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A B S T R A C T   

Purpose: To assess, validate and compare the predictive performance of models for in-hospital mortality of 
COVID-19 patients admitted to the intensive care unit (ICU) over two different waves of infections. Our models 
were built with high-granular Electronic Health Records (EHR) data versus less-granular registry data. 
Methods: Observational study of all COVID-19 patients admitted to 19 Dutch ICUs participating in both the 
national quality registry National Intensive Care Evaluation (NICE) and the EHR-based Dutch Data Warehouse 
(hereafter EHR). Multiple models were developed on data from the first 24 h of ICU admissions from February to 
June 2020 (first COVID-19 wave) and validated on prospective patients admitted to the same ICUs between July 
and December 2020 (second COVID-19 wave). We assessed model discrimination, calibration, and the degree of 
relatedness between development and validation population. Coefficients were used to identify relevant risk 
factors. 
Results: A total of 1533 patients from the EHR and 1563 from the registry were included. With high granular EHR 
data, the average AUROC was 0.69 (standard deviation of 0.05) for the internal validation, and the AUROC was 
0.75 for the temporal validation. The registry model achieved an average AUROC of 0.76 (standard deviation of 
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0.05) in the internal validation and 0.77 in the temporal validation. In the EHR data, age, and respiratory-system 
related variables were the most important risk factors identified. In the NICE registry data, age and chronic 
respiratory insufficiency were the most important risk factors. 
Conclusion: In our study, prognostic models built on less-granular but readily-available registry data had similar 
performance to models built on high-granular EHR data and showed similar transportability to a prospective 
COVID-19 population. Future research is needed to verify whether this finding can be confirmed for upcoming 
waves.   

1. Introduction 

The coronavirus disease 2019 (COVID-19) has challenged global 
health and society at large. Most countries have experienced multiple 
COVID-waves in the last years. Models that estimate the risk of in- 
hospital mortality of COVID-19 patients in the intensive care unit 
(ICU) could be valuable for decision making on treatment (intensify or 
withhold) and capacity planning. Many prognostic models have been 
developed, often using data purposely collected from electronic health 
records (EHR) [1]. Various existing ICU data registries or specifically 
developed COVID-19 data collections improved our understanding of 
the relation between patient characteristics and disease progress at the 
ICU [2–4]. 

EHR data typically have high granularity (multiple variables and 
measurements over time). They potentially support the application of 
advanced methods, but combining these data from multiple centers, 
each using different data models and coding lists, requires a consider
able effort and time. In a sudden pandemic or crisis situation, a rapid 
response is needed. Therefore, waiting to collect, curate and aggregate 
EHR data might not be possible. In contrast, high-quality registry data 
are already collected, more uniform, quality-controlled, and thereby 
readily-usable. Thus, they may enable a faster response, although have a 
lower granularity and a possibly-delayed availability. A comparison of 
the value of registry data with high-granular electronic health records 
for building prognostic models is still lacking. 

This study aims to assess, validate over successive waves of in
fections, and compare the predictive performance of models for in- 
hospital mortality of COVID-19 patients admitted to the intensive care 
unit (ICU), when such models are developed with high-granular ICU 
data collected from various hospitals’ EHR or low-granular registry data. 

2. Methods 

2.1. Study design and population 

This was a multi-center observational study on prospectively 
collected EHR data on patients from 19 ICUs participating in the Dutch 
ICU Data Warehouse [5] as well as Dutch National Intensive Care 
Evaluation (NICE) registry [6,7]. We included all patients that were 18 
years and older and were admitted between February 15th, 2020 and 
January 1st, 2021 with confirmed COVID-19. Thirteen of those 19 ICUs 
uploaded EHR data during the second wave. For the NICE registry, we 
selected data from the same 19 ICUs. 

COVID-19 was defined as a positive real-time reverse transcriptase 
polymerase chain reaction (RT-PCR) assay for SARS-CoV-2 or, in the 
early phase of the pandemic, as a CT-scan consistent with COVID-19, i.e. 
a COVID-19 Reporting and Data System (CO-RADS) score of ≥ 4 in 
combination with the absence of an alternative diagnosis) [8]. 

2.2. Data collection 

NICE is a quality registry with national coverage since 2016. ICUs 
extract for all their patients a predefined dataset from the routinely 
collected data from their EHR and upload this dataset each month after 
manual validation and completion. This predefined dataset includes 
demographics, minimum and maximum values of physiological data in 

the first 24 h of ICU admission, diagnoses, ICU and in-hospital mortality 
and length of stay [6]. Data collection is standardized with strict defi
nitions and stringent data-quality checks [7]. Hereafter we call this data 
source REG. 

The Dutch ICU Data Warehouse includes high-granular data of 
critically-ill patients with COVID-19 in the Netherlands. The raw data 
were extracted from the participating hospitals’ EHR. Parameters were 
mapped to a common nomenclature by a team of clinicians, data entry 
errors were filtered, and derived parameters were added (e.g., body- 
mass index) when not directly provided [9]. Data included de
mographics, administrative variables, comorbidities, and physiological 
data and information regarding the patient positioning and ventilation 
characteristics. Hereafter we call this data source EHR. EHR patients 
transferred to another ICU were linked when data from the referring and 
receiving hospital were available, otherwise excluded as their final in- 
hospital outcome was unknown. 

