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• Soil pH and Fe content significantly af-
fected Cr(VI) migration and transforma-
tion.

• Heterogeneous soil profiles were con-
structed to reflect the vertical migration
of Cr.

• A long-term risk assessments model of Cr
vertical migration was developed.
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Direct discharge of chromium-containing waste water and improper disposal of waste residues in industrial sites may
lead to the vertical migration of metals into aquifers, posing serious threat to soil-groundwater system. The heteroge-
neity in soil profile further aggravates the complexity and unpredictability of this transport process. However, topsoil
was themain focus of most studies. Herein, the vertical transport and transformation of Cr in soils at different depths in
three industrial sites (i.e., Shijiazhuang, Zhuzhou, and Guangzhou) were investigated to delineate Cr transport and
retention characteristics under complex conditions. Regional and vertical differences in soil properties led to the spec-
ificity in Cr migration behaviors among these three sites. Correlation analysis showed that soil pH (r = −0.909, p <
0.05) and Fe content (r=0.949, p < 0.01) were the major controlling factors of Cr(VI) migration and transformation
in aquifers. Furthermore, the soil of Zhuzhou site showed themaximum adsorption capacity for Cr(VI) (0.225mol/kg),
and the strongest reduction ability of Cr(VI) was observed in the Guangzhou soil. Results of model-based long-term
forecast indicated that the Cr(III) concentration in the liquid phase of Guangzhou subsoil could reach 0.08 mol/m3

within 20 years. Heavier rainfall condition exacerbated the contamination due to an increased pollutant flux and
enhanced convection. Specially, Cr was fixed in the topsoil of Zhuzhou site with the formation of PbCrO4 and pre-
sented least vertical migration risk. The conclusions above can provide scientific theoretical guidance for heavy
metal pollution prevention and control in industrial contaminated regions.
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1. Introduction

Soil quality and safety play an important role in maintaining socioeco-
nomic development and ensuring human health (Liu et al., 2022). How-
ever, soil heavy metal pollution is becoming increasingly prominent due
to the rapid industrializationworldwide, especially in industrial areas relat-
ing tomining, metal processing and smelting, fossil fuel combustion, chem-
ical production and industrial emissions (Balkhair, 2017; Parizanganeh
et al., 2010; Qiu et al., 2022). Due to the accumulation of persistent
heavy metals, contaminant concentrations in soils of industrial sites may
by far exceed environmental standards. Furthermore, the range of the pol-
luted soil area would expand with the transport of metals as a function of
rainfall and flow field, and thus endangering soil ecosystem functioning
and threatening the wellness of human beings (Xiao et al., 2015).

Cr is a common toxic soil contaminant (Liang et al., 2021) which is
discharged into the soil environment in large quantities through industrial
processes such as paper making, wood processing (del Real et al., 2020)
and dye production (Tumolo et al., 2020). It has been estimated that 1.29
million tons of Cr are released into the environment per year, resulting in se-
rious soil metal pollution (Coetzee et al., 2020). Cr in soil commonly exists
in its trivalent and hexavalent states, which differ in chemical properties
and mobility (Chen et al., 2018). Cr(III) readily binds to iron oxides and
eventually exists as chromite or silicate minerals in soil (Ao et al., 2022b).
Compared with Cr(III), Cr(VI) in the forms of CrO4

2−, HCrO4
− and Cr2O7

2−

has a stronger transport tendency owing to its high solubility in pore
water (Megremi et al., 2019). Therefore, Cr in different forms displays
quite different environmental behaviors, resulting in substantial differences
in environmental impacts. Cr can transform between the two valence states
duringmigration. This transformation has received less attention (Lov et al.,
2017). However, accurate estimation of the risk of Cr pollution during the
expansion of its pollution range largely depends on the transformation dy-
namics of Cr. These transformation dynamics require detailed investigation.

Metals tend to migrate vertically to deeper horizons rather than being
retained in topsoil under the leakage of sewage, percolation of solid resi-
dues and surface runoff by rainfall (Li et al., 2009; Peng et al., 2022; Zhu
et al., 2019). Cr(VI) tends to be retained by clay layers, and the concentra-
tion of Cr(VI) and total Cr was found to reach itsmaximum at a soil depth of
5– 10 m, which can extend to tens of meters after years of accumulation
(Wang et al., 2020a). Previous studies have verified that Cr can accumulate
extensively in deep soils of rapidly industrializing regions, which would be
a potential environmental problem (Bai et al., 2011; Li et al., 2009; Wu
et al., 2010; Zhu et al., 2019). Moreover, chromium residues can transport
through the vadose zone into the groundwater. The crystalline structure of
Cr(III) bounded to minerals is quite unstable and susceptible to dissolution.
This process can lead to further longitudinal migration of contamination
(Sedlazeck et al., 2017). In the surrounding area of lignite power plants,
the diffusion of fly ash may also cause groundwater pollution of Cr under
the action of local leaching which can be as high as 120 μg·L−1 (Izbicki
et al., 2015). Soil is a highly heterogeneous medium with different struc-
tures and properties at each soil horizon. This results in complex vertical
migration behavior of metals. Currently, most studies on substance migra-
tion remain narrow in focus of homogeneous soils (Balkhair, 2017; Dinter
et al., 2021; Lov et al., 2017; Yang et al., 2022), which hinders to decipher
the mechanism of vertical migration of Cr in porous media. Thus, taking
account of heterogeneous soil profiles with a depth up to 6 m in this
study ismore suited tomodel real scenarios of the vertical migration behav-
ior of metals in soil.

