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We consider the propagation of electrons in a lattice with an anisotropic dispersion in the x-y plane (lattice
constant a), such that it supports open orbits along the x axis in an out-of-plane magnetic field B. We show
that a point source excites a “breathing mode,” a state that periodically spreads out and refocuses after having
propagated over a distance � = (eaB/h)−1 in the x direction. Unlike known magnetic focusing effects, governed
by the classical cyclotron radius, this is an intrinsically quantum mechanical effect with a focal length ∝ h̄.
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I. INTRODUCTION

The Lorentz force from a magnetic field may act as a
lens for electrons, by focusing their trajectories down to a
point of size limited only by their wavelength. In the solid
state such electron optics was pioneered half a century ago
by Sharvin [1], Sharvin and Fisher [2], and Tsoi [3], enabled
by the availability of single crystals with mean free paths of
several millimeters—well above the typical focal lengths of
the magnetic lens. Geometric optics is sufficient in metals
[4,5]; in semiconductors and in graphene the larger wave-
length introduces diffraction and interference effects [6–9].

Irrespective of these quantum effects, the magnetic fo-
cusing itself is still an essentially classical effect—the focal
length is given by the classical cyclotron radius pF/eB (ratio
of Fermi momentum and magnetic field). In what follows
we will describe a magnetic focusing effect that is intrinsi-
cally quantum mechanical. The focusing mechanism is Bragg
reflection at Brillouin zone boundaries, resulting in a paramet-
rically larger focal length, with Fermi momentum pF replaced
by the Bragg momentum transfer h̄/a (inverse lattice con-
stant).

We build on our recent study of magnetotransport in
twisted bilayer graphene [10], where a precise mathematical
mapping was found onto Bloch oscillations in an electric
quantum walk [11–13]. The mapping of space onto time and
magnetic field onto electric field was shown to result in a
“breathing mode” [14,15], a wave function that periodically
expands and contracts. The mapping relied on the special
nature of the scattering problem in the graphene bilayer [16],
where electrons propagate in topologically protected chiral
modes on a triangular network of domain walls [17,18].

Here we take a broader perspective and develop a general
theory for breathing modes that applies to any band structure
which supports open orbits in a magnetic field. It applies, in
particular, to layered materials with a strongly anisotropic dis-
persion, of recent interest in this context [19,20]. We present
both a fully quantum mechanical calculation and a semiclas-

sical description of the breathing mode and test our theory
by comparing it to computer simulations of a tight-binding
model.

II. CALCULATION OF THE BREATHING MODE

An open orbit in the Brillouin zone is an equienergy
contour that crosses the Brillouin zone boundaries. In the
repeated-zone scheme it therefore runs through the whole
reciprocal space, without closing on itself. The open orbits
in a plane perpendicular to an applied magnetic field govern
the electrical transport properties. We orient the field in the
z direction and focus on an open orbit in the x-y plane. An
example on the two-dimensional (2D) square lattice is shown
in Fig. 1.

As an effective low-energy description of an open orbit we
consider a 2D Bloch band near the Fermi energy EF = 0 in
the first Brillouin zone, described by the Hamiltonian

H = h̄vxkx + ε(ky). (1)

The momentum operator is k = −i∂/∂r. The open orbit
has the equienergy contour ε(ky) + h̄vxkx = 0, with ε(ky) =
ε(ky + 2π/ay) for lattice constant ay.

The vector potential is introduced via the substitution
h̄k �→ h̄k − eA (taking the electron charge as +e). We choose
the gauge A = ( − yB(x), 0, 0), corresponding to the mag-
netic field B = (0, 0, B(x)). We will later specialize to the case
B(x) = B0 of a constant field.

Eigenstates �(x, ky) of H at energy E = 0, in a mixed
coordinate-momentum representation, satisfy

ivx( − h̄∂x + eB(x)∂ky )�(x, ky) = −ε(ky)�(x, ky). (2)

A similar partial differential equation has been studied in the
context of Wannier-Stark localization [21], and we can adapt
that method of solution.
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We define the field integral

C(x) =
∫ x

0
B(x′) dx′ (3)

and note that

h̄∂x f (h̄ky + eC(x)) = eB(x)∂ky f (h̄ky + eC(x)), (4)

for any function f . We thus find the solution

�(x, ky) = �(0, ky + (e/h̄)C(x)) exp ( − iω(x, ky)), (5)