2.3. Outcome and predictors 

The outcome of this study was in-hospital mortality. The variables 
available in the two data sources in the first 24 h were included as 
predictors. The model is intended to be used at the first 24 h from 
admission. The predictors finally included are provided in Tables 1 and 
2. 

2.4. Data preprocessing 

The data preprocessing was the same for both datasets, unless 
differently specified. We removed administrative variables which did 
not have clinical value (such as identifiers), variables regarding 
discharge (date, destination), and variables that have zero variance. In 
REG, which had less missing data than EHR, we removed variables with 
over 45 % of missing data, in EHR, variables with over 85 % of missing. 
For the remaining numerical variables, missing values were imputed by 
using the multiple imputation by chained equations (MICE) [10]. Mode 
imputation was used for the remaining categorical variables. Backward 
stepwise variable selection was used with the Akaike information cri
terion [11]. Numerical variables were capped below the 1st percentile 
and above the 99th percentile. All variables were rescaled to the range 
[0,1] with min–max scaling. In EHR, the average, minimum value, 
maximum value, difference between the last and first measurement, and 
slope were computed based on the repeated measurements of each nu
merical variable available in the first 24 h. For categorical variables, the 
mode was selected. 

2.5. Analyses 

We developed several prognostic models to predict in-hospital 
mortality with each of the two datasets. We used AutoPrognosis, an 
automated machine learning process [12,13]. The best model per 
dataset was chosen based on predictive performance, variability of 
performance, and interpretability, and it was then internally and 
temporally validated. 
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2.6. Performance measures, internal validation, and temporal validation 

We measured discrimination with the area under the receiver oper
ating characteristics (AUROC), the area under the precision-recall curve 
(AUPRC), positive predictive values (PPV), negative predictive values 
(NPV), and the Brier score. We also assessed model calibration with 
calibration curves and provided model coefficients to interpret the 
models. Brier score is used to assess discrimination due to its known 
limitations to assess calibration [14]. A calibration curve gives better 
insight into risk prediction areas with larger deviation between pre
dicted and true risk. For both PPV and NPV, the decision threshold was 
set to 0.3, the average mortality rate in this patient population. 

Model performance was internally validated by the average perfor
mance over a fivefold cross validation on all COVID-19 patients 
admitted to Dutch ICUs between February 15th and June 30th, 2020 
(first wave). 

Various factors (virus mutations, treatment strategies, etc.) may 
impact model performance over time. To validate our models over time 
[15], we validated on a prospective dataset of all COVID-19 patients 
admitted to 13 of the same 19 Dutch ICUs between July 1st, 2020 and 
January 1st, 2021 (second wave) as the other 6 ICUs did not provide 
data in this time period. Following Debray et al. [16], we assessed the 
degree of relatedness between development and validation population 
to understand whether temporal validation was estimating the model 

reproducibility or transportability. Model reproducibility means that a 
model performs sufficiently accurate across new samples from the same 
target population. Transportability is the ability of a model to perform 
well across samples from different but related populations. To assess the 
degree of relatedness between development and validation population, 
we evaluated their corresponding case-mix differences: We built a 
logistic-regression membership model that uses the same predictors 
used by the in-hospital mortality models plus the in-hospital mortality 
outcome. The outcome of the membership model was the predicted 
probability of a patient to belong to the development or validation 
population. When such a model performed poorly, it meant develop
ment and validation population had similar case-mix and therefore the 
temporal validation assessed the reproducibility of the model. When 
such a model performed well, development and validation population 
had different case-mix and therefore the temporal validation tested the 
transportability of the model. The membership model performance was 
assessed with the AUROC and interpreted according to Hosmer and 
Lemeshow [17]. 

Statistical difference among the performance results for the models 
built on EHR and REG was assessed with a paired Student’s-t test for 
dependent samples after bootstrapping each measure over 300 
iterations. 

Table 1 
Descriptive summary statistics of the EHR patient population used in the development (and internal validation) as well as temporal validation, stratified by in-hospital 
mortality. We only show the variables selected after the variable selection with backward elimination. APTT stands for activated partial thromboplastin time, FiO2 for 
fraction of inspired oxygen, PaCO2 for partial pressure of carbon dioxide, PaO2 for partial pressure of oxygen.  

