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Abstract 

In this paper we improve on the incomplete oblique projections (IOP) method introduced previously by 

the authors for solving inconsistent linear systems, when applied to image reconstruction problems. That 

method uses IOP onto the set of solutions of the augmented system Ax — r= b, and converges to a weighted 

least-squares solution of the system Ax=b. In image reconstruction problems, systems are usually 

inconsistent and very often rank-deficient because of the underlying discretized model. Here we have 

considered a regularized least-squares objective function that can be used in many ways such as 

incorporating blobs or nearest-neighbor interactions among adjacent pixels, aiming at smoothing the 

image. Thus, the oblique incomplete projections algorithm has been modified for solving this regularized 

model. The theoretical properties of the new algorithm are analyzed and numerical experiments are 

presented showing that the new approach improves the quality of the reconstructed images. 

Keywords: least-squares problems; minimum norm solution; regularization; image reconstruction; computerized 

tomography; incomplete projections 

  

1. Introduction 

Large and sparse systems of linear equations arise in many important applications (Censor and 

Zenios, 1997), such as radiation therapy treatment planning, computational mechanics, 

and optimization, and in image processing problems such as electromagnetic geotomography 

(Popa and Zdunek, 2004). In practice, most problems arising from tomographic image 

reconstructions are inconsistent and of deficient rank. 

Many problems in the field of tomographic image reconstruction are modeled by the linear 

least-squares problem, that is: find x* e R” such that 

min || 4x — bl\p, ; (1) 
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where A is an m Xx n matrix, b € R”, ||.||p) denotes a weighted norm, and D,,, is a positive-definite 
matrix. 

A widely used algorithm in Computerized Tomography is ART (Algebraic Reconstruction 

Technique), whose origin goes back to Kaczmarz (Kaczmarz, 1937; Censor and Zenios, 1997), 

although it is known that in order to obtain convergence in the inconsistent case it is necessary to 

use an underrelaxation parameter that must tend to zero. Popa has developed an extension of ART 

called KERP (Popa and Zdunek, 2004) that converges for inconsistent systems, and more recently 

in Popa and Zdunek (2005) the authors showed its efficiency in the case of rank-deficient systems. 

For the classic simultaneous projection algorithms (Censor and Zenios, 1997) for inconsistent 

problems (Landweber, 1951), CAV (Censor et al., 2001), and the more general class of the diagonal 

weighting (DWE) algorithms (Censor and Elfving, 2002), in order to prove convergence it is 

necessary to choose the relaxation parameter in an interval that depends on the largest eigenvalue 

of A‘ A (Byrne, 2002; Jiang and Wang, 2003). Within the framework of the Projected Aggregation 

Methods (PAM) (Garcia Palomares, 1993), we have developed acceleration schemes based on 

projecting the search directions onto the aggregated hyperplanes, with excellent results in both 

consistent and inconsistent systems (Scolnik et al., 2002a, 2008; Echebest et al., 2005). 

In Scolnik et al. (2008), we introduced the IOP algorithm for solving linear least-squares 

problems that uses a scheme of incomplete oblique projections (IOP) onto the solution set of the 

augmented system Ax—r=b, and converges to a weighted least-squares solution of the system 

Ax = b when rank (4) = n. Also, we extended those results in order to compute the weighted least- 

squares solution of inconsistent and rank-deficient systems (Scolnik et al., 2006), proving 

convergence to the minimum norm solution. 

The tomographic image reconstruction problems are such that the limitation of the range of 

rays makes the model underdetermined, the discretized linear system is rank-deficient and ill- 

conditioned, the nullspace is non-trivial, and the minimal norm least-squares solution may be far 

away from the true image. When methods that converge to the minimum norm solution are used, 

in order to recover missing components several authors considered a regularized weighted least- 

squares problem (Bjork, 1996; Tikhonov, 1963; Popa and Zdunek, 2005): 

Ax— bl, + BR(x), (2)     
min 
xER 

where D,, is a matrix of weights of data, f is a regularization parameter, and R(x) is a function 

that enforces smoothness in the image. 

