this context, our contribution involves comparing these three UNets in up-
scaling LQ MRI for different acquisition scenarios, for the same training and performance-
testing datasets as well as the same training conditions. Specifically, to replicate practical
acquisition scenarios, the three UNets were tested on (a) two image acquisition scenarios
and (b) for three different acquisition matrices. In one case, herein referred to as With-Priors,
we replicated an imaging protocol that collects LQ as well as a same-subject high quality
complementary prior (HQCP) image that is of different contrast, finer spatial resolution,
and higher SNR. Examples of this acquisition scenario include LQ 23Na MRI [41] or CSI [9]
images collected together with the HQ 1H anatomical scans. In the other acquisition sce-
nario, herein referred to as WithOut-Priors, only the LQ data set is collected during an
imaging session: this would be the case, for example, for low magnetic field MRI [10,42].
The three UNets for the two acquisition scenarios (i.e., six cases of scenarios/Unet pairs)
were trained and tested for upscaling LQ images collected with different acquisition matri-
ces (i.e., spatial resolutions) of 1/8, 1/4, and 1/2 of the matrix size of the targeted upscaled
reconstructed image. To analyze the reconstructed images of the three Unets we used Mean
Squared Error (MSE) and Structural Similarity Index Measure (SSIM), Peak Signal to Noise
Ratio (PSNR), and Mean Intensity Error (MIE). Yet another contribution of this work is the
analysis of the significance of the three Unet architectures, the three acquisition matrices,
and the two acquisition scenarios, not just by descriptive statistics (i.e., means and standard
deviations), but with mixed effects (aka repeated measures) modeling (MEM) [43]. MEM
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analysis was selected, as it takes into account that in this study we performed repeated
measurements (i.e., multiple evaluation measurements) on a set of distinct images. For the
MEM analysis, the fixed effects were determined by the type of UNet (with three levels),
and the matrix size (also with three levels) along with their interaction, while the images
constitute the random effects.

Our main contributions stem from the thorough comparison of the three state-of-the-
art UNet architectures that entail:

• Two different acquisition scenarios: (a) the With-Priors that mimic studies that entail
the collection of both an LQ image and its complementary high quality prior to upscale
the image to a corresponding HQ target, (b) the WithOut-Priors that mimic studies that
entail the collection of only a single LQ Image to upscale the image to a corresponding
HQ target.

• Creation of synthetic training and testing data so we have the same set of LQ images, its
complementary HQ prior, and an HQ image (ground truth). In addition, hyperintense
lesions of random intensity, size, and position were added to increase the variability
in the images.

• The collected LQ Images were truncated to three smaller matrix sizes to mimic studies
where the acquisition matrix sizes are small. We train the networks to upscale these
images in two acquisition scenarios.

• An extensive analysis of the quality of the upscaled images obtained from differ-
ent UNet was performed using various indices and statistical tests using a mixed
effects model.

2. Materials and Methods
2.1. Training and Testing Dataset

In silico LQ-to-HQ UNet upscaling studies require the networks to be trained and
tested with spatially/anatomically matched pairs of LQ and HQ images (i.e., of the same
structures). As such matched datasets are not publicly available and are difficult to col-
lect, we synthesized them from publicly accessible images, a commonly used practice in
DL [44–48], to increase the size and variability in training and testing data. As illustrated
in Figure 1a,b, evaluation of the UNets for the two scanning scenarios require matching
sets from the same object consisting of: (i) an LQ (input) and an HQ (ground truth) for the
WithOut-Prior, and (ii) an LQ and an HQCP image (the two inputs) and an HQ (ground
truth) for the With-Prior. The three UNets were trained and tested for the two acquisition
scenarios using synthetic imaging data as has been the practice in numerous prior works.

The synthetic data were composed of 2616 image sets; of these, 2076 were used for
training and 540 for testing; the split in training/testing was performed at random. This
data set was synthesized from 436 actual MRI images obtained from the OASIS project [49],
which were augmented to a total number of 2616 using a customized image generator
based on the one reported by Iqbal et al. [21] and modified to include structural, noise, and
signal intensity variations. As illustrated in Figure 1c, we started with 436 data sets from
the OASIS project [49] with each set containing a 176 × 208 T1-weighted brain image (used
as HQCP) together with the corresponding segmented binary maps of cerebrospinal fluid
(CSF), white (WM), and gray matter (GM). Our data augmentation processes first included
subjecting each data set, i.e., the T1-weighted image (HQCP Image) and the GW, WM, and
CSF maps, to six random rotations, resulting in 2616 sets of 176 × 208 rotMRI, rotGM,
rotWM, and rotCSF, respectively. Then, hyperintense lesions of circular shape with random
size and position followed by an elastic deformation [33,34] were added to the WM and GM
regions. Various techniques have been introduced that can enhance the lesions in the brain
as described by Mzoughi et al. [50] and Kleesiek et al. [51]. This image enhancement can
also be performed at the acquisition level by using gadolinium-based contrast agents [51].
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Figure 1. (a,b) Illustrations of the two paradigms With-Prior (a) and WithOut-Prior (b) (i.e., same-
subject complementary high resolution images collected at the same location), showing the type of
data collected on the scanner and generated in silico. (c) Flowchart of the processes employed in
the generation of 2616 data sets that included high quality synthetic (synHQ), low quality synthetic
(synLQ), and augmented physically collected T1-weighted (augmMRI) images. (d) Flowchart of the
UNet training to upscale the synLQ to synHQ, for the two paradigms of With- and WithOut-Prior; in
the first case, the augmMRI served as the high quality complementary prior.