Variable Development population (first wave) Temporal validation population (second wave) 

Overall Survivor Non- 
survivor 

Missing P- 
value 

Overall Survivor Non- 
survivor 

Missing P- 
value 

n  992 676 316   541 360 181   
Age, mean (SD)  63.7 

(11.8) 
61.5 
(12.1) 

68.6 (9.5) 0  <0.001 64.5 
(11.8) 

61.5 
(12.2) 

70.5 (8.1) 0  <0.001 

Physiological and blood values            
Average estimated glomerular filtration 

rate in first 24 hrs, mean (SD)  
63.1 
(21.1) 

65.4 
(20.3) 

59.1 (22.0) 459  0.001 61.1 
(22.0) 

65.6 
(19.9) 

54.6 (23.2) 213  <0.001 

Lowest estimated glomerular filtration 
rate in first 24 hrs, mean (SD)  

58.2 
(22.8) 

61.0 
(22.1) 

53.3 (23.2) 459  <0.001 56.4 
(22.9) 

61.1 
(21.3) 

49.4 (23.5) 213  <0.001 

Average FiO2 in first 24 hrs, mean (SD)  55.5 
(16.0) 

53.2 
(15.1) 

60.1 (16.9) 82  <0.001 61.9 
(16.1) 

60.2 
(16.3) 

64.9 (15.2) 35  0.001 

Highest erythrocytes in first 24 hrs, 
mean (SD)  

11.2 
(148.0) 

13.8 
(173.7) 

4.2 (0.7) 518  0.309 5.4 
(15.7) 

4.5 (1.0) 7.3 (28.4) 268  0.374 

Highest glucose in first 24 hrs, mean 
(SD)  

9.9 (4.5) 9.4 (4.3) 10.9 (4.7) 134  <0.001 12.3 
(5.4) 

11.6 (5.1) 13.6 (5.8) 5  <0.001 

Highest prothrombin time in first 24 hrs, 
mean (SD)  

9.4 (8.0) 9.6 (6.5) 9.2 (10.5) 380  0.608 12.6 
(7.1) 

12.3 (5.6) 13.2 (9.3) 100  0.316 

Highest neutrophils in first 24 hrs, mean 
(SD)  

7.4 (4.0) 7.3 (3.9) 7.6 (4.1) 599  0.480 9.0 (4.5) 8.5 (4.0) 10.3 (5.4) 280  0.007 

Lowest measured respiratory rate in first 
24 hrs, mean (SD)  

14.8 (5.3) 14.5 (5.1) 15.4 (5.8) 0  0.026 14.2 
(5.1) 

14.1 (4.6) 14.4 (5.8) 0  0.441 

Highest verbal response in first 24 hrs, n 
(%) 

1 250 
(38.8) 

157 (36.4) 93 (43.5) 347  0.267 85 (21.2) 53 (19.3) 32 (25.4) 140  0.452  

2 2 (0.3) 2 (0.5)    1 (0.2) 1 (0.4)     
3 3 (0.5) 2 (0.5) 1 (0.5)   1 (0.2) 1 (0.4)     
4 8 (1.2) 4 (0.9) 4 (1.9)   9 (2.2) 5 (1.8) 4 (3.2)    
5 382 

(59.2) 
266 (61.7) 116 (54.2)   305 

(76.1) 
215 
(78.2) 

90 (71.4)   

Average verbal response in first 24 hrs, 
mean (SD)  

3.1 (1.9) 3.2 (1.9) 2.9 (1.8) 347  0.016 3.9 (1.7) 4.0 (1.6) 3.7 (1.7) 140  0.137 

Lowest verbal response in first 24 hrs, n 
(%) 

1 346 
(53.6) 

215 (49.9) 131 (61.2) 347  0.041 133 
(33.2) 

84 (30.5) 49 (38.9) 140  0.172  

2 3 (0.5) 1 (0.2) 2 (0.9)   2 (0.5) 1 (0.4) 1 (0.8)    
3 5 (0.8) 4 (0.9) 1 (0.5)   4 (1.0) 4 (1.5)     
4 11 (1.7) 7 (1.6) 4 (1.9)   16 (4.0) 9 (3.3) 7 (5.6)    
5 280 

(43.4) 
204 (47.3) 76 (35.5)   246 

(61.3) 
177 
(64.4) 

69 (54.8)   

Interventions            
Averaged measured P0.1 in first 24 hrs, 

mean (SD)  
2.2 (2.3) 2.1 (1.5) 2.4 (3.8) 841  0.531 1.6 (1.3) 1.6 (1.3) 1.7 (1.3) 402  0.762  
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Table 2 
Descriptive summary statistics of the REG patient population used in the development (and internal validation) as well as temporal validation, stratified by in-hospital 
mortality. We only show the variables selected after the variable selection with backward elimination.  