The term R(x) can be defined in many forms. In particular, the Tikhonov regularization 

(Tikhonov, 1963; Hansen, 1998) in its standard form is defined by a square of discrete smoothing 

norm ||M-x||*, where M (called the regularization operator) is typically either an identity or a 
diagonal matrix that defines a norm or semi-norm on the solution. The regularization parameter 

f is a positive constant chosen to control the size of the solution vector. As explained for instance 

by Popa and Zdunek (2005), and Pralat and Zdunek (2005), R(x) can be interpreted in terms of 

the Gibbs prior (Lange, 1990) that is used in statistical image reconstruction. Koltracht et al. 

(1990) proved that the image components in N(4) have a pattern of vertical stripes, and this is 

visible in the image of minimal-norm solution as vertical smearing from inhomogeneous features. 

This effect can be partially reduced if interactions among neighboring pixels are incorporated into 

the reconstruction problem. This idea leads to define the discrete smoothing norm in the 
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regularized function (see Popa and Zdunek, 2005; Lange, 1990) as R(x) = 2U(x), where 

U(x) = >. >. Wi V (x; — Xi, 9), 

j=l 1ES; 

where S; is a set of indices of the nearest neighborhood of pixel j, w;; a factor of weight, and 

V(x;— x; 0) a potential function, with 6 being a scaling parameter. There are several proposals 
-— ¥.\ 2 

aimed at the same objective (Lange, 1990), and among them we chose V(x; — x;,6) = (22) 

This gives rise to the problem 

1 2 min lx fp, +57 Mx, 6) 
where the matrix M is symmetric and semi-positive definite, depending only on the weights w; and 

the S; sets of indices of the nearest neighborhood of each pixel j. This model can be described by 

  mins ||4x— bllp, +5 [IMP alls, (4) 
considering the spectral decomposition of M = UTAU = M'/2" M'/2, and the diagonal D, with a 

4 
number a = . of non-zero elements. 

In this paper we have replaced in representation (3) the minimization of the convex function 

x*Mx by the minimization of the D, norm of its gradient, || Mx|l3, because they are theoretically 
equivalent. Thus, the regularized least-squares model we consider is 

mins | Ax — dlp, +5 [Mel (5) 
where D,, is the matrix defined previously. 

The regularization parameter f in (2) or the diagonal of D, in (5) controls the degree of 

regularization applied to the original problem, although it is not usually known beforehand. 

Depending on the problem and the solver being used, several methods can be used to choose 

an appropiate regularization parameter. Two such methods are the generalized cross-validation 

(GCV) criterion (Wahba, 1977, 1990; Bjork, 1996) and the L-curve criterion (Hansen and 

O’Leary, 1993; Hansen, 1998). 

In this paper, we present a version of the IOP algorithm (Scolnik et al., 2006) for solving 

regularized least-squares problems (5). This algorithm, called regularized IOP (RIOP), adopts the 

basic IOP scheme described below as Algorithm 1, but allowing many possibilities for defining 

both the regularization matrix M and the norms D,,, to deal with different sorts of problems. In 

order to solve (5), we define two convex sets in the (2n+m)-dimensional space R?"*”, denoting 

by [u; v] the vertical concatenation of u € KR”, with ve RM, 

P=Ap:p=|xr],x € Rr = [r1;r2] € R”"”, such that Ax — r) = b, Mx — rp = 0}, and 

(6) 

Q={4q:q=[x;0], xe ROE RF, (7) 
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d(p,q) = lp — ql| ,, for all pe 4%, q € 2. Dis a diagonal matrix of order 2n+m, whose n first 
elements are 1's, the next m coincide with those of D,,, and the last n elements are those of D,,. 

By means of a direct application of the Karush-Kuhn—Tucker (KKT) conditions (Luenberger, 

1986) to the problem 

minflp-glp:foral pe? and ge 2), (8) 

it is possible to prove (see Scolnik et al., 2008) that this is equivalent to (5). This observation led us 

to modify the IOP algorithm for solving (5), applying an alternate projections scheme between the 

sets 4 and 2, as in the original development in Scolnik et al. (2008). This procedure is similar to 

the one of Csiszar and Tusnady (1984), but replacing the computation of the exact projections 

onto FY by suitable incomplete or approximate projections, according to the following basic 

scheme: 

Algorithm 1 (Basic Alternating Scheme) | 

Iterative step: Given p* = [x*;14] € 9, q =[x*;0] € 2, find pr! = [1:14] e 2 as 
ph! = arg min{]|p — ap; pe), then define pel = pk, and g‘t! € 2 means of q 