Since elastic deformation was used and lesions were restricted to the WM and GM
the lesions had random shapes and sizes. Each rotMRI was further modified by adding
5% Gaussian noise and this image was designated as the augmMRI serving as the HQCP
to the training of the With-Prior acquisition scenario. rotWM, rotGM, and rotCSF were
combined using random weighting factor to produce synthetic MRI (synMRI) images with
a digital resolution of 176 × 208. The 176 × 208 synMRI images were designated as the
denoised high-quality synthetic (synHQ) images that served as the Ground Truth, as well
as being used to generate all low-quality synthetic (synLQ) images by first combining
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CSF, GM, and WM images with random weighting individual factors between 0.9 and 1.1,
followed by adding 20% Gaussian noise and then downsampling by k-space truncation to
the 1/8 (22 × 26), 1/4 (44 × 52), and 1/2 (88 × 104) of the full k-space acquisition matrix of
the original OASIS T1-weighted images [49]. The outcomes of data synthesis were 2616 data
sets, each composed of a 176 × 208 augmMRI (i.e., the HQCP), a 176 × 208 synHQ (i.e.,
the Ground Truth for this set), and three LQ (lower resolution and noisy) synthetic images,
a 22 × 26 synLQ, a 44 × 52 synLQ, and an 88 × 104 synLQ. All the synLQ images were
interpolated to the original OASIS images matrix size using nearest neighbor interpolation
before being used as inputs to the networks. Nearest neighbor interpolation was used to
preserve the distribution of the image

The obtained datasets were then used in the two different processing scenarios. Exper-
iment 1 uses the augmMRI and the synLQ images as inputs, and the synHQ image as the
ground truth for reconstruction. Experiment 2 uses only the synLQ images as input, and
the synHQ images as ground truth for reconstruction. The obtained dataset of 416 patients
80% training based on (332 patients leading to 2076 images) data and 20% testing data
(84 patients, leading to 540 images). The training data are further divided into 80% training
(1661 images) and 20% validation (415 images) data.

2.2. UNet Architectures

In terms of UNet-like architectures, the three selected UNets have quite diverse de-
tailed structures as can be appreciated in Figures 2–4. The DUNet uses dense connections
between its layers. RUNet uses residual blocks in its layer, and AUNet uses bottleneck
blocks with global block residual addition and residual cores. The following sections
provide more insight into the network architecture.
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Figure 2. Dense UNet (DUNet) architecture. Orange rectangles represent the newly calculated feature
maps at every level. Blue rectangles are the feature maps that are dropped during the expansion path
and green rectangles are the feature maps that are copied during the expansion path.

2.3. Dense UNet (DUNet)

In the employed DUNet shown in Figure 2, the contraction path of this network [21],
which was inspired by dense convolutional neural network layers [52], the input images
are subjected to a convolutional layer and a max pool function for their representation in a
lower dimension. A total of four downsampled layers were applied to a matrix of 22 × 26.
The DUNet expansion path uses convolutional transpose layers to reconstruct the images
at higher dimensionality. The latter was set to be 176 × 208, which is the dimensionality of
the HQ images (which also serves as the ground truth).
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kernel and the number that follows ‘n’ represents the number of filters.

2.4. Robust UNet (RUNet)

As illustrated in Figure 3, the RUNET architecture uses blocks with a combination of
convolutions followed by batch normalization [53] and ReLU operation [54] followed by
a tensor addition to so-called residual blocks (RB). The contraction path has four levels,
and each level has multiple residual blocks, which are connected via skip connections;
this creates a complex representation of the features at every level. Max pool operation is
used to reduce the filter maps’ dimensionality; it uses convolutional 2D layers, followed
by batch normalization, ReLU activation, and residual additions, allowing the network
to learn complex representations of the input images. The expansion path uses a batch
normalization layer at the input followed by a combination of convolution and ReLU
activation layers. Feature maps are then pixel shuffled to change the dimension before
combining the output of the previous contraction (Kth level) layer with the output of the
expansion layer (K + 1 level) via tensor stacking, i.e., the tensors are stacked to form more
feature channels. The last layer of the expansion path uses convolution with a kernel size
of 1 to reconstruct the output image.

2.5. Anisotropic UNet (AUNet)

This network considers that the input images may not be isotropic (i.e., voxel size is
not the same in all three dimensions) [23]. In our studies, we use isotropic 2D images, and
so we implemented the AUNet architecture with only two-dimensional traits by replacing
3D operations with 2D operations. Figure 4 shows the AUNet, illustrating that it is based
on two major components: the Bottleneck Block (BB), which simulates the isotropic down-
and upsampling, and the Residual Core (RC), which makes it possible to have more convo-
lutional layers at each level. In particular, the AUNet runs the 176 × 208 image through a
combination of residual cores and a max-pooling layer; the resulting encoded image goes
through the expansion path subjected to a deconvolution layer, a concatenation layer, and
residual cores. The output from the top layers of the contraction layer is used as input to the
BB before concatenating at the expansion path. We used a BB based on the one reported by
Lin. et al. [23]. The BB shrinks half of the feature maps of the previous layer on consecutive
3 × 3 convolutional layers between two endpoint convolutions with a kernel size of 1 × 1.
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All convolution layers are activated by ReLU and Batch Normalization. To increase the
convolution operation at every level, we design an RC inspired by Lin et al. [23] that takes
a combination of 3 × 3 kernelled convolutional layers, followed by batch normalization
layers. A skip connection is added that convolves the input with a 1 × 1 kernel and adds the
features with the output of previous convolutional layers. The joined features go through a
ReLU and Batch normalization layer to attain the residual core’s result.
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2.6. Network Implementation and Training