Variable Development population (first wave) Temporal validation population (second wave) 

Overall Survivor Non- 
survivor 

Missing P- 
Value 

Overall Survivor Non- 
survivor 

Missing P- 
Value 

n  972 650 322   591 410 181   
Age, mean (SD)  63.4 

(11.3) 
61.0 
(11.3) 

68.2 (9.6) 0  <0.001 63.9 
(12.1) 

61.2 
(12.3) 

70.0 (9.2) 0  <0.001 

Gender, n (%) Male 704 
(72.4) 

454 
(69.8) 

250 
(77.6) 

0  0.013 418 
(70.7) 

294 
(71.7) 

124 
(68.5) 

0  0.490 

Hospital identification 
number, n (%) 

1 40 (4.1) 22 (3.4) 18 (5.6) 0  <0.001 59 
(10.0) 

39 (9.5) 20 (11.0) 0  0.795  

2 18 (1.9) 8 (1.2) 10 (3.1)   1 (0.2) 1 (0.2)     
3 63 (6.5) 33 (5.1) 30 (9.3)   67 

(11.3) 
47 (11.5) 20 (11.0)    

4 44 (4.5) 25 (3.8) 19 (5.9)   34 (5.8) 23 (5.6) 11 (6.1)    
5 37 (3.8) 23 (3.5) 14 (4.3)   3 (0.5) 1 (0.2) 2 (1.1)    
6 125 

(12.9) 
93 (14.3) 32 (9.9)   2 (0.3) 2 (0.5)     

7 101 
(10.4) 

84 (12.9) 17 (5.2)         

8 60 (6.2) 42 (6.5) 18 (5.6)         
9 39 (4.0) 18 (2.8) 21 (6.5)         
10 11 (1.1) 10 (1.5) 1 (0.3)   33 (5.6) 25 (6.1) 8 (4.4)    
11 47 (4.8) 30 (4.6) 17 (5.3)         
12 84 (8.6) 61 (9.4) 23 (7.1)   180 

(30.5) 
130 
(31.7) 

50 (27.6)    

13 37 (3.8) 29 (4.5) 8 (2.5)   36 (6.1) 25 (6.1) 11 (6.1)    
14 42 (4.3) 37 (5.7) 5 (1.6)         
15      1 (0.2)  1 (0.6)    
16 48 (4.9) 33 (5.1) 15 (4.7)         
17 70 (7.2) 36 (5.5) 34 (10.6)   102 

(17.3) 
69 (16.8) 33 (18.2)    

18 75 (7.7) 41 (6.3) 34 (10.6)   4 (0.7) 3 (0.7) 1 (0.6)    
19 31 (3.2) 25 (3.8) 6 (1.9)   69 

(11.7) 
45 (11.0) 24 (13.3)   

Comorbidities            
Acute renal failure, n (%)  92 (9.5) 41 (6.3) 51 (15.8) 0  <0.001 55 (9.3) 26 (6.3) 29 (16.0) 0  <0.001 
Chronic Obstructive 

Pulmonary Disease, n 
(%)  

92 (9.5) 48 (7.4) 44 (13.7) 0  0.002 54 (9.1) 35 (8.5) 19 (10.5) 0  0.543 

Chronic respiratory 
insufficiency, n (%)  

31 (3.2) 12 (1.8) 19 (5.9) 0  0.001 12 (2.0) 7 (1.7) 5 (2.8) 0  0.527 

Diabetes, n (%)  209 
(21.5) 

117 
(18.0) 

92 (28.6) 0  <0.001 159 
(26.9) 

102 
(24.9) 

57 (31.5) 0  0.116 

Main APACHE IV reason 
for admission, n (%) 

Pneumonia, viral 922 
(94.9) 

624 
(96.0) 

298 
(92.5) 

0  0.032 549 
(92.9) 

382 
(93.2) 

167 
(92.3) 

0  0.230  

Cardiac arrest 8 (0.8)  8 (2.5)   7 (1.2) 2 (0.5) 5 (2.8)    
Cerebrovascular 
accident 

4 (0.4) 1 (0.2) 3 (0.9)   6 (1.0) 5 (1.2) 1 (0.6)    

Pneumonia, 
bacterial 

4 (0.4) 3 (0.5) 1 (0.3)   2 (0.3) 1 (0.2) 1 (0.6)    

Pneumonia, other 4 (0.4) 2 (0.3) 2 (0.6)   2 (0.3) 2 (0.5)     
Respiratory- 
medical, other 

4 (0.4) 3 (0.5) 1 (0.3)   3 (0.5)  3 (1.7)    

Others 26 (2.7) 17 (3.4) 8 (2.7)   22 (3.7) 17 (3.4) 4 (2.4)   
Physiological and blood 

values            
Highest albumin in first 24 

hrs, mean (SD)  
87.9 
(766.4) 

96.7 
(818.6) 

71.0 
(656.1) 

298  0.659 71.2 
(642.9) 

29.8 (4.8) 159.6 
(1136.1) 

111  0.159 

Lowest albumin in first 24 
hrs, mean (SD)  

26.8 
(11.1) 

27.1 
(11.8) 

26.1 (9.8) 298  0.226 27.8 
(11.3) 

28.9 (5.0) 25.4 
(18.3) 

110  0.022 

Highest bicarbonate in first 
24 hrs, mean (SD)  

36.6 
(325.0) 

42.2 
(397.3) 

25.2 (4.0) 30  0.285 42.6 
(416.7) 

25.4 (3.4) 81.7 
(754.0) 

18  0.324 

Highest creatinine in first 
24 hrs, mean (SD)  

111.2 
(333.8) 

109.6 
(403.6) 

114.5 
(82.5) 