ω(x, ky) =
∫ x

0

dx′

h̄vx
ε(ky + (e/h̄)C(x) − (e/h̄)C(x′)). (6)

For an initial condition �(0, ky) ≡ 1 that is localized at y = 0
we obtain the real-space profile

ψ (x, y) = ay

∫ 2π/ay

0

dky

2π
eiyky exp ( − iω(x, ky)). (7)

The first moment of the transverse displacement vanishes,

〈y〉x = ay

∞∑
m=−∞

m|ψ (x, may)|2

= iay

∫ 2π/ay

0

dky

2π
�∗(x, ky)∂ky�(x, ky)

= ay

∫ 2π/ay

0

dky

2π
∂kyω(x, ky) = 0. (8)

The second moment is given by

〈y2〉x = a2
y

∞∑
m=−∞

m2|ψ (x, may)|2

= ay

∫ 2π/ay

0

dky

2π
|∂ky�(x, ky)|2

= ay

∫ 2π/ay

0

dky

2π
(∂kyω(x, ky))2. (9)

Specializing now to a constant magnetic field, we have
C(x) = B0x and

ω(x, ky) = (eB0vx )−1
∫ ky+eB0x/h̄

ky

dq ε(q). (10)

We conclude that

ψ (x + 2π h̄/eB0ay, y) = ψ (x, y)e−iα, (11)

for some constant phase α, so the density |ψ (x, y)|2 is periodic
in x with period

� = h

eB0ay
= ax
0



. (12)

Here, 
 = Baxay is the flux through a unit cell, and 
0 = h/e
is the flux quantum.

The transverse displacement has variance

〈y2〉x = ay

(eB0vx )2

∫ 2π/ay

0

dky

2π
(ε(ky + eB0x) − ε(ky))2, (13)

which vanishes when x = n�, n = 1, 2, . . .: The breathing
mode refocuses to a single lattice site.

FIG. 1. Equienergy contours of the 2D dispersion E (kx, ky ) =
−2 cos kx − cos ky (dimensionless units). The black dashed square
indicates the Brillouin zone, and the red curve is an open orbit at
the Fermi energy EF = 0, given by kx + ε(ky ) = 0, with ε(ky ) =
− arccos(− 1

2 cos ky ).

III. TIGHT-BINDING MODEL

We test this analytical theory numerically on the tight-
binding model of a 2D square lattice (lattice constant ax =
ay = a) with anisotropic nearest-neighbor hopping energies
tx and ty in the x and y directions. In the plots we take
ty/tx ≡ τ = 1/2. The Hamiltonian is

H = −tx cos axkx − ty cos ayky. (14)

We set the Fermi level in the middle of the band, EF = 0,
where the open orbits are given by

axkx = ± arccos
(−τ cos ayky

) + 2πn, n ∈ Z; (15)

see Fig. 1.
The geometry is shown in Fig. 2. The conductor has di-

mensions L in the x direction and W in the y direction. Point
contacts (width δW ) at x = 0 and x = L are a source and

FIG. 2. Layout of the tight-binding model, a 2D square lattice
with anisotropic hopping energies. Strong and weak bonds are dis-
tinguished by thicker and thinner lines. The colors distinguish the
conductor (blue), narrow source and drain contacts (red, one at
voltage V , the other at zero voltage), and four wide terminals gray,
each at zero voltage). All six terminals are connected to semi-infinite
leads. The conductance G = I/V is the ratio of the current into the
drain point contact and the voltage on the source point contact.
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(a)

(b)

FIG. 3. (a) and (b) Blue data points: Wave function profile
|ψ (x, y)|2 injected into the conductor by a single mode in the lead, for
two magnetic fields (corresponding to focal lengths � ≡ a
0/
 = L
and � = L/4). The wave function is normalized such that unit current
is injected. The red curves in (b) show two semiclassical orbits,
calculated at the same magnetic field value as the breathing mode,
to illustrate that the semiclassical orbits oscillate twice as rapidly as
the breathing mode envelope.

drain for electrical current. We implement hard-wall bound-
ary conditions at |y| = W/2 (by terminating the lattice) and
absorbing boundary conditions at x = 0, L, |y| > δW/2 (by
attaching ideal leads to ground). The grounded leads are not
essential for the magnetoconductance oscillations; they help
to improve the resolution by removing a background signal
from electrons that are not focused by the lens.