Soil properties such as redox potential, pH and presence of soil minerals
are the key factors affecting the fate of Cr in soils (Choppala et al., 2018). In
general, the adsorption of Cr(VI) on soil increases with lower pH (Jardine
et al., 2013) whereas the retention of Cr(III) in soil increases with increasing
pH (Choppala et al., 2018). Under the condition of pH< 6, Cr(VI) is attached
to cationic colloids such as FeO(OH) and Al2O3 through electrostatic adsorp-
tion or hydrogen bond formation (Liang et al., 2021; Richard and Bourg,
1991). The presence of competing oxygen anions and compounds may
restrict Cr(VI) adsorption (Namiesnik and Rabajczyk, 2012). Additionally,
2

Cr adsorption is positively correlated with the total organic carbon (TOC)
content due to the high positive charge on the cationic colloids (Banks
et al., 2006; Wang et al., 2020b). This can further inhibit Cr mobility
(Zeng et al., 2011). Reductive soil components such as Fe(II) minerals,
sulfide and organic matter can also participate in the chemical reduction
of Cr(VI) (Li et al., 2020), so as to affect the transformation and migration
of Cr. The adsorption, migration, and transformation processes of metals
in soil are highly interlinked and often occur synchronously, further enhanc-
ing the complexity of the coupling mechanism of metal migration and diffu-
sion. The complicated interactions among soil properties may thus hinder
our comprehension of the mechanisms of Cr migration. Representative
industrial sites with characteristic soil properties could allow to develop
excellentmodels to elucidate the process determining the fate of Cr in indus-
trial soils. Furthermore, the regional differences in geological structure and
hydrological characteristics could also lead to different transport and trans-
formation behavior of Cr in soils. Due to the extensive distribution of indus-
trial sites in China, scholars have not conducted systematic studies of Cr
transfer and transformation in different regional soils.

Shijiazhuang, Zhuzhou, and Guangzhou are situated in typical industri-
alized regions of Beijing-Tianjin-Hebei, Changsha-Zhuzhou-Xiangtan, and
Pearl River Delta, respectively, with frequent industrial activities, where
the soils are much more likely to be contaminated with heavy metals than
in other regions. Moreover, the geological structure and soil physicochem-
ical properties of these representative areas exhibited significant regional
differences. Against this background, we collected the soil samples from a
chemical site in Shijiazhuang, a smelting site in Zhuzhou, and a mechanical
processing site in Guangzhou to explore the influence of soil components
and physicochemical properties on Cr migration in view of regional repre-
sentativeness in geohydrological and industry characteristics. Various
depths of soils from three representative industrial sites were selected to
illuminate the migration and transformation processes of Cr in the hetero-
geneous soil profiles. Furthermore, we proposed a modeling method
based on the soil structures of actual sites to simulate vertical migration
and diffusion of Cr in soil profiles and predict the long-term risks of Cr
migration in industrial sites. The specific aims of the study are as follows:
(1) to describe the one-dimensional migration behavior of Cr in soil col-
umns at different soil depths and determine the influence of soil textures;
(2) to reveal the effect of soil structures and properties on Cr(VI) vertical
transport and transformation in different industrial sites; (3) to study the
fate of Cr in soil profile systems and assess the risks associated with long-
term vertical transport of Cr in three industrial sites. Considering the
heterogeneity in soil profiles and the uniqueness of regional geological con-
ditions, we carried out researches on the transport and transformation of Cr
at a deeper and larger scale, which can better reflect the fate of Cr in soils.
This work can provide a scientific theoretical basis for Cr transport and
transformation in soils under realistic scenarios.Moreover, the longitudinal
migration model presented in this study can be used to predict the Cr trans-
port in high-risk industrial areas and offer support for pollution prevention
and remediation of industrial sites.

2. Materials and methods

2.1. Soils and chemicals

Soil samples were collected at two depths (1– 3 m and 4– 6 m) from
industrial sites in Shijiazhuang (H), Zhuzhou (Z) and Guangzhou (G),
China, on account of the property difference in soil profile, contamina-
tion status, and geological conditions in these representative regions.
According to the sampling depth, soil samples were divided into groups
of 1– 3 m and 4– 6 m, which were denoted by the numbers 1 and 2
respectively. The soils in each horizon possess similar physical and
chemical properties. After being mixed evenly, soil samples of the
same depth were air-dried, ground and sieved to obtain soil aggregates
with uniform particle size range (600– 710 μm) (Chen et al., 2019). The
primary physicochemical properties of the soils from the different
regions are presented in Table 1.



Table 1
The physicochemical properties of multi-horizon soils in three regions.