36  0.767 149.7 
(600.8) 

102.9 
(131.6) 

256.9 
(1066.6) 

21  0.060 

Fraction of inspired oxygen 
(FiO2) in first 24 hrs, 
mean (SD)  

65.8 
(25.1) 

63.4 
(24.9) 

70.7 
(24.8) 

36  <0.001 73.7 
(26.2) 

72.4 
(23.7) 

76.6 
(30.9) 

15  0.113 

Lowest glucose in first 24 
hrs, mean (SD)  

6.3 (3.9) 6.1 (4.5) 6.8 (2.2) 22  0.004 6.8 (4.9) 7.0 (1.7) 6.4 (8.5) 6  0.384 

Highest heartrate in first 
24 hrs, mean (SD)  

105.0 
(21.8) 

102.4 
(18.9) 

110.4 
(25.9) 

14  <0.001 104.7 
(26.9) 

103.1 
(28.2) 

108.3 
(23.4) 

2  0.020 

Hospital length of stay 
priors ICU admission, 
mean (SD)  

2.5 (3.0) 2.6 (3.3) 2.2 (2.4) 2  0.028 2.6 (4.5) 2.3 (4.1) 3.3 (5.3) 1  0.017 

(continued on next page) 
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3. Study population 

In EHR, the development population included 992 confirmed 
COVID-19 patients admitted to 19 ICUs, which could be followed until 
hospital discharge. In total, 316 patients (31.9 %) died during their 
hospital stay. Survivors were significantly younger (61.5 vs 68.6 years) 
and less often males (71.0 % vs 78.8 %) than non-survivors. For the 
temporal-validation population, 541 confirmed COVID-19 patients of 13 
ICUs were included; 181 patients (33.5 %) died during their hospital 
stay. As in the development population, survivors were significantly 
younger (61.5 vs 70.5 years) and were less often males (70.6 % vs 74.0 
%) than non-survivors. Table 1 shows the descriptive summary statistics 
of each patient population. 

In REG, 972 patients admitted to the same 19 ICUs as EHR were 
included in the development population. In total, 322 patients (33.1 %) 
died during their hospital stay. Survivors were significantly younger 
(61.0 vs 68.2 years) and were less often males (69.8 % vs 77.6 %) than 
non-survivors. For the temporal-validation population, 591 confirmed 
COVID-19 patients of the same 13 ICUs as EHR were included; 181 
patients (30.6 %) died during their hospital stay. As in the development 
population, survivors were significantly younger (61.2 vs 70.0 years), 
but were more often males (71.7 % vs 68.5 %) than non-survivor. 
Table 2 shows the descriptive statistics of each population. 

4. Results 

Among the 20 models built with Autoprognosis, the best model on 

both datasets was logistic regression. Table 3 shows the discrimination 
of the EHR and REG models, in terms of AUROC, AUPRC, PPV, NPV, and 
Brier scores. Both models have fair discriminatory performance in the 
internal validation (AUROC = 0.69 vs 0.74). On all measures, the best 
model developed on REG data performed significantly better (p < 0.01) 
than the best model developed on EHR data. Fig. 1 shows the calibration 
curves of the models for the internal and temporal validation. In the 
internal validation, the REG model and the EHR model are similarly 
calibrated. 

Fig. 2 shows the coefficients of the EHR model. Age, fraction of 
inspired oxygen and glucose were the most important risk factors. The 
estimated globular filtration rate and erythrocytes were other important 
risk factors. The EHR membership model showed acceptable 

Table 2 (continued ) 

Variable Development population (first wave) Temporal validation population (second wave) 

Overall Survivor Non- 
survivor 

Missing P- 
Value 

Overall Survivor Non- 
survivor 

Missing P- 
Value 

Lowest mean blood 
pressure in first 24 hrs, 
mean (SD)  

61.5 
(14.3) 

63.6 
(12.4) 

57.1 
(16.7) 

5  <0.001 62.3 
(17.9) 

63.8 
(16.4) 

58.9 
(20.6) 

4  0.005 

Highest alveolar-arterial 
oxygen pressure 
difference in first 24 hrs, 
mean (SD)  

359.8 
(170.3) 

345.9 
(167.9) 

387.2 
(171.9) 

95  0.001 434.4 
(149.5) 

422.3 
(150.2) 

461.4 
(144.7) 

46  0.004 

Partial pressure of oxygen 
(PaO2) in first 24 hrs, 
mean (SD)  

80.4 
(35.6) 

82.4 
(37.0) 

76.5 
(32.4) 

164  0.019 75.9 
(28.5) 

77.5 
(25.9) 

72.3 
(33.5) 

23  0.073 

Highest respiratory rate in 
first 24 hrs, mean (SD)  

33.0 
(8.6) 

32.5 (8.5) 33.9 (8.8) 9  0.024 34.3 
(8.7) 

33.6 (8.2) 36.1 (9.4) 3  0.002 

Lowest respiratory rate in 
first 24 hrs, mean (SD)       

15.0 
(4.8) 