The point contacts at x = 0, L, |y| < δW/2 connect to
heavily doped metallic leads, at chemical potential μlead much
larger than the bandwidth ty in the conductor. Only a small
fraction ty/μlead of the N ≈ δW/a propagating modes in the
leads will couple effectively to the conductor, namely, those
modes that have transverse momentum that is small compared
with the longitudinal momentum. For ty/μlead  1 we may
thus remove the transverse hoppings in the leads, which are
then described by the Hamiltonian (14) with ty = 0. The per-
pendicular magnetic field is introduced in the hopping matrix
elements via the Peierls substitution.

We use the tight-binding package KWANT [22] to calculate
the scattering matrix of the six-terminal structure in Fig. 2.
The N × N transmission matrix t from source to drain then
gives the conductance G = (e2/h) Tr tt†.

The breathing mode injected into the conductor by a single
mode in the lead is shown in Fig. 3. It has the expected
periodicity of x = � = a
0/
. In Fig. 4 we compare the
variance of the spread in the y direction as obtained from the
tight-binding model with the result (13). For the open-orbit
dispersion we take

ε(ky) = (h̄vx/a) arccos(−τ cos aky), (16)

corresponding to one of the two branches in Eq. (15). The
agreement is very good, without any adjustable parameter.
The small oscillations with periodicity a present in the nu-
merics are due to interference of the two branches of the
dispersion relation, which we have neglected in Eq. (16). See

FIG. 4. Variance of the spread in the y direction as a function of
the distance x from the point source. The smooth red curve is calcu-
lated from Eq. (13), and the black curve with small oscillations is the
numerical result from the tight-binding model. The numerical data
are obtained by converting the wave function profile in Fig. 3(a) to
a normalized intensity profile ρx (y) = |ψ (x, y)|2/ ∑

y |ψ (x, y)|2 and
then computing

∑
y y2ρx (y).

Appendix A for a calculation that includes the interference
effect.

Because h̄k̇ = eṙ × B, the trajectory yc(x) of a semi-
classical wave packet is obtained from the equienergy
contour h̄vxkx + ε(ky) = 0 upon the transformation h̄kx �→
eB0y, h̄ky �→ −eB0x; thus

yc(x) = (eB0vx )−1ε(−eB0x/h̄). (17)

A pair of semiclassical orbits is plotted in Fig. 3(b) (red
curves), in order to emphasize the fact that the envelope of the
breathing mode is not simply the superposition of two semi-
classical orbits. Let us study the semiclassical correspondence
in more detail.

IV. SEMICLASSICAL APPROXIMATION

To study the semiclassical correspondence, we consider
[for a state ψ (x, y) normalized to unity] the intensity pro-
file ρx(y) = |ψ (x, y)|2 in the weak-field semiclassical regime

  
0. We Fourier transform ρx(y) with respect to y, sub-
stitute Eq. (7) for ψ (x, y), retain only intensity variations with
small wave number q, and finally Fourier transform back [23]:

∑
y

ρx(y)eiqy = ay

∫ 2π/ay

0

dky

2π

× exp (iω(x, q + ky) − iω(x, ky))

= ay

∫ 2π/ay

0

dky

2π
exp (iq∂kyω(x, ky) + O(q2)),

(18)

⇒ ρx(y) = a2
y

∫ 2π/ay

0

dky

2π
δ(∂kyω(x, ky) − y). (19)

Now y is treated as a continuous variable (with
∑

y �→
a−1

y

∫
dy).

For a constant magnetic field B0 this can be worked out to

ρx(y) = a2
yeB0vx

∫ 2π/ay

0

dky

2π

× δ
[
ε(ky + eB0x/h̄) − ε(ky) − eB0vxy

]
. (20)
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FIG. 5. Superposition of semiclassical orbits that satisfy yc(x0 −
x) − yc(x0) − y = 0, with x0 varied between 0 and �. The open orbit
yc(x) is given by Eqs. (16) and (17), and the parameters are those of
Fig. 3(a). The caustic is indicated in red.

In view of Eq. (17) the semiclassical density profile (20)
can be rewritten as a superposition of displaced semiclassical
orbits,

ρx(y) = (ay/�)
∫ �

0
dx0 δ

[
yc(x0 − x) − yc(x0) − y

]
. (21)

In Fig. 5 we have plotted this superposition for the same
parameters as in the tight-binding simulation of Fig. 3(a). The
profiles match very well. The semiclassical calculation iden-
tifies the envelope as a caustic: an accumulation of classical
trajectories with an infinite density, regularized by the finite
wavelength in the quantum calculation.