All networks were created using Keras with TensorFlow 2.2. Training and testing were
performed on the Sabine clusters at the University of Houston Hewlett Packard Enterprise
Data Science Institute (HPE DSI) on Nvidia V100 tensor core GPUs, in all experiments, we
used the Adam optimizer [55], with a mean squared error loss function, a learning rate
of 0.001, and a batch size of 32. Each of the three UNets and each of the two acquisition
scenarios (6 cases of training sessions) were trained for 100 and 1000 epochs. The best results
were obtained when a constant learning rate was used to run all the epochs. Experiments
with dynamic learning rates produced inferior results and are not part of this paper.

The learning rate parameter was chosen based on the common trait that the network
uses dense and convolution layers and a learning rate of 0.001 has shown the best results
when dense layers were chosen. A similar learning rate can be seen in the literature,
as well [21–23]. We used mean squared error as our loss function for training all the
neural networks. We recognize that the loss function will also have a great impact on
the upscaling of the images; however, a detailed comparison of different loss functions,
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which may include mean squared errors, mean intensity errors, structural similarity, edge
enhancement loss, and perceptual loss, to name a few, is beyond the scope of this paper,
and will be explored in one of our future works. As can also be seen in the literature, the
mean squared error is able to produce a pixel-by-pixel loss and can work satisfactorily for
our problem [21–23] as it is commonly used to upscale images.

Since neural architectures typically use input images with the same digital matrix
sizes, our datasets were pre-processed before being used as inputs to the networks. Specif-
ically, our datasets included 176 × 208 augmMRI images and one of synLQ that was
22 × 26, 44 × 52, or 88 × 104. Preprocessing entailed interpolating the synLQ images to
176 × 208 using the nearest-neighbor interpolation to preserve the image distribution at
high resolution, and the pixel values are normalized in the range of 0–1 to avoid gradi-
ent explosion [56,57]; subsequently, identically sized synLQ and augmMRI images were
stacked together and supplied to the networks.

Training and validation loss was monitored to avoid overfitting of the networks. The
difference between the training loss and validation loss indicates that there is no overfitting.
To further ensure that there is no overfitting, only the best weight from the training process
is taken, which corresponds to the lowest validation loss. To prevent bias from data leakage,
training, and testing were performed on images collected from different subjects.

2.7. Data Analysis and Statistics

To assess the performance of the three UNets to upscale images, we used four standard
metrics in comparing the reconstructed (reconHQ) to the corresponding ground truth: the
pixel-wise Mean Squared Error (MSE), the pixel-wise Mean Intensity Error (MIE), the
Mean Structural Similarity Index (SSIM) and the Peak Signal to Noise Ratio (PSNR). In
this study, these four metrics formed the response variables. Data collection involves a
repeated measure design applied to each of the test images. As image-to-image variation is
inevitable, for the purpose of statistical analysis we employ mixed-effects (aka, repeated
measure) modeling to account for the fact that the same images are used more than once.
In the adequacy checking tests performed on each model, we observed that when we used
the MSE and MIE as the response, the standard assumptions of mixed effects model were
violated. To overcome this issue, we use the natural logarithm transformation on both MSE
and MIE. In summary, the final response variables for the mixed effects modeling analysis
were log(MSE), log(MIE), SSIM, and PSNR.

We had a total of four fixed variables for the mixed-effect models. These variables
were: the type of Unet (DUNet, AUNet, and RUNet), input matrix size (1/8, 1/4, and 1/2),
acquisition scenarios (With-Prior and WithOut-Prior), and the number of training epochs
(100 and 1000). We observe substantial differences in summary statistics when we compare
With-Prior and WithOut-Prior; therefore, we performed mixed effects modeling on them
separately. In a sensitivity analysis, we found that the summary statistics from 100 epochs
to 1000 epochs did not show a significant change in the actual values; hence, we performed
MEM only on results obtained by training Unet models only for 100 epochs. Therefore,
two fixed variables are employed in our MEM model, which are the type of Unet (DUNet,
AUNet, and RUNet) and the input matrix size (1/8, 1/4, and 1/2). In addition to the above
two fixed variables, we also consider their interaction in the mixed effects model.

Descriptive statistics were first calculated for each response variable (i.e., the evalua-
tion metrics) for the different fixed effects (aka explanatory) variables, that is the three types
of Unets and the three matrix sizes, as shown in Tables 1–3. Each response was tested using
mixed effects modeling, with the fixed effects chosen as the explanatory variables, while
the 540 test images constituted the random effects. The mixed effects model examined the
significance of explanatory variables taking into account the significant image-to-image
variation (i.e., incorporating the repeated measure aspect design that we have in this study,
where multiple measurements are performed in each of the 540 test images).
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Table 1. Upscaling a 1/8 downsampled (22 × 26) synLQ with the three Unets. The best results are
represented in bold. The numbers represent the mean value followed by the standard deviation
in parenthesis.