Soilsa Texture Clay
(%)

Sand
(%)

Silt
(%)

pH TOC
(mg/g)

DOC
(mg/kg)

CEC
(cmol/kg)

Al
(mg/g)

Ca
(mg/g)

Fe
(mg/g)

Mn
(mg/g)

Pb
(mg/g)

H1 Silt loam 7.0 18.7 74.3 8.2 30.22 13.95 33.65 36.93 12.57 27.27 0.38 52.11
H2 Sandy loam 1.5 66.9 32.6 8.6 5.76 7.98 3.63 53.07 11.61 27.59 0.27 56.63
Z1 Silt loam 12.2 37.2 50.7 5.1 11.68 96.30 14.91 11.41 5.83 99.49 0.74 2.59E+4
Z2 Silt loam 5.4 31.1 63.5 4.5 28.82 80.63 13.81 13.17 0.69 72.80 0.53 201.71
G1 Silt loam 4.3 43.4 52.4 7.5 29.67 102.18 12.33 13.65 3.67 30.88 0.31 42.63
G2 Sandy loam 3.0 47.2 49.8 7.3 34.35 97.50 9.71 13.87 0.57 33.48 0.24 42.51

a Letter represents different industrial sites (H: Shijiazhuang; Z: Zhuzhou; G: Guangzhou), and number indicates the depth of the soil horizon (1:1– 3 m; 2: 4– 6 m). TOC
indicates total organic carbon, DOC indicates dissolved carbon, and CEC indicates cation exchange capacity.
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A chromium containing solution was prepared by dissolving analytical
grade K2CrO4 powder (Sigma-Aldrich Co., Ltd. D.) in deionized water.
The concentration of Cr in the influent used for column experiments was
set at 10 mg/L, as based on previously reported data (Muthukumaran and
Beulah, 2010).

2.2. Column experiments

Transport experiments were conducted in columns made of borosilicate
glass. The inner diameter of the device was set to 1.2 cm, and the soil filling
height was 8 cm according to a previous study (Chen et al., 2019; Jia et al.,
2017).

In the homogeneous column experiments, different soils were dry-
packed into the columns individually to subsequently simulate the
transport of contaminants in a single soil horizon. Detailed column filling
parameters are shown in Table S1. Peristaltic pumps (BT100-2J, Longer
Precision Pump Co., Ltd., China) were employed to achieve a steady up-
flow field. Before the injection of a Cr-containing solution, the column
was saturated with up to 50 pore volumes (PVs) deionized water with a
flow rate of 0.23 cm/min. A Cr-containing solution with a concentration
of 10mg/Lwas pumped into the column afterwards to simulate the sewage
infiltration process. During the transport, effluents were collected continu-
ously in glass tubes at regular time intervals (one PV each time) via an
automatic fraction collector (BS-100A, Huxi Analytical Instrument Factory
Co., Ltd., China). Each treatment had three replicates. Soil samples were
excavated in two fractions by height for each column as the transport exper-
iment was finished.

Multi-horizon column experiments were further conducted to simulate
the longitudinal soil heterogeneity in industrial sites. Two soils collected
at different depths were filled into the column in sequence according
to their distribution in the soil profiles. For sites in Shijiazhuang and
Guangzhou, the filling height for each horizon was set to 4 cm. It is hard
for Cr tomigrate in soil from Zhuzhou on account of the strong Cr retention
capacity in the upper soil Z1. The height of the upper soil was thus set to
2 cm with a filling height of 6 cm for subsoil Z2 to ensure that the Cr
in the effluent could reach the breakthrough point within a suitable exper-
imental period. The pre-saturation process, settings for experimental
parameters and water samples collection procedure were consistent with
homogeneous columns. As for the solid phase, soils were excavated by
2 cm increments (4 fractions in total for each column) after the transport
experiments.

The collected water samples and soil samples were then used for total
Cr/Cr(VI) concentration analysis. The concentration of Cr(III) was further
calculated as Eq. (1). Total Cr in effluents was detected by means of an
inductively coupled plasma optical emission spectrometer (iCAP PRO,
Thermo Scientific, USA). The concentration of Cr(VI) was measured by a
UV spectrophotometer (WFJ2-7200, Unico (Shanghai) Instruments Co.,
Ltd., China) after chromogenic reaction with 1,5-diphenyl carbonize
(Zhao et al., 2009). Soil samples were digested by HCl-HNO3-H2O2 in a
full-automatic microwave (Topwave, Analytic Jena, Germany) for total Cr
determination (Gaudino et al., 2007). The concentration of Cr(VI) in
soil was determined by the alkaline extraction method (Fu et al., 2017).
For quality control, soil reference material (CRM036) was used and the
3

recoveries of elements were 95.6–103.8 % when compared with the certi-
fied values.

Cr IIIð Þ ¼ Total Cr � Cr VIð Þ (1)

2.3. Numerical modeling

Anumericalmodelwhich can precisely describe Crmigration and trans-
formation during the experiments was constructed, and the calibrated
parameters could be further used for long-term migration. The reactive
transport model was coupled with a saturated water flow model and a sol-
ute transport model in porousmedia, and the specific coupling process is as
described below.

2.3.1. Saturated water flow model
The porousmedia and fluidwere homogenized into a singlemedium for

the modeling simplification. Darcy's law with continuity equation was
applied to describe the water moving in an aquifer.

∂
∂t

ρθð Þ þ ∇∙ ρuð Þ ¼ Qm (2)

In the above equation, ρ (kg/m3) is the fluid density, θ denotes the po-
rositywhich is defined as the fraction of the control volume that is occupied
by pores, u (m/s) is the Darcy flow rate, and Qm (kg/(m3·s)) represents the
mass source (positive) or sink (negative) term.