Equation (20) allows for a semiclassical estimate for
the amplitude of the breathing mode: Since ρx(y) ≡ 0
for all x when |y| > (eB0vx )−1 maxk1,k2 |ε(k1) − ε(k2)| ≡
(eB0/h̄)−1kx or, equivalently, when |y| > maxx1,x2 |yc(x1) −
yc(x2)| ≡ yc, we arrive at the relation

yB = 2yc = 2(h̄/eB0)kx (22)

between the amplitude kx of the open orbit in momentum
space, on the one hand, and the amplitudes yB and yc of
the breathing mode and semiclassical orbit in real space, on
the other hand.

The ratio R = yB/� = (ay/π )kx is a magnetic-field-
independent characteristic of the open orbit. For the
anisotropic dispersion (14) one has

R ≡ yB/� = (2ay/πax ) arcsin(ty/tx ). (23)

The ratio equals 1/3 for the parameters in Fig. 3 (ay = ay,
tx = 2ty).

V. MAGNETOCONDUCTANCE OSCILLATIONS

In the double-point-contact geometry of Fig. 2 the breath-
ing mode manifests itself as a conductance peak when the
point-contact separation L is an integer multiple of the period
�. This is the magnetoconductance oscillation studied in the
context of twisted bilayer graphene in Ref. [10]. The magnetic
field periodicity is

B = h

eaL
. (24)

A simulation of the tight-binding model in Fig. 6 shows
the effect. The amplitude of the oscillations decays with in-
creasing field because the point-contact width δW is no longer
able to resolve the decreasing amplitude yB of the breath-
ing mode. In terms of the dimensionless parameter ξ (B) =
(1/R)(δW/ay)(
/
0) we calculate that the ratio Gmin/Gmax

FIG. 6. Conductance G (in units of the conductance quantum
G0 = e2/h, per spin degree of freedom), as a function of mag-
netic field B = 
/a2, computed from the tight-binding model in the
point-contact geometry shown in the inset (parameters L/a = 1000,
W/a = 440, δW/a = 51). The breathing mode at the first conduc-
tance peak is shown in red. The periodicity of the oscillations is

/
0 = a/L = 10−3. Full refocusing of the breathing mode with-
out any backscattering would give a conductance peak of NG0 with
N = 51 injected modes. The blue dashed curve is the calculated
decay (25) of the amplitude of the conductance oscillations.

of the minima and maxima of the conductance oscillations
follows the curve [24]

Gmin

Gmax
=

{
ξ (B) if ξ (B) < 1/2
1 − 1

4ξ (B)−1 if ξ (B) > 1/2.
(25)

This agrees quite nicely with the numerics (blue curve in
Fig. 6), without any fit parameter.

To make contact with Refs. [19,20], we note that magne-
toconductance oscillations with the same period (24)—upon
exchange of L by W —can be observed without any point
contacts, so without the focusing of wave profiles. Instead
of a current flowing along the open orbit the current should
then flow perpendicularly to the open orbit; see Fig. 7. This
is the geometry first studied by Pippard [25] (see Ref. [26]),
to explain conductance oscillations with period 
0/aW in
cadmium [27,28]. We refer to Refs. [19,20] for a compre-
hensive theory and experiment on these magnetoconductance
oscillations. Note that magnetic lensing plays no role in the

FIG. 7. Same as Fig. 6, but now with the current flowing per-
pendicularly to the open orbits (a few are shown as red trajectories;
parameters W/a = 1000, L/a = 440, no point contacts, δW = W ).
The conductance has a minimum when an open orbit fits in the width
of the conductor, so when B = n
0/aW , n = 1, 2, . . ..

235413-4
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FIG. 8. Variance of the spread in the y direction as a function
of the distance x from the point source, calculated from Eq. (A1).
This figure can be compared with Fig. 4, where the interference
oscillations are neglected.

Pippard geometry; one needs the spatial resolution of a point
contact to excite a breathing mode.

VI. CONCLUSION

In summary, we have presented a magnetic lensing effect
with an unusually long focal length, set by the Bragg momen-
tum h̄/a rather than the Fermi momentum pF. At a field of
1 T and for a lattice constant a = 0.5 nm the focal length
� = h/eBa ≈ 8 μm—an order of magnitude larger than in
semiconductor electron-focusing experiments [29]. Magnetic
focusing is an effective way to study scattering processes
[30], and in clean systems a large focal length would be an
advantage.