[x**!; 0] = arg min{||[p*"! — allh; ge 2). 
In order to compute the incomplete projections onto Y we apply our ACCIM algorithm 

(Scolnik et al., 2002b, 2008). It is convenient to point out, for clarifying the applicability of 

ACCIM within the new approach, that given a consistent system Ay = b, the sequence fy} 

generated by ACCIM from the initial point y converges to the solution p* of Ay = b, satisfying 

y" =arg min ([|y* lo, y" ER”: Ay* =D). 
The sequence {y*} is Fejér monotone with respect to the solution set of 4y = b (Scolnik et al., 

2002b). This iterative algorithm uses simultaneous projections onto the hyperplanes defined by the 

system of equations of Y, and is very efficient for solving consistent problems and is convenient 

for computing approximate projections with some required properties, as explained in Scolnik 

et al. (2008). In this paper, and in a more general context than the one in Tikhonov (1963), the 

L-curve is used to determine the feasible values of the regularization parameter for all problems. 

In the following sections we will present the RIOP algorithm, the criterion for accepting 

approximate projections, together with some related results needed for the corresponding 

convergence theory. 

The test problems are two simulated reconstruction problems in borehole electromagnetic 

geotomography appearing in Popa and Zdunek (2005), and two in computerized tomography 

from SNARK (Browne et al., 1993). 

a 

2. Projection algorithms 

Hereafter ||x|| will denote the Euclidean norm of x € R”, and ||x||, the norm induced by a positive- 
definite matrix D. We will also assume that each row of 4 has a Euclidean norm equal to 1. We 

will use the notation e; for the i-th column of Z,, where the symbol Z, denotes the identity matrix in 

Rx" and the upper index T for the transpose of a matrix. Given W € ¥"*", we will denote by w/ 

the i- th row of W and by R(W) the subspace spanned by the columns of W, Py and Py, being the 

orthogonal and the oblique projectors onto R(W). We will use the notation R( Ww) for the 
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D-orthogonal subspace to R(W), and by P4, the corresponding projector. In particular, if 

W = lv] € R"*!, we will use P2.. We denote a diagonal matrix of order n by D = diag(d), where 
d=(d,, ..., dy). 

Let us assume we have a compatible system Ay = b, 4 € R”", m>n, b ER”. For each 
constraint of Ay =, we will denote by L; = [y € R": a! y =b5), ri(y) =a! y —b;, and the 
oblique projection of y onto L; by 

Di.) — ri(y) 15 
PO) pag? a 0) 

3. IOP algorithm for the regularized least-squares problem 

In order to solve the regularized weighted least-squares problem (5), we consider its equivalence 

with (8). Hence, we will apply the alternate projections scheme (1) between the sets Y and 2, 

defining the conditions for accepting an incomplete or an approximate projection onto 4. 

We consider a diagonal weighting matrix D € R*Y*", where N = 2n+m, such that 

L 0 0 
D=[0 D, O |, (10) 

0 O D, 

and the sets Y and 2 as described in (6) and (7). The diagonal matrices D,, and D, are defined in 

such a way that it allows to apply weights to the residuals r, and rp. 

Given p* € Y, and its projection q“ onto 2, we will denote by p2. (q!) the projection of q“ onto 
24, which is the solution to the problem 

min{\|p — lp: pe 7). (11) 
Given q” € 2, instead of defining p“'! = p2,(qº), we define pº! = p*"! 

point obtained by means of the incomplete resolution of problem (11). 

where pftleZPisa 

Remark 1 Algorithm 1 based on exact projections is always convergent (Byrne and Censor, 2001), 

but its computational cost is high. 

We have presented in Scolnik et al. (2008) the theory of inexact projections aimed at obtaining 

similar convergence properties but with a much lower computational cost. 

In order to define the inexact projection pt'! = p2. (9º), we consider the following: 

Definition 1 Given an approximation p = [z;u] of p2.(g'), where ze RN, u= [nto] ER 
satisfy 8; = Az — p, — b and sy = Mz — w, we will denote by P(p) = [z;u +] the solution of the 
system Az — ri =b, Mz —r2 = 0, such that [ry3r2] = w+ s = [wy +513 wy + 59]. 