14.7 (4.5) 15.8 (5.3) 9  0.015 

Lowest Thrombocytes in 
first 24 hrs, mean (SD)  

238.5 
(97.8) 

245.6 
(98.1) 

224.1 
(95.6) 

47  0.001 239.8 
(102.2) 

254.0 
(99.8) 

207.1 
(100.4) 

21  <0.001 

Highest serum ureum in 
first 24 hrs, mean (SD)  

7.7 (8.2) 6.7 (8.9) 9.7 (6.1) 66  <0.001 10.0 
(10.3) 

9.4 (7.6) 11.4 
(14.7) 

30  0.095 

Urine output in first 24 hrs, 
mean (SD)  

1.4 (1.0) 1.4 (1.0) 1.4 (0.8) 11  0.184 1.8 (1.1) 1.8 (1.2) 1.6 (1.0) 1  0.006 

Lowest eye response in first 
24 hrs, n (%) 

1 29 (3.0) 10 (1.5) 19 (6.0) 7  0.002 24 (4.1) 10 (2.4) 14 (7.8) 1  0.014  

2 5 (0.5) 4 (0.6) 1 (0.3)   5 (0.8) 3 (0.7) 2 (1.1)    
3 36 (3.7) 24 (3.7) 12 (3.8)   14 (2.4) 8 (2.0) 6 (3.3)    
4 895 

(92.7) 
608 
(94.1) 

287 
(90.0)   

547 
(92.7) 

389 
(94.9) 

158 
(87.8)   

Lowest motor response in 
first 24 hrs, n (%) 

0    7  <0.001 1 (0.2)  1 (0.6) 1  0.017  

1 24 (2.5) 5 (0.8) 19 (6.0)   21 (3.6) 8 (2.0) 13 (7.2)    
2 1 (0.1) 1 (0.2)    1 (0.2) 1 (0.2)     
4 2 (0.2) 2 (0.3)    4 (0.7) 2 (0.5) 2 (1.1)    
5 25 (2.6) 14 (2.2) 11 (3.4)   11 (1.9) 8 (2.0) 3 (1.7)    
6 913 

(94.6) 
624 
(96.6) 

289 
(90.6)   

552 
(93.6) 

391 
(95.4) 

161 
(89.4)   

Interventions            
Mechanical ventilation at 

ICU admission, n (%)  
422 
(43.4) 

255 
(39.2) 

167 
(51.9) 

0  <0.001 114 
(19.3) 

73 (17.8) 41 (22.7) 0  0.206 

Mechanical ventilation in 
first 24 hrs, mean (SD)  

759 
(78.1) 

489 
(75.2) 

270 
(83.9) 

0  0.003 297 
(50.3) 

195 
(47.6) 

102 
(56.4) 

0  0.060  

Table 3 
Discrimination of the EHR and REG model. For internal validation, we outline 
the average results for the fivefold cross validation with the standard deviation 
in brackets. For temporal validation the performance on the new population is 
reported. For PPV and NPV, the decision threshold was 0.3.  

Data Validation AUROC AUPRC PPV NPV Brier 
score 

EHR Internal 0.693 
(0.047) 

0.506 
(0.039) 

0.630 
(0.111) 

0.708 
(0.016) 

0.205 
(0.015) 

REG Internal 0.737 
(0.050) 

0.574 
(0.055) 

0.732 
(0.079) 

0.703 
(0.009) 

0.195 
(0.017) 

EHR Temporal 0.746 0.562 0.706 0.677 0.188 
REG Temporal 0.754 0.571 0.761 0.732 0.177  
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performance (AUROC = 0.71), as illustrated in Table 4. The EHR model 
yielded better results in the temporal validation than in the internal 
validation for all measures but NPV, which slightly decreased (AUROC 
= 0.75, see Table 3). In the temporal validation the model calibration 
was slightly worse than in the internal validation (Fig. 1). 

Fig. 3 shows the coefficients of the REG model. Age and chronic 
respiratory insufficiency were found as most important risk factors. The 
fraction of inspired oxygen and chronic obstructive pulmonary disease 
(COPD) were other relevant risk factors. The REG membership model 
showed an acceptable performance (AUROC = 0.76), as outlined in 
Table 4. The predictive performance of the REG model for the temporal 
validation improved for all the measures compared to the internal 
validation, except AUPRC, which slightly decreased (AUROC = 0.75, see 
Table 3). The REG model showed better calibration than in the internal 
validation for most of the predictions (Fig. 1). 

The results for the temporal validation are significantly better for the 
REG model than for the EHR model for all the measures (p < 0.01), 
although the EHR model had a larger improvement than the REG model 
from the internal to the temporal validation for AUROC (from 0.69 to 
0.75, and from 0.74 to 0.75, respectively). The calibration is similarly 

good for both models (Fig. 1). 