The quantum mechanical origin of the focusing effect,
Bragg reflection at Brillouin zone boundaries, does not imply
that the magnetic lens needs long-range phase coherence—the
breathing mode only requires phase coherence on the scale of
the lattice constant. We note the contrast with the Aharonov-
Bohm effect, where a magnetoconductance oscillation with
period h/eS would require phase coherence over distances of
order

√
S. The oscillation period (24) has S = aL but only

(a) (b)

FIG. 9. Equienergy contours in momentum space consisting of
three sets of open orbits, at relative orientation of 120◦ (a). The
arrows indicate the direction of motion in a magnetic field. The solid
contours produce, upon rotation by 90◦, the multibranched real-space
trajectory yc(x) shown in (b). A trajectory initially moving in the +x
direction branches out into the −x direction at the intersection points
indicated by red dots. Higher-order branch-outs are not considered;
these would contribute with reduced amplitude.

FIG. 10. Superposition of the semiclassical orbits yc(x) from
Fig. 9(b) that satisfy yc(x0 − x) − yc(x0 ) − y = 0, with x0 varied
between 0 and �.

requires phase coherence over a length a, irrespective of how
large L might be.

We have applied the general theory to a simple model of
an anisotropic dispersion, appropriate for the layered material
(delafossites) studied in Refs. [19,20] (with a ratio τ � 10−2

between in-plane and out-of-plane hopping energies and with
mean free paths of 20 µm [31]). For such a strong anisotropy
the open orbits in the Brillouin zone are essentially decoupled
from each other, allowing for closed-form expressions for the
breathing mode in the fully quantum regime, Eq. (7), and in
the semiclassical approximation, Eq. (21).

More complicated band structures would allow for mul-
tiple open orbits coupled by magnetic breakdown. The
magnetic lens may then exhibit a complex pattern of caustics;
one example (relevant for twisted bilayer graphene [10]) is
analyzed in Appendix B.

To enable reproducibility of our numerical results, the
computer code and data have been made available at the
Zenodo repository [32].
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APPENDIX A: CALCULATION OF THE INTERFERENCE
OSCILLATIONS IN THE ROOT-MEAN-SQUARE

DISPLACEMENT

The tight-binding model calculation in Fig. 4 shows small
oscillations on the scale of the lattice constant, which are
absent in the analytical curve. To include these, we consider
both branches of the equienergy contour (15). These produce
two open-orbit dispersions ±ε(ky), with two corresponding
wave function profiles ψ±. With reference to Eq. (7) we have
ψ+(x, y) = ψ (x, y) and ψ−(x, y) = ψ∗(x,−y).

We take an equal-weight superposition 2−1/2(ψ+ + ψ−).
The average displacement remains equal to zero, and the

235413-5
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mean-square displacement becomes

〈
y2

〉
x = ay

∫ 2π/ay

0

dky

2π
(∂kyω(x, ky))2[1 − cos 2ω(x, ky)].

(A1)

The result (see Fig. 8) has oscillations with a somewhat
smaller amplitude than in the numerics of Fig. 4, but the
periodicity agrees nicely.

APPENDIX B: MAGNETIC LENS FOR MULTIPLE
COUPLED OPEN ORBITS

In the main text we considered the magnetic lens that re-
sults from a single open orbit in the Brillouin zone. As a more

complicated example, we show in Fig. 9(a) the equienergy
contours of minimally twisted bilayer graphene [16], with
three open orbits at a relative orientation of 120◦. At an in-
tersection an electron can switch from one orbit to the other,
a process known as magnetic breakdown. The corresponding
multibranched classical trajectory yc(x) is shown in Fig. 9(b).
If we now apply the semiclassical formula (21), we obtain the
complex pattern of caustics shown in Fig. 10.

In Ref. [10] a fully quantum mechanical calculation was
presented for the wave function profile. The semiclassical
calculation well reproduces the qualitative features. Notice,
in particular, that the side branches at an orientation of 120◦

are not simply copies of the main breathing mode. There is an
extinction of the amplitude between two oscillations, which
one might have suspected to be an interference effect. Instead
it can be fully reproduced from a trajectory description.
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