The velocity field is determined by the pressure gradient, the fluid vis-
cosity, and the structure of the porous medium.

u ¼ � KS

ρg ∇P (3)

where Ks (m/s) is the hydraulic permeability of the porous medium, g
(m2/s) is the vector of gravitational acceleration, and P (Pa) denotes the
pore pressure.

2.3.2. Solute transport model
Combinedwith a convection-dispersion equation that governs the phys-

ical process of solute transport, solute adsorption and redox reactions were
also coupled in the reactive solute transport model. This model could be
written as:

∂ci
∂t

þ ∇∙Ji þ u ∙∇ci ¼ Ri (4)

where ci (mol/m3) is the concentration of the solute species, Ji (mol/(m2·s))
denotes the mass flux diffusive flux vector, u (m/s) is the mass averaged
velocity vector, and Ri (mol/(m3·s)) is the reaction rate expression for the
species.

Ji is defined as follows:

Ji ¼ � Di∇ci (5)

where Di (m2/s) denotes the diffusion coefficient which could be obtained
via tracing experiments (Text S1).



X. Yan et al. Science of the Total Environment 858 (2023) 159799
The Langmuir adsorption isotherm was used to generalize the solute
adsorption process:

cP ¼ cPmax
KLc

1þ KLc
(6)

where cp (mol/kg) is the adsorption capacity at a given time, cpmax (mol/kg)
represents the adsorption capacity, KL (m3/mol) is Langmuir constant, and
c (mol/m3) denotes the solute concentration in the liquid phase at a given
time.

A reaction networkmodelwas constructed to describe the redox process
of Cr(III)/Cr(VI) (Text S2). Input parameters were calibrated according to
the distribution of Cr species in the solid/liquid phase and used for long-
term prediction (Texts S3 and S4).

3. Results and discussion

3.1. Soil properties

The soil properties varied significantly with regions and burial depth
(Table 1). The topsoils in the three sites were silt loam with silt particles
accounting for over 50%, whereas the subsoils in Shijiazhuang and Guang-
zhou were sandy loam with larger soil aggregates. Soils from Shijiazhuang
and Guangzhou had slight alkaline pH values (8.4 ± 0.2 and 7.4 ± 0.1,
respectively), while the soils in Zhuzhou were acidic with a pH value of
4.8 ± 0.3. The DOC concentrations in the topsoil of the three sites were
higher than those in the deep soil, which was probably related to the
greater proportion of silt (Laegdsmand et al., 2005). The soil samples exhib-
ited a wide range of cation exchange capacity (CEC), ranging from
3.63 cmol/kg to 33.65 cmol/kg. The contents of Fe and Mn in Zhuzhou
soil (Fe: 86.15 ± 13.40 mg/g, Mn: 0.64 ± 0.11 mg/g) were about two to
three times of those in Shijiazhuang (Fe: 27.43 ± 0.16 mg/g, Mn: 0.33 ±
0.06 mg/g) and Guangzhou sites (Fe: 32.68 ± 1.30 mg/g, Mn: 0.28 ±
0.04 mg/g). Soils in Shijiazhuang and Guangzhou had a rather low back-
ground Cr value (50– 70 mg/kg), while the Cr content in the Zhuzhou
site was up to 125.1 mg/kg. Background Cr in all sites was mainly present
in the form of stable Cr(III) with poormobility. According to the field inves-
tigation, lead was highly accumulated in the soil of the Zhuzhou site, which
exceeded the national standard by about 40 times. X-ray diffraction (XRD)
Fig. 1. Breakthrough curves of Cr(VI) and Cr(III) in one-dimensional soil columns filled b
(b) and (e) Zhuzhou; (c) and (f) Guangzhou. Each data point represents the mean of th
experimental results and the solid lines are plotted by simulating results with transport

4

analysis showed that the main crystalline components in H1 soil contain
gypsum, hewellite, anglesite, quartz, plumbojarosite and galena (Supple-
mentary Information Fig. S3). Overall, the characteristics of the selected
soil samples differed largely from each other, which may affect the migra-
tion and transformation of Cr.

3.2. Transport and transformation of Cr(VI) in saturated soil columns

3.2.1. Breakthrough curves of Cr(VI) transport
The BTCs of Cr(VI) in columns filled with different soils are shown in

Fig. 1. For soils from Shijiazhuang, C/C0 of Cr(VI) rapidly reached the
peak after 4 PVs in both soil horizons (Fig. 1a). In spite of 1 PV delay in
the breakthrough point, the BTCs of Cr(VI) in the subsoil achieved a stable
breakthrough platform faster than that in the topsoil. This may be due to
the high dispersion coefficient of H1 soil (D = 7.84 cm2/h), which leads
to a stronger solute diffusion effect during themigration process. Compared
with the highmobility of Cr(VI) in the Shijiazhuang site, the transport of Cr
in the Zhuzhou site was obviously inhibited. During the experiment, up to
120 PVs of Cr(VI) solution were injected into the soil column with no Cr
(VI) detected in the effluent of the Z1 soil column. Cr(VI) in Z2 effluent
was detected after 80 PVs, and the maximum C/C0 value reached 64 %
after 120 PVs. The results above implied that Cr had a greater migration
tendency in the subsoil of Zhuzhou site than in the topsoil. A similar pattern
of soil horizon differences in Crmobilitywas also verified in the Guangzhou
site. As shown in Fig. 1c, the transport and diffusion of Cr(VI) in the G2 soil
column slowed down over time. Compared to G2, the breakthrough point
of G1 was about 4 PVs earlier and peaked at approximately 7 PVs, which
demonstrated the faster transport and diffusion of Cr(VI) in G1. In general,
Cr(VI) in Shijiazhuang and Guangzhou samples had a greater mobility than
in Zhuzhou soil.