Acquisition
Scenario

Number of
Epochs

Upscaling
Method

Mean Square
Error (MSE)

Mean Intensity
Error (MIE)

Mean Structural
Similarity (SSIM)

Peak Signal to
Noise Ratio (PSNR)

With-Prior

100 Epochs
RUNet 9.51 (3.00) 1.74 (0.28) 96.44 (0.48) 39.17 (1.12)
DUNet 10.72 (3.78) 1.77 (0.38) 97.62 (0.41) 38.61 (1.46)
AUNet 15.90 (4.68) 2.10 (0.38) 96.17 (0.70)) 37.29 (1.25)

1000 Epochs
RUNet 8.67 (2.53) 1.62 (0.29) 97.45 (0.37) 39.54 (1.20)
DUNet 8.13 (2.54) 1.46 (0.24) 97.99 (0.35) 39.90 (1.12)
AUNet 10.71 (4.60) 1.75 (0.46) 97.78 (0.42) 38.67 (1.71)

WithOut-
Prior

100 Epochs
Runet 65.73 (19.08) 4.57 (0.72) 83.69 (1.49) 33.11 (0.63)

DUNet 66.07 (20.58) 4.50 (0.78) 84.21 (1.53) 33.11 (0.70)
AUNet 76.26 (20.88) 4.73 (0.75) 83.08 (1.55) 33.04 (0.65)

1000 Epochs
RUNet 66.64 (23.17) 4.54 (0.86) 84.16 (1.53) 33.12 (0.72)
DUNet 65.06 (21.57) 4.45 (0.81) 84.77 (1.51) 33.15 (0.71)
AUNet 75.25 (21.76) 4.68 (0.79) 83.26 (1.39) 33.10 (0.70)

Table 2. Upscaling a 1/4 downsampled (44 × 52) synLQ with the three Unets. The best results are
represented in bold. The numbers represent the mean value followed by the standard deviation
in parenthesis.

Acquisition
Scenario

Number of
Epochs

Upscaling
Method

Mean Square
Error (MSE)

Mean Intensity
Error (MIE)

Mean Structural
Similarity (SSIM)

Peak Signal to Noise
Ratio (PSNR)

With-Prior

100 Epochs
RUNet 9.20 (3.03) 1.58 (0.28) 97.54 (0.39) 39.33 (1.18)
DUNet 9.24 (3.82) 1.62 (0.39) 97.87 (0.33) 39.22 (1.53)
AUNet 11.76 (4.28) 1.80 (0.39) 97.24 (0.41) 38.40 (1.38)

1000 Epochs
RUNet 6.36 (1.92) 1.29 (0.22) 98.25 (0.25) 40.86 (1.15)
DUNet 6.73 (1.91) 1.33 (0.21) 98.26 (0.24) 40.58 (1.10)
AUNet 8.39 (3.88) 1.56 (0.43) 98.17 (0.29) 39.58 (1.76)

WithOut-Prior

100 Epochs
Runet 27.38 (10.41) 2.90 (0.58) 93.24 (0.73) 35.09 (1.04)

DUNet 29.81 (13.66) 3.01 (0.70) 92.93 (0.79) 34.85 (1.13)
AUNet 40.07 (15.44) 3.57 (0.77) 91.67 (0.79) 33.91 (0.99)

1000 Epochs
RUNet 25.22 (10.51) 2.73 (0.61) 94.12 (0.64) 35.43 (1.81)
DUNet 27.05 (12.04) 2.84 (0.64) 93.86 (0.70) 35.16 (1.13)
AUNet 26.43 (10.60) 2.81 (0.63) 94.00 (0.67) 35.23 (1.21)

Table 3. Upscaling a 1/2 downsampled (88 × 104) synLQ with the three Unets. The best results
are represented in bold. The numbers represent the mean value followed by the standard deviation
in parenthesis.

Acquisition
Scenario

Number of
Epochs

Upscaling
Method

Mean Square
Error (MSE)

Mean Intensity
Error (MIE)

Mean Structural
Similarity (SSIM)

Peak Signal to
Noise Ratio (PSNR)

With-Prior

100 Epochs
RUNet 7.80 (2.02) 1.47 (0.21) 97.79 (0.36) 39.84 (1.02)
DUNet 8.54 (0.89) 1.57 (0.37) 97.98 (0.30) 39.47 (1.53)
AUNet 14.17 (5.77) 2.01 (0.49) 96.76 (0.64) 37.60 (1.57)

1000 Epochs
RUNet 6.51 (1.64) 1.34 (0.20) 98.08 (0.25) 40.59 (1.02)
DUNet 6.35 (2.35) 1.32 (0.28) 98.40 (0.22) 40.73 (1.34)
AUNet 8.35 (4.06) 1.53 (0.44) 98.17 (0.27) 39.73 (1.76)

WithOut-
Prior

100 Epochs
Runet 21.33 (9.22) 2.54 (0.56) 94.77 (0.52) 35.81 (1.18)

DUNet 21.59 (10.89) 2.55 (0.64) 95.00 (0.54) 35.82 (1.29)
AUNet 24.32 (10.69) 2.72 (0.64) 94.45 (0.56) 35.41 (1.23)

1000 Epochs
RUNet 19.63 (9.25) 2.42 (0.55) 95.34 (0.47) 36.14 (1.21)
DUNet 20.39 (10.30) 2.47 (0.63) 95.50 (0.50) 36.04 (1.33)
AUNet 19.61 (9.38) 2.42 (0.60) 95.57 (0.47) 36.15 (1.33)
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3. Results