5. Discussion 

5.1. Main findings 

We assessed the predictive performance of clinical prognostic models 
for in-hospital mortality of ICU patients with confirmed COVID-19 using 
high-granular EHR data and low-granular REG data. The predictive 
performance in the internal validation was fair (AUROC of 0.69–0.74). 
In the temporal validation, the performance improves (AUROC from 
0.69 to 0.75 for EHR and from 0.74 to 0.75 for REG). The membership- 
models’ results on both datasets indicate that the case-mix was different 
and therefore temporal validation assess the transportability of the 
models. For temporal validation, transportability means that the models 
are stable over time. Both models are well transportable to the temporal- 
validation population since their performance in the temporal validation 
increased. Such increase may also be due to the use of 5-fold cross 
validation in the internal validation which resulted in reporting con
servative performance: the model is trained five times with 80 % of the 

Fig. 1. Calibration curves of the REG and EHR models in the internal as well as temporal validations.  
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data as every fold correspond to one fifth (20 %) of the data. We select a 
final model used in the temporal validation by retraining on the whole 
development data. The better performance of the REG model in the in
ternal validation, and the similar performance of both models in the 
temporal validation, despite more predictors in the EHR model, may be 
due to the greater number of missing values in the EHR dataset. 

Age, fraction of inspired oxygen and glucose were the strongest 
predictors in the EHR model. In REG, age and chronic respiratory 
insufficiency were the most important predictors. Different risk factors 
are identified in different data sources due to the different total set of 
variables included. Additionally, some variables, such as the lowest 
verbal response in the first 24 h, although available in both datasets, 
were selected by the variable selection in one model but not the other. 

5.2. Related work 

Similar to [18], we found age and respiratory-system predictors to be 
predictor of mortality among COVID-19 patients. Other predictors found 
in other studies ranged from diverse laboratory test to comorbidities 
[1,19,20,21,22,23]. Izcovich et al. identified 49 valuable predictors 
[24], including various laboratory tests that we also identified in our 
EHR data, such as neutrophils, or in REG, e.g., COPD (see Figs. 2 and 3). 
Among these other predictors found by other studies, some were not 
included in our dataset (the participating hospitals did not collect or 
share such information). Some of earlier found comorbidities, medica
tions (notably steroids, anticoagulants, vasopressors) and other pre
dictors, e.g., lung compliance, ventilator volume and pressures that were 
included in our EHR dataset, were not selected as predictors in our 
models. This might be a result from dependences and correlations that 
are specific for our set of predictors. Various prognostic models of 
mortality among patients with COVID-19 have been proposed 
[1,18,25,26,27,28,29]. Their predictive performance varied from fair 
(AUROC 0.7–0.8) to excellent (AUROC > 0.9). However, many studies 
showed high risk of bias [1] and only few temporally validate the models 
[27–29]. Our performance in the temporal validation is in line with 
another externally-validated model developed on EHR data [30], as well 
as other studies that take into account readily availability data [31,32]. 
The importance of external validation and continuous monitoring and 
updated of machine-learning models to ensure their long-term safety 
and effectiveness has also been underlined by previous studies [33,34]. 

Fig. 2. Coefficients of the EHR logistic regression model. PaCO2 is the partial pressure of carbon dioxide, FiO2 is the fraction of inspired oxygen. Supplementary 
Table S2 includes the model description. 

Table 4 
Discrimination of the EHR and REG membership models. We outline the average 
results for the fivefold cross validation with the standard deviation in between 
brackets.  

Data AUROC AUROC 
interpretation 

Case mix Assessed 
property 

REG 0.756 
(0.046) 

Acceptable Different Transportability 

EHR 0.707 
(0.034) 

Acceptable Different Transportability  
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5.3. Strengths and weaknesses 

We temporarily validated COVID-19 prognostic models, which is an 
important aspect of model evaluation [15], especially with a new dis
ease. We used data from multiple centers and two different data sources, 
each with their own benefits and limitations. The EHR data source in
cludes raw EHR data and hence more variables and more measurements 
per variable compared to the REG dataset. However, it was time- 
consuming to join all different EHR data schemas and, perhaps 
accordingly, missing values were frequent in the EHR data. The REG 
dataset is less rich in the number of variables and measures per variable 
but more standardized and quality-controlled. 

Our study also has some limitations that need consideration in its 
interpretation. First, due to privacy regulations we were not able to join 
both datasets and link the same patients. Although we used the same 
ICUs there were small differences regarding included patients. 

Second, the EHR data source included data only up to January 1st, 
2021, so it was not possible to temporally validate its model on later 
waves of infection, when vaccinations became available. To compare 
models built on EHR and REG data we limited REG data to the same 
period. Six of the 19 ICUs did not provide data after June 2020 and were 
not included in the temporal validation. The EHR data, although a dump 
of several EHRs, did not include all laboratory or other individual pa
tient variables available, and not all the hospitals provided all the var
iables, e.g., D-dimer was collected only by few hospitals. Although 
repeated measurements of the same variable (time series) were avail
able, we aggregated them, reducing the granularity in time and poten
tially losing useful information. Other studies include more and different 
individual patient information, such as time series of laboratory values 
and features derived from CT images, which may explain their higher 
predictive performance [1]. 