The observed differences in themobility of Cr(VI) can be ascribed to the
soil properties. Cr has a stronger mobility in the soil of the Shijiazhuang
site, which may be related to the alkaline soil. On the one hand, the gener-
ated negative charges on the soil surface under alkaline conditions could
enhance the electrostatic repulsion between Cr(VI) and the soil (Jardine
et al., 2013; Xie et al., 2015). On the other hand, an alkaline soil environ-
ment would inhibit the formation of hydrogen bonds between HCrO4

−

and FeO(OH)/Al2O3, thus resulting in less specific adsorption (Liang
et al., 2021; Richard and Bourg, 1991). This is also due to the mechanical
y soils from different industrial sites with different depths: (a) and (d) Shijiazhuang;
ree replicates with standard errors at each time point. The symbols represent the
model.
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composition of Shijiazhuang soil. The subsoil in Shijiazhuang consisted
mainly of coarse-grained sand (Table 1) with a high connectivity density,
which is conducive to the formation of preferential flow and makes solute
transport in soil less impeded (Pei et al., 2021). Besides, studies have
shown that TOC can facilitate the adsorption of Cr(VI) on Fe and Al oxides
(Choppala et al., 2018; Tumolo et al., 2020). DOC in soil solution can also
act as a carrier of Cr through complexation, ultimately leading to a large
number of Cr being retained in soils (Quenea et al., 2009). With less TOC
and more DOC, the conditions are more favorable for Cr(VI) migration in
G1 (TOC: 29.67 mg/g, DOC: 102.18 mg/kg) than in G2 (TOC: 34.35 mg/g,
DOC: 97.50 mg/kg). Moreover, the higher Fe content in G2 (33.48 mg/L)
can provide more sites for Cr(VI) adsorption (Khaodhiar et al., 2000).
This also contributes to the higher maximum adsorption capacity of G2
(0.009 mol/kg) than that of G1 (0.001 mol/kg). The migration ability of
Cr(VI) was strongly inhibited in Zhuzhou soil. In this case, the surface of
the Fe and Al oxides became positively charged in the acidic environment,
hence promoting the adsorption of Cr(VI) anions. Similarly, the Fe content
in soils from Zhuzhou (72.80– 99.49 mg/g) was significantly higher than
the Fe content in soils from other regions (27.27– 33.48 mg/g), which pro-
vided more specific adsorption sites for Cr(VI). An abnormal inhibition of
the transport of Cr(VI) in Z1 with the higher pH value and decreased TOC
content compared to Z2 was observed, which could be attributed to the
formation of insoluble chromate PbCrO4 (Liang et al., 2021). It is known
that Pb2+ in the liquid phase reacts preferentially with CrO4

2− due to the
low solubility constant (ksp = 2.8 × 10−13 mol2/L2) of PbCrO4. PbCrO4

precipitation can also be formed as long as the dissolved Pb2+ reaches a
concentration of 1.47× 10−12 mol/L. According to a previous site survey,
high concentrations of Pb were detected in Z1 soil, which made it possible
to form PbCrO4 precipitation (Table 1).

To verify our hypothesis, XRD and SEM-EDS analyses were performed.
The peak for PbSO4 in the Z1 sample after column experimentswas reduced
compared with the peak in the original samples, indicating the dissolution
of PbSO4 during migration. Also, the observation of a PbCrO4 peak verified
the formation of PbCrO4 precipitation (Fig. S3). SEM-EDS results further
provided direct evidence to explain the mechanism of Cr retention in soil.
As shown in Figs. S4 and S5, soil minerals mostly formed irregularly shaped
grains composed of octahedral crystals, where PbSO4 partially dissolved.
Moreover, the chemical composition of the analyzed particles showed
that Pb, S, O and Cr co-existed in the soil grains (Fig. S5), and their ratios
corresponded to the elemental composition of PbCrO4 and PbSO4. Thus,
Fig. 2. The retention increments of Cr(VI) and Cr(III) over time during column experimen
(a) and (d) Shijiazhuang; (b) and (e) Zhuzhou; (c) and (f) Guangzhou.
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it is likely that the dissolution process of PbSO4 was accompanied by the
formation of PbCrO4. This observation further confirmed our hypothesis
that the formation of PbCrO4 impeded Cr(VI) migration.