Figure 5 reports the validation and training losses for the three Unets and the two acqui-
sition scenarios, illustrating that, in all six cases, these networks exhibit rather quick conver-
gence. The training losses for all cases converge in the first couple of epochs (Figure 5a,b);
however, a gradual reduction in loss can be seen for all three networks throughout the
training, while the validation losses converge by the 20th epoch (Figure 5c,d), i.e., a plateau
is reached and then the loss fluctuates, which is the desired observation. Specifically, the
validation losses for the AUNet and RUNet converge by the 15th epoch for the With-Prior
scenario and by the 20th epoch for the WithOut-Prior scenario. Notably, the DUNet vali-
dation loss converges within the first four epochs; this may be related to the use of dense
convolutional layers that can carry the outputs of one convolutional layer to all the future
layers allowing the network to learn more complex representations of the images [33,52].
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Figure 5. Representative results from the training sessions depicting the training (a,b) and the valida-
tion (c,d) losses (as log mean squared error versus epochs) for the two acquisition scenarios: With-
Prior (a,c) and the WithOut-Prior (b,d) information. These examples correspond to the worst-case
scenario of upscaling 1/8 downsampled synLQ images toward the corresponding 176 × 208 synHQ.
The networks were trained for 100 and 1000 epochs; the first 100 epochs are presented here.

Tables 1–3 review the results from all studies corresponding to upscaling LQ-to-HQ
images that were downsampled to 1/8, 1/4, and 1/2 of the complete matrix, respectively.
Each table reports the results for the two scanning scenarios, and for 100 and 1000 epochs
of training for each scenario. The first general observation is that, for the same scanning
scenario and the same downsampled matrix, as observed by the values of the descriptive
statistics, the three UNets exhibit somewhat similar performances, as reflected by the mean
MSE, MIE, SSI, and PSNR values. This is an intriguing observation, indicating that all three
choices of UNet perform similarly when sufficient training is performed. Figure 6 also
shows that, for the same scanning scenarios, and the same downsampled image, there is
virtually no difference between training for 100 or 1000 epochs.
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Figure 6. Performance of the three UNet architectures (RUNet in red, DUNet in black, and AUNet
in Green) for the two With- and WithOut-Prior acquisition scenarios after training for 100 and
1000 epochs. (a) Mean Structural Similarity Index, (b) Mean Squared Error, (c) Mean Intensity Error,
and (d) Peak Signal-to-Noise Ratio of reconHQ vs. synHQ, for different sizes of input synLQ images.
The measures are reported as average (standard deviation) for N = 540 test images corresponding to
84 subjects.

Substantial differences in performance of the UNets, however, are observed when
comparing the two acquisition scenarios, as can be clearly seen in Tables 1–3, and in Figure 6.
As compared to the cases of With-Prior, upscaling of downsampled LQ images with the
WithOut-Prior scenario exhibit lower SSIM, higher MSE, higher MIE, and lower PSNR,
i.e., the performance of the UNet WithOut-Prior is worse than that of With-Prior. In the
With-Prior cases, the physically collected (and augmented) augmMRI provide additional
anatomical and morphological data about the same structures in the object, resulting in
upscaling being closer to the ground truth synHQ (i.e., complete matrix with reduced
noise), as also reported in [21]. The LQ images at the WithOut-Prior scenario can also
be upscaled to a different degree, depending on the size of the synLQ. Indeed, when the
cases of WithOut-Prior are considered (the graphs in the two leftmost columns), the UNets
upscale 1/8 downsampled images with lower accuracy. This result reflects the fact that at
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lower resolution (larger voxel size) finer structural details may be lost. Such finer structures;
however, may be recoverable by the UNet in With-Prior scenario in the case that they are
preserved in the augmMRI image.

The performance of the UNets may also be appreciated in Figures 7 and 8, which show
the reconHQ images together with pixel-by-pixel differences with respect to the ground
truth (i.e., |reconHQ—synHQ|) for the three networks at different synLQ sizes and two
scanning scenarios. It can be observed that lesion reconstruction is better in the With-Prior
compared to WithOut-Prior acquisition scenario for the 1/8 downsampled synLQ.
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Figure 7. Representative example of reconstructed images and errors versus ground truth with
the three UNets trained for 100 epochs with the With-Prior acquisition scenario (i.e., including the
augmMRI) to upscale (a) 1/8 downsampled (22 × 26) and (b) 1/4 downsampled (44 × 52) and (c) 1/2
downsampled (88 × 104) synLQ. The Error intensity in this figure is five times the original intensity.



Appl. Sci. 2022, 12, 11758 13 of 21Appl. Sci. 2022, 12, x FOR PEER REVIEW 15 of 23 
 

 

Figure 8. Representative example of reconstructed images and errors versus ground truth with the 

three UNets trained for 100 epochs with the WithOut-Prior acquisition scenario (i.e., not including 

the augmMRI) to upscale (a) 1/8 downsampled (22 × 26) and (b) 1/4 downsampled (44 × 52) and (c) 

1/2 downsampled (88 × 104) synLQ. The error intensity in this figure is three times the original in-

tensity. 

  

Figure 8. Representative example of reconstructed images and errors versus ground truth with the
three UNets trained for 100 epochs with the WithOut-Prior acquisition scenario (i.e., not including the
augmMRI) to upscale (a) 1/8 downsampled (22 × 26) and (b) 1/4 downsampled (44 × 52) and (c) 1/2
downsampled (88 × 104) synLQ. The error intensity in this figure is three times the original intensity.