Third, we did apply imputation and normalization before the data 
splitting due to using cross validation, which may introduce a bias. After 
5-fold cross-validation, there would be the need of 5 different imputa
tions (actually multiple imputations), as well as 5 different normaliza
tions. First this would have made the difficult to identify the final 
imputed and normalized data: it is not straight forward which of the five 
imputations or normalization to use in the final model or how to prop
erly aggregated those five imputations. Second, it would also have made 
the computation time explode for the EHR data, which holds over 2000 
variables (before selection). After in-depth discussions and preliminary 
analyses, we nested the variable selection in the cross validation using a 
majority voting to select the variables from the five folds (a variable 
needs to be selected in 3 out of 5 folds to be selected in the final model), 
but not the rest. Given we also temporally validated the model, we 
believe this bias has a low impact. 

Forth, we do not exclude that extensive parameter tuning of single 
models may provide slightly better results than automated machine 
learning with AutoPrognosis. However, a gap between the potential and 
actual use of machine learning in prognostic research exists because 
classical model development and tuning requires greater time and effort 
(and may become unfeasible in the healthcare domain). More impor
tantly, it is hard for clinicians with no or few expertise in machine 
learning to do so [35]. Automated machine learning tackles these issues 
and our study shows how can be successfully used in the healthcare 
domain. 

Finally, removing transferred patients from the EHR dataset may 
have introduced bias in the dataset because transferred patients may be 
healthier since they are fit for transport, or more severely ill and need 
treatment in a better equipped ICU. Whenever data from the referring 
and receiving hospital were available, data were linked to limit the 
exclusions. 

Fig. 3. Coefficients of the REG logistic regression model. Supplementary Table S3 includes the model description.  
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5.4. Implications 

Registries, with less-granular but readily-available and controlled 
data, provide better performance than high-granular EHR data in the 
internal validation and show similar results to EHR data in the temporal 
validation. Independently of the data source, model performance re
mains stable over time. This is an important finding because long
standing ICU registries require less effort for data-collection, 
integration, and processing than setting up a specific research data set 
from multiple EHR with different data unless such data platform is 
already in place, which is currently rare but upcoming (giviti. 
marionegri.it/portfolio/covid-19/, last access 11/02/2022) [5,36,37]. 
When EHRs will move to using information standards and/or FAIR data, 
many of the current disadvantages of EHR data may disappear, since 
collection, integration and processing will be eased. However, valida
tion and quality control of data as in place in registries may still remain a 
challenge. High-granular EHR data could still be beneficial for other 
problems, such as finding the optimal combination of ventilators set
tings or drugs for individual patients. 

5.5. Future works 

We aggregated the repeated measurements of each numerical vari
able available. Exploiting repeated measurements should be investi
gated. COVID-19 patients typically have long ICU stays. Twenty-four 
hours might be a too-short interval to estimate patients’ survival. 
Determining the best ‘ICU trial time’ requires further research. Other 
interesting directions of research would be exploiting different models 
instead of the logistic regression for the population membership 
discrimination, e.g. kernel based methods, as well as tracking the pres
ence or absence of data with additional variables instead of imputing 
missing values, as done by a recent study [38]. 

6. Conclusions 

In our study, temporally-validated models built on less-granular but 
readily-available registry data performed closely to models developed 
with higher-granular EHR data and showed the same transportability to 
a prospective COVID-19 population as model developed with higher- 
granular EHR data. Readily-available registry data might be a valuable 
resource when a rapid response is needed. Future research is needed to 
verify whether this finding can be confirmed for upcoming COVID-19 
waves and for models focusing on other ICU patient categories. 

7. Summary Table 

What was already known on the topic:  

• Electronic health records (EHR) typically have high granularity 
(multiple variables and measurements over time).  

• EHR data can enable the application of advanced machine learning 
methods, but combining these data from multiple centers requires a 
considerable effort and time.  

• In a sudden pandemic or crisis situation, a rapid response is needed, 
therefore, waiting to collect, curate and aggregate EHR data is 
undesirable. 

What this study added to our knowledge: 

• Prognostic models built on less-granular but readily-available reg
istry data can, in particular cases as in this study, achieve perfor
mance similar to models built on high-granular EHR data  

• Prognostic models built on high- and less-granular data of COVID-19 
patients show equal transportability to a prospective COVID-19 
population. 
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nl/extractieverzoek_procedure.jsp (in Dutch). External researchers can 
get access to the Dutch ICU Data Warehouse in collaboration with any of 
the participating hospitals. The list of collaborators is available in the co- 
author list and in the collaborators section, through the corresponding 
author, and through the contact details on 
amsterdammedicaldatascience.nl. Research questions have to be in line 
with the DSA; to investigate the course of COVID-19 in the ICU and to 
research potential treatments. Researchers have sign a code of conduct 
before accessing the data. 

The code used for our analyses is publicly available at bitbucket. 
org/aumc-kik/automl4covid. 

Appendix A. Supplementary material 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.ijmedinf.2022.104863. 
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