3.2.2. REDOX processes of Cr during transport
The amount of Cr(III) in the effluents was also detected so as to describe

the reduction process during the migration of Cr(VI). The BTCs of Cr(III) in
different soils also showed great differences. Generally, the reduction abil-
ity of the soils for Cr(VI) followed the order of Guangzhou> Shijiazhuang>
Zhuzhou. For the Shijiazhuang site, the effluent concentration of Cr(III) in
H1 was significantly higher than that in H2. Effluent Cr(III) concentrations
in two soils went through a gradual increase to a maximum concentration
at 4– 5 PVs, followed by a stable decline over time (Fig. 1d). No Cr(III)
was detected in the effluent of Z1 during the experiment, while Cr(III) in
Z2 soil column was detected as of approximately 70 PVs (Fig. 1e). In the
site of Guangzhou, more Cr(III) flowed out with effluents in G1 in compar-
ison to G2. The concentration of Cr(III) in G1 effluent increased rapidly at
0– 6 PVs, and then began to decline after 6 PVs. Similar to the pattern of
Cr(VI), the concentration of Cr(III) in G2 effluent slowly climbed from 6
PV until the end of the experiment (Fig. 1f).

To further explain the change of the Cr(III) concentration in effluent, we
calculated the retention of Cr(VI) and Cr(III) in the solid phase based on the
constructed reactive solute transport model (Fig. 2). As can be seen in
Figs. 1 and 2, the accumulation of Cr(VI)/Cr(III) in soil was highly associ-
ated with their concentration in the liquid phase given that an equilibrium
adsorption model was coupled. It can be concluded that the total Cr reten-
tion in the Zhuzhou sitewas significantly higher than in the Guangzhou and
Shijiazhuang sites. Fe oxides can effectively adsorb Cr(VI) in pore water,
thus resulting in the retention of Cr(VI) in the solid phase (Johnston and
Chrysochoou, 2014). Lower Fe contents in Shijiazhuang soil contributed
to the decreased adsorption of Cr(VI) on the specific adsorption sites
(Table 1), which can be used to explain the lowest amount of retained
Cr(VI) in Shijiazhuang soil. As shown in Fig. 1a and d, changes of the
Cr(III) concentration in the effluentwere into correspondencewith the pen-
etration process of Cr(VI). Before Cr(VI) reached the breakthrough plateau,
more reactants were available for the reduction process, which led to an
increase of the Cr(III) concentration. When the retained Cr(VI) reached
the maximum adsorption capacity of the soil, the concentration of Cr(VI)
in the liquid phase tended to stabilize. However, the reduction of Cr(VI)
could be inhibited with Fe(II) and organic matter continuously being
ts simulated by transport model in different industrial sites with various soil depths:
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washed out. With the on-going leaching of Cr(III) in the liquid phase, the
concentration gradient between soil solutions and soil particles led to the
re-dissolution of adsorbed Cr(III) in the solid phase, further causing a
decrease in solid accumulation (Fig. 2a and d). The retained Cr(III) in Z2
was significantly higher than in Z1 (Fig. 2b and e), indicating that the
subsoil had a greater reduction capacity for Cr(VI) in Zhuzhou. In an acidic
environment, Cr(VI) presents a strong oxidation capacity with a high redox
potential (Dong et al., 2020). Therefore, Cr(VI) is more easily reduced to
Cr(III) in Z2 with a lower pH. As discussed in Section 3.2.1, once injected
into the soil column, dissolved Cr(VI) could co-precipitate with Pb to stable
PbCrO4, which inhibited the reaction with reducing substances (Fe, DOC,
etc.) in the topsoil. In addition, Cr(III) in Z2 could readily combine with
hydroxide and sulphate to form insoluble chelates or react with OM and
soil colloids to form precipitates, thus remaining at a higher concentration
in soils (Ao et al., 2022a). As for the Guangzhou site, the distribution of
Cr(III) between the solid-liquid phase for G1 exhibited the same trend as in
the Shijiazhuang site. In spite of the lower amount of Cr(III) in the effluent,
more Cr(III) was retained in G2 soil compared to G1, suggesting stronger
Cr(VI) reduction in the subsoil (Fig. 2f). This can be explained by the high
organic matter content in G2 soil, which facilitates the transfer of electrons
from biometabolites to Cr(VI) by drivingmicrobial growth, and further pro-
moting the redox transformation of Cr(VI) (Thacher et al., 2015). Besides,
the higher adsorption capacity of Cr(III) in G2 soil (0.039 mol/kg) also
contributed to this accumulation in the solid phase.

3.2.3. Correlation analysis between transport parameters and control factors
In order to identify the main controlling factors of Cr(VI) migration and

transformation in soil, correlation analysis was conducted on typical migra-
tion and transformation parameters and representative soil physicochemi-
cal properties. As shown in Fig. 3, Fe content and pH value were the
major factors controlling the fate of Cr(VI). The Fe content in soil signifi-
cantly positively impacted the adsorption and reduction process of Cr(VI)
(r = 0.949, p < 0.01). This result was consistent with the findings of
Yang et al. (2022) that Fe minerals played an important role in Cr(VI) re-
duction. Soil pH could control the transport behavior of Cr by affecting
soil chemical and mineralogical properties and the solubility of natural
OM and competing oxygen anions (Ao et al., 2022a; Xu et al., 2020).
Analytical results showed that the pH was negatively correlated with the
Fig. 3. Analysis of the correlation between transport parameters and soil
physicochemical properties (RCr(III): retardation factor of Cr(III) in soil columns;
RCr(VI): Retardation factor of Cr(VI) in soil columns; QCr(III): maximum adsorption
of Cr(III) in soil columns; QCr(VI): maximum adsorption of Cr(VI) in soil columns;
Rreduction: average reduction rate of Cr(VI) during transport).
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adsorption of Cr(VI) (r=−0.909, p < 0.05), which is in line with previous
studies (Rouhaninezhad et al., 2020; Yolcubal and Akyol, 2007). With the
increase of pH, the adsorption of Cr(VI) by soil mineral particles showed
a decreasing trend. In terms of other factors, the adsorption capacity of Cr
increases with CEC and clay content (r = 0.867, p < 0.05). Additionally,
TOC and Mn content also have a slight effect on the redox process. The
reduction rate of Cr(VI) was positively correlated with the TOC content, in-
dicating the potential impact of organicmatter on Cr(VI) reduction. Yet, the
Mn content was negatively correlated with the reduction rate of Cr(VI)
owing to its oxidizability (Dai et al., 2011). It has been shown that Mn ox-
ides can substantially promote Cr(III) oxidation through internal electron
transfer (Hausladen and Fendorf, 2017).