Table 4 shows the results for the F-ratio obtained for fixed effects in the MEM. The
F-ratio corresponds to the F-test performed in the mixed-effect model that was fitted each
time. For more information one can refer to [43]. In the freeware R, which was used to
fit the models, F-test values can be derived using the anova(.) option for a fitted model
lmer(.) from the library lme4. We test the significance of type of UNet, matrix size and
the interaction of the type of UNet and the matrix size. We provide the F-ratios for each
of the terms that were used in each mixed effect model. The observed F-ratios are very
large, and as a result, all of their respective p-values were well below 0.01 (the level of
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significance alpha), which means that the type of UNet, the input matrix size, and their
interaction are all highly statistically significant factors. Therefore, we only present F-ratios
and not the p-values in the table, as the latter in all cases would have been identical, i.e.,
<< 0.01. The actual interaction plot between the fixed variables can be observed in Figure 9
for With-Prior and WithOut-Prior acquisition scenario, indicating the relative performance
for every response metric for all possible combination of the two factors that we examine
in our mixed effect model.

Table 4. F-ratios showing the significance of each of the terms that were used in the mixed effects
model. Each term is highly statistically significant as all the F-ratios are large, resulting for all cases in
p-values << 0.01.

Acquisition
Scenario

Response
Variable UNets Matrix Size UNets ×

Matrix Size

With-Prior

log(MSE) 2516 476 124
log(MIE) 1191 430 70

SSIM 8239 5607 970
PSNR 1585 254 88

WithOut-Prior

log(MSE) 495 12,133 59
log(MIE) 295 7806 66

SSIM 931 114,955 139
PSNR 242 4674 81

Appl. Sci. 2022, 12, x FOR PEER REVIEW 16 of 23 
 

Table 4. F-ratios showing the significance of each of the terms that were used in the mixed effects 

model. Each term is highly statistically significant as all the F-ratios are large, resulting for all cases 

in p-values << 0.01. 

Acquisition 

Scenario 

Response  

Variable 
UNets Matrix Size 

UNets ×  

Matrix Size 

With-Prior 

log(MSE) 2516 476 124 

log(MIE) 1191 430 70 

SSIM 8239 5607 970 

PSNR 1585 254 88 

WithOut-Prior 

log(MSE) 495 12,133 59 

log(MIE) 295 7806 66 

SSIM 931 114,955 139 

PSNR 242 4674 81 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

 

Matrix 

Size

 

(e) 

 

(f)  

 

(g) 

 

(h) 

 

 

Figure 9. Interaction plots for the mixed-effects model, indicating how the two factors—UNets and 

Matrix Size—interact with each other under (a–d) the With-Prior acquisition scenario (a) log(MSE), 

(b) log(MIE), (c) SSIM, and (d) PSNR; and under (e–h) the WithOut-Prior acquisition scenario (e) 

log(MSE), (f) log(MIE), (g) SSIM, and (h) PSNR. 

Inspection of WithOut-Prior data sets that resulted in reconstructions that exhibited 

lower scores (SSIM less than 83% for 1/8 matrix and less than 91% for 1/4 matrix) pointed 

to the anticipated effect of lesion size and contrast relative to the neighboring tissue, rep-

resentative examples of which are shown in Figure 10. Figure 10a shows a case where the 

lesion is rather large (greater than 8 pixels in a single dimension) and the intensity of the 

lesion is significantly higher than neighboring pixel values (greater than 100 on a 0–255 

scale). Figure 10b corresponds to cases that the lesion (i) is not observed in the upscaled 

images (reconHQ) that were reconstructed from the 1/8 downsampled synLQ images for 

the WithOut-Prior acquisition scenario, and (ii) is observable (arrow) in the reconstructed 
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Without-Prior case, the low-signal-intensity lesion cannot be recovered; however, with 

HQCP, this is feasible. Figure 10c depicts another case in which the lesion is not observable 

Figure 9. Interaction plots for the mixed-effects model, indicating how the two factors—UNets and
Matrix Size—interact with each other under (a–d) the With-Prior acquisition scenario (a) log(MSE),
(b) log(MIE), (c) SSIM, and (d) PSNR; and under (e–h) the WithOut-Prior acquisition scenario
(e) log(MSE), (f) log(MIE), (g) SSIM, and (h) PSNR.