3.3. Long-term simulation and risk evaluation of Cr(VI) transport in soil profile

In order to simulate the vertical migration and transformation process of
Cr(VI) in vertical heterogeneous media, additional migration experiments
were conducted in multi-horizon soil systems. Based on the results, we fur-
ther optimized the migration model to achieve an accurate simulation in
soil profile. According to Figs. 4 and S6, the fitted values of the Cr(VI) con-
centration in the effluent and in the solid phase obtained from themigration
model agreed reasonably with the measured experimental results in this
study. The migration and transformation of Cr(VI) in the heterogeneous
soil profile of three sites are similar to the experimental results of homoge-
neous soils. Cr(VI) still showed the strongest mobility and oxidizing capac-
ity in the Shijiazhuang site (Fig. 4a and c). Higher OM content and lower pH
promoted the adsorption of Cr(VI) by Fe and Al oxides (Choppala et al.,
2018), which can explain the increase of Cr(VI) retention in the topsoil
(Fig. S6a). Although the adsorption of Cr(VI) reached an equilibrium, the
retention of Cr(III) in the solid phase presented an upward trend. This
phenomenon mainly stems from the fact that the concentrations of Fe(II)
and OM in the model remain constant, thus providing a stable source of re-
duction reactants at the site scale. In addition, the generated Cr(III) would
be retained in the solid phase due to the high adsorption capacity of the
soils (Table 2), resulting in the reduction of the reaction products in the
soil solution, which further leads to the progress of the reduction reactions.
In the Zhuzhou site, Cr(VI) was detected in the effluent after 850 PVs, while
BTCs did not reach the breakthrough plateau ultimately (Fig. 4b), which
corresponded to large Cr(VI) retention in the soil near the column inlet
(Fig. S6b). In addition, no Cr(III) was basically tested in the effluent
(Fig. 4d). From these results, it is clear that Cr(VI) reduction hardly took
place and Cr migration was hindered to some extent. Compared with
Fig. 1c, the Cr(VI) transport rate in stratified soil columns of the Guangzhou
site is in between the transport rates in homogeneous G1 and G2 soil
columns (Fig. 4a). Concentrations of Cr(III) in the effluent were basically
elevated with the increase of the Cr(VI) concentration due to the progress
of the reduction reaction (Fig. 4c).

On account of the site migration parameters obtained (Table 2), the
long-termmigration risk of Cr(VI) in Shijiazhuang, Zhuzhou andGuangzhou
sites was predicted for a period of 20 years under the condition of Cr resi-
dues leaching (Text S4). The dynamic distribution of the Cr(VI) and Cr(III)
contents in the solid-liquid phase is shown in Fig. 5. From the long-term
prediction results of the Shijiazhuang site, the distribution of Cr(VI) in the
solid-liquid phase reached equilibrium under heavy rainfall conditions
within 10 years and the pollution could spread to depths of 6 m. This is
because the high sand content in Shijiazhuang soil creates proper conditions
for vertical migration of Cr to the deep soil. Moreover, the Cr(VI) concentra-
tion in the liquid phase could reach 10 ppm within the simulation period
and thus poses a threat to the subsoil and the groundwater. Compared
with the heavy rainfall scenario, the leaching of Cr(VI) under a scenario
of weak rainfall caused less hazard to the soil and the groundwater due
to lower Cr(VI) infiltration into the system (Fig. 5). Besides, the smaller
Darcy velocity in weak rainfall conditions would weaken solute convection
and diffusion (Akhtar et al., 2011). As for Cr(III), the concentration distribu-
tion in the solid/liquid phases exhibited the same pattern under the two
boundary conditions. It is worth noting that the total amount of Cr(III)



Fig. 4. Breakthrough curves of Cr(VI) and Cr(III) in the soil profile (Shijiazhuang, Zhuzhou, and Guangzhou). Each data point represents the mean of three replicates with
standard errors at each time point. The symbols represent the experimental results and the solid lines are plotted by simulating results withmultidimensional transportmodel.
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retained in the topsoil was higher with the leaching effect of weak rainfall
than that under the condition of heavy rainfall within 20 years. The result
may be attributed to a longer contact time betweenCr(VI) and reducing sub-
stances (OM, Fe and Mn oxides) in the soil solution under weak rainfall, so
that more reduction products of Cr(III) were formed. Cr(VI) leakage was
immobilized in the topsoil under both rainfall conditions in the Zhuzhou
site (Fig. 5) due to PbCrO4 precipitation, thus posing a low degree of diffu-
sional risk. Similar to Shijiazhuang, rainfall intensity also produced a signif-
icant effect on the vertical migration risk posed by Cr(VI) in the Guangzhou
site (Fig. 5), which is consistent with the studies of Pedrot et al. (2008) and
Wei et al. (2021). Rainfall could control the processes and diffusion on
pollutant transport in soil (Gao et al., 2004). As the maximum adsorption
capacity of Cr(VI) in G1 (9E−4 mol/kg) was far smaller than that in G2
(9E−3 mol/kg), Cr(VI) was mostly accumulated in the deep soil with a con-
centration up to 2.5E−4 mol/kg within 20 years. As a whole, the soil Cr(VI)
pollution posed a high ecology risk in Guangzhou site. Besides, the anaero-
bic environment with low Eh promoting the conversion of Cr(VI) to Cr(III)
Table 2
Fitted parameters of Cr transport and transformation in multi-horizon columns.

Parametersa H1 H2 Z1 Z2 G1 G2

k1 (L/(mol·s)) 2 2 5 5 4 4.5
k2 (L/(mol·s)) 1 1 0.5 0.5 0.5 0.5
k3 (L/(mol·s)) 0.2 0.2 0.2 0.2 0.2 0.2
KL Cr(VI) (m3/mol) 1.5 1.4 5 8 0.9 0.4
cpmax Cr(VI) (mol/kg) 6E−4 5.5E−4 0.4 5E−2 9E−4 9E−3
KL Cr(III) (m3/mol) 2 1.8 1 0.9 1.5 0.45
cpmax Cr(III) (mol/kg) 1.9E−3 1.41E−3 0.5 0.1 1.5E−2 2.1E−2

a k1 is the rate constant of Cr(VI) consumption by Fe(II) for Cr(III) generation; k2
is the rate constant of Cr(VI) consumption by OrgI for Cr(III) generation; k3 is the
rate of Cr(III) consumption for Cr(VI) generation; KL is Langmuir constant; cpmax

represents the adsorption capacity.
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and decreasing the effective diffusion of Cr (Zhang and Lin, 2020). The
strongest reduction ability of Cr(VI) was observed in the Guangzhou soil,
which gradually retained increasing amounts of Cr(III) over time. Predic-
tion results demonstrated that the Cr(III) concentration in the liquid phase
of the subsoil could reach 0.08 mol/m3 within 20 years. A large amount
of Cr(VI) was reduced by reductive materials, further causing the decrease
of the Cr(VI) content in the liquid phase of the subsoil. The speciation of
Cr plays an important part in regulating the transport behavior of Cr(VI).
Hence, it can be inferred that morphological transformation of Cr(VI)
should also be taken into account when predicting Cr(VI) migration risk.

4. Conclusion

In this study, column experiments were conducted on themigration and
transformation of Cr(VI) in different soil horizons and sites. The multi-
process couplingmodel of Cr transformation andmigrationwas established
to simulate the fate of Cr(VI) in homogeneous and longitudinal heterogenic
soil systems. The alkaline soils in Shijiazhuang provided a suitable environ-
ment for Cr(VI) transport in both soil horizons. In Zhuzhou site, a large
amount of Cr(VI) was retained in the topsoil due to the formation of
PbCrO4. Differences in Cr mobility between soil horizons were observed
in the Guangzhou site. The transport of Cr(VI) was faster in the Guangzhou
upper soil, while the retarding ability of Cr(VI) in the subsoil is strong
owing to high TOC and Fe content. Through correlation analysis between
key soil properties and model parameters, it was found that pH and Fe con-
tent were the main controlling factors on Cr(VI) migration and transforma-
tion. Long-term prediction of the site conceptual model showed that the
ecological risk of Cr(VI) follows the order of Guangzhou > Shijiazhuang >
Zhuzhou. In the simulation process, rainfall intensity significantly affected
the migration and diffusion behavior of Cr(VI). Heavy rainfall would bring
greater vertical transport risk, while weak rainfall conditions were more
conducive to the reduction of Cr(VI). Overall, the outcome of this work



Fig. 5. The long-term simulation results of Cr(VI) transport in the Shijiazhuang, Zhuzhou, and Guangzhou sites for a period of 20 years under heavy and light rainfall
conditions. The concentrations of Cr were expressed as mol/kg in the solid phase and mol/m3 in the liquid phase.
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contributes to comprehensively understanding of the environmental fate
and transport of Cr at a wider vertical scale and provides evidence-based
strategies for the remediation of industrial sites. Specially, the longitudinal
heterogeneity of the soil was considered in the model construction,
which could produce a more precise prediction for the long-term risks in
8

Cr-contaminated sites. Besides, the good match between experimental
results and simulated BTCs of Cr indicates successful applicability of the
transport model for the three sites. Furthermore, the horizontal migration
of pollutants caused by groundwater will also lead to the diffusion of
heavy metal pollution in soils. Further studies are recommended to focus
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on the transport and ecological risk of Crmigration under the complex con-
ditions of multi-dimension and multi-medium in the actual sites.
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