Inspection of WithOut-Prior data sets that resulted in reconstructions that exhibited
lower scores (SSIM less than 83% for 1/8 matrix and less than 91% for 1/4 matrix) pointed
to the anticipated effect of lesion size and contrast relative to the neighboring tissue,
representative examples of which are shown in Figure 10. Figure 10a shows a case where
the lesion is rather large (greater than 8 pixels in a single dimension) and the intensity
of the lesion is significantly higher than neighboring pixel values (greater than 100 on
a 0–255 scale). Figure 10b corresponds to cases that the lesion (i) is not observed in the
upscaled images (reconHQ) that were reconstructed from the 1/8 downsampled synLQ
images for the WithOut-Prior acquisition scenario, and (ii) is observable (arrow) in the
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reconstructed images for the larger downsampled matrices for all three UNets in the two
acquisition scenarios. These cases correspond to lesions that were eight (8) or fewer pixels
in size in any dimension, and whose signal intensity was high with respect to neighboring
pixels (greater than 50 on a scale of 0–255). When an image is downsampled to 1/8, then a
lesion 8 pixels in length would correspond to a single pixel of the downsampled image.
In the Without-Prior case, the low-signal-intensity lesion cannot be recovered; however,
with HQCP, this is feasible. Figure 10c depicts another case in which the lesion is not
observable without HQCP (columns 2–4); however, the lesion becomes visible when HQCP
are available (columns 5–7). This case is representative of all lesion information lost when
(i) the contrast difference between the lesion and neighboring pixel is low (less than 30 on a
0–255 scale), and (ii) the lesion is small in size (fewer than 8 pixels in a single dimension).
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Figure 10. Characteristic examples of upscaling a 1/8 downsampled (22 × 26), a 1/4 downsampled
(44 × 52) and a 1/2 downsampled (88 × 104) synLQ image, of the same set) toward the synHQ ground
truth. The figure shows a comparison of two acquisition scenarios: With-Prior and WithOut-Prior.
(a) Scenario where the tumor is visible in all reconstruction scenarios; (b) where the tumor is not
visible during reconstruction of 1/8 downsampled synLQ cases in the WithOut-Prior acquisition
scenario; (c) where the tumor is barely visible during reconstruction of almost all the synLQ cases in
the WithOut-Prior acquisition scenario. This figure shows that it is impossible to reconstruct a tumor
if the tumor is not visible in the synLQ images in the WithOut-Prior acquisition scenario.
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4. Discussion

The ability of UNets to create an image-to-image translation makes them a suitable
neural network model for improving low quality MR images post acquisition. As demon-
strated herein and in prior works [21–27], UNets can be designed and then trained to seek
features between pairs of LQ and HQ MRI of the same exact view of the same object; the
trained UNet can then be used to upscale a new LQ to its (unknown) HQ image. This
performance may relate to the endogenous capability of UNet architectures to identify
anatomical and/or morphological features [21–28,33–35], which are the basis for accurately
describing a pixel-by-pixel transformation between the downsampled noisy LQ image and
the complete matrix HQ one. Moreover, in this work, since the UNets were trained with
noiseless ground truths, i.e., the synthesized synHQ images, the reconstructed upscaled
images were noiseless. This denoising action is a direct highlight of the fact that the features
and quality of the reconstructed images depends on the corresponding features and quality
of ground truths.

The tested UNets indicated several common characteristics. First, all three UNets
exhibited similar performance manifested by summary statistics when trained and tested
for the same data sets, for the same downsampled original images (the synLQ images)
and the same acquisition scenario. This was a rather unexpected outcome; it suggests that
the UNet architecture might be a robust backbone for revealing structural image features,
irrespective of the variations in the architecture of the individual networks. Another
observation is that all three UNets converged within the 25th epoch (Figure 5). This is
also evident from Tables 1–3, which report performance of the three UNets after 100 and
1000 epochs: there is no significant improvement in any of the four evaluation metrics.
For example, the training losses at 100 and 1000 epochs differ by 0.0002/1.0, while the
validation losses are less than 0.0001/1.0. The primary difference between them was that
DUNet training and validation losses indicated convergence within the first couple of
epochs. The origin of this rather rapid convergence was not identified.

The outcomes of these studies further emphasize that the effectiveness of upscaling
with the studied UNets depends on the actual image acquisition parameters, such as: (i) the
matrix size of the downsampled image; (ii) the structure(s) of interest, including their size
relative to the spatial resolution of the downsampled image, and their contrast relative to the
surrounding matter; and (iii) whether a complementary image was available (or in an actual
study, was acquired and included in the network training). As reflected in Tables 1–3, the
synLQ matrix size affected upscaling and, as expected, the worst performance corresponded
to upscaling the 1/8 downsampled images. Based on the structural similarity indexes,
UNet-upscaled 1/2, and 1/4 downsampled images exhibited up to 95% ± 0.50% and
93.24% ± 0.73% similarity, respectively, with respect to the ground truth in the worst-case
scenario of WithOut-Prior. In contrast, the 1/8 downsampled images, when upscaled with
the WithOut-Prior acquisition scenario, had a similarity of 84% ± 1.5% to the ground truth.
Notably, when complementary priors were used, the UNet upscaled 1/8 downsampled
had a 97% ± 0.40% similarity to the ground truth. While the reported metrics offer a useful
quantitative performance of the upscaling, as statistical entities calculated over the entire
image, these metrics do not provide information about the success of upscaling details of
structures. Indeed, inspecting data sets with low similarity indices, it became apparent that
the UNets were not accurately reproducing the margins of lesions or edges of white and
gray matter (Figure 8a–c).

What is well known from experimental and clinical imaging also appears to be reflected
in the outcome of this study: if contrast and resolution are insufficient, a structure of interest
will not be captured and “resolved/revealed” in the upscaling. This is the case when
considering the upscaling of 1/8 downsized images in the acquisition scenario without
complementary information: lesions with low contrast relative to their surrounding tissue
are not recoverable. While this is an expected finding as a result of the basic imaging
physics, this can also be considered to be a manifestation of the natural limit of UNets.
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However, as also seen in Figure 10c, the same lesion that could not be recovered in the
single image acquisition scenario could be clearly recognized when the complementary
image was included. Obviously, this occurs because the complementary image carries the
needed structural information: when combined with perfect spatial matching, the UNet
training ensures that information is used in the upscaling of the LQ images. However, there
are acquisition scenarios in which a HQCP image cannot be collected, as in the cases of
different main magnetic field systems, or motion regimes that do not allow matching of
an LQ and an HQCP image set. These findings warrant additional systematic studies of
these effects on a wider range of data to better establish the practical role of deep learning-
based upscaling with clinical utility; we plan to explore these in future research. We may
then envision that the design and use of future imaging protocols to entail processes that
integrate the selection of acquisition parameters (e.g., acquisition matrix and number of
repetitions) based on how these affect the performance of a deep learning technique in
upscaling the images (e.g., improve resolution, SNR or CNR).

The statistical analysis using the mixed-effect model showed that the interaction of
UNet architecture and the size of the acquisition matrix were highly statistically significant
as seen in Table 4, and Figure 9 and illustrated that bottleneck layers (AUNet) performed
suboptimally, and in cases of small lesions, they were not recovered. Upscaling in the
WithOut-Prior scenario is inferior to that in the With-Prior scenario, a behavior that was
exemplified in the more undersampled LQ. Lesions with sizes smaller than eight pixels
and with low contrast were not recovered in the WithOut-Prior scenario, specifically in the
case of 1/8 undersampling.

This study has certain limitations. First, a rather small sample of original images was
used (436 images from the OASIS dataset with each image corresponding to a different
subject), and we added synthetic hyperintense and homogeneous lesions. We augmented
the training and testing dataset by additional image synthesis to increase variability, based
on accepted practices [21,33,35]. Second, the current work is focused on comparing on
three stat-of-the-art UNet models. While UNets appear robust and effective for the investi-
gated datasets, in the light of rapid evolution of DL methodology, more networks should
be investigated.

Future works will systematically assess the effect of the size and variability of the
datasets in the accuracy of training. This may be done by combining multiple available
data sets, incorporating additional alterations of morphology and anatomy secondary
to pathologies, including same-subject multislice or 3D data sets, the presence of image
artifacts, and even multi-contrast complementary priors. In future studies, we also plan to
compare and investigate the effect of using bicubic [15] or nearest neighbor interpolations
for preprocessing LQ images to the ground truth before being passed to the network and
will also compare using an upscaling block as part of the network [58] which takes the LQ
image as inputs in its low matrix sizes, without being preprocessed with any interpolation
method. The main focus of the current study was on comparing three state-of-the-art
UNet architectures for upscaling LQ MRI. In future work, we aim to perform additional
experiments and comparison with super-resolution techniques and will provide more
extensive comparison of model performance, model parameters, and the overall quality
of upscaled images with other networks like generative models [30–32,59], CNN [16,60],
and visual transformers [61–63], as well as comparing the impact of different training
structures (supervised, unsupervised, and semi-supervised), rather than the actual layers
of the model.

In addition to the above, we currently use publicly available MRI datasets and have
not added experimental data from a new set of cohorts. This does not affect the study, as
this work does not introduce any new neural network architecture. Rather, in this in silico
work, we tested whether three neural architectures that are significantly different from each
other were able to upscale images with significant difference. Our experiments support the
conclusion that a different neural network can upscale images that visually appear similar
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to each other regardless of the actual layers of the architecture. This study supports the
notion that attention must be paid to how the actual data are collected.

All three UNets upscaled LQ MRI to a different degree, indicating that one must
be cautious of how ML is applied, interpreted, and used practically. In the With-Prior
scenario, LQ images can be reliably upscaled; this contributes to the tradeoff between
acquisition time and image quality of X-nuclei or spectroscopic imaging. In the WithOut-
Prior case, since small and low contrast lesions may be lost, we may need to consider
new approaches that entail the concurrent customization of deep learning and acquisition
protocols. Overall, the results reflect what is expected from MR physics and known to
the community: in single-contrast images, if a structure is not there you cannot recover it,
unless you have some complementary contrast information. The critical aspect is what data
are available: resolution, contrast SNR and especially the presence or not of same subject
complementary information.

This pilot study further supports the notion that, in certain cases, the particular layers
and architecture of UNet may not be important. Effort may, rather, focus on alternative
metrics of desired image features such as cost functions, hyperparameters and training
protocols in machine learning. Furthermore, the results point to the incorporation of
the most obvious and ultimate, in our opinion, criterion in ML pipeline and application:
the end-user, i.e., radiologists or other specialists, to ensure and access the merit of such
techniques in the clinical realm.

5. Conclusions

The appropriate statistical analysis, MEM, for the problem under study (repeated
measurement on test images) identified high statistical significance for the contribution of
type of UNet, matrix size and their interaction for all four response variables (i.e., evaluation
metrics) considered. In contrast, visual, subjective, impressions of the UNet reconstructed
images demonstrate no clear difference in performance among them. These observations
suggest that the detailed architecture and layers used in these particular UNets may not
play a critical role in performance. In regard to the two acquisition scenarios, and as
expected, the presence of same-subject complementary priors substantially improves the
effectiveness of upscaling with any of the tested UNet where, again, there was no visual
inspection difference in performance. Moreover, the study pointed to the fact that the size
and the contrast of LQ images play an important role in the upscaling problem, especially
when complementary information is not available. The outcomes support the notion
that ML methods may have merit as an integral part of integrated holistic approaches in
advancing MRI acquisitions; however primary attention should be paid to the foundational
step of such approaches, i.e., the actual data collected.
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