Aiming at obtaining properties of the sequence {p*} generated by the new algorithm that 

guarantees convergence to the solution of (8), we establish an “acceptance condition” that an 

approximation p = [z; u] of p2. (q*) must satisfy. 
When applying ACCIM for obtaining the approximate projection p**! we generate, according 

to Scolnik et al. (2002a, 2008), a sequence {f/}, with initial point [¢*, 0], that is Fejér monotone 
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with respect to p?.,(q*). That is, it satisfies ||p/*! — p?..(q*) 5 < |p' — prata) 5. Furthermore, 
Ni 2 Ni 2 

if pein’) LP, ||d! — plata po < 1197 = pe. 
Now, considering that the sequence generated by ACCIM is Fejér monotone, we can define in 

an easier way than in Scolnik et al. (2006, 2008) the following condition. 

      

Definition 2. Acceptance Condition. An approximation p' = [7/;u'] of pb. (g'), using ACCIM, is 
acceptable if 

b'- PI <olb' =p with 0< 7 <1 (12)         

holds. 

Remark 2. In particular, p = p®.,(q‘) satisfies (12). 
We have proved in Lemma 1 in Scolnik et al. (2008) that using the ACCIM Algorithm, and taking 

into account the properties of the generated sequence, it is possible to find aj* > 0, such that [2"; "| 

satisfies (12). In particular, if p?,.(q*) = p*, then pk = pl. 
In order to describe the alternate incomplete projections algorithm, we define the 

a imati HI of p?. (g*), by the followi pproximation pi" of p;,.. (q), by the following. 

Definition 3. 

DP =P6), fp =p] satisfies (12). (13) 

We present in the following a practical algorithm to solve (8). 

Algorithm 2. Regularized Incomplete Oblique Projections (RIOP) 

Initialization: Given 0 < y < 1/2, a positive-definite diagonal matrix D,, of order m, a matrix 

D, of order n, and pº = [x9; 19], set 1% = [4% — bh; Mx%], 9 =[x%,0] € 2 and k — 0. 
Iterative Step: Given p* = [x*;r*] and gé = [x*;0]. 

e Calculate p*, an approximation of p?.,(q*) satisfying (12), applying ACCIM as follows. define 

y? = [2%; 0] = g* the initial point. 
e For solving Ax—r,=b, Mx—r3=0 iterate until finding y! =|[2"; 4”, with uí = [u, 7; 1] € 
NN such that sy! = Az! — 1 —b and s! = M2! — >! satisfy (12), that is 

sI)», +lls21     

2 k 2 k 2 . : 2 

de SAI, ll, Si)» vien S,= ll (14) 
e Define po = 1) with x= Y, andr =p) +. 
e Define q! = [x**1,0] e 2. 
ok —k+l. 

Aiming at solving rank-deficient problems as in Scolnik et al. (2006), we assume in algorithm 2 

that the parameter y is restricted to 0<y<1/2. This hypothesis allowed us to extend in Scolnik 

et al. (2006) the convergence results given in Lemma 4 of Scolnik et al. (2008) to problems with 

rank (A)<n. The same convergence results can be applied to the RIOP algorithm as explained 

next. 
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4. Convergence of the RIOP algorithm 

Problem (5), considering that the matrix is vertically concatenated 4 = [A;M], b = [b;0] e R”!" 
and that the diagonal matrix D,.m € R'"*" is formed with the elements of D,, and D,, can be 

stated as 

min ||Ax — Bl, (15) 
We consider the set: 

Lb, = 1X ER": for which r* = Ax* —b satisfies A Din =0), (16) 

that is the set of solutions to the problem (8), and the corresponding 

SPnin = {D2 P= [X30] € P such that x* € Ep, ). (17) 

Furthermore, given as the initial point g° = [x°; 0] € 2, we denote 

0 x=arg min |x 
AE yf 

xl (18) 

and p* =|[x*;r*] € Sp, ,. This point satifies 

—x . 0 y 12 
= arg min — , 19 

because []g0 — poll = [x =P + 15, 
The results in Scolnik et al. (2008), Lemma 2 and Lemma 3, allow us to prove that the sequence 

{ p} generated by the new version of the IOP algorithm is convergent to p* in the following 

theorem. 

Theorem 1. Let {p*} be the sequence generated by Algorithm 2, using 0 < y < 1/2. If p* = [x*;r*] is 

the element defined in (19), and its projection q* = |xX*;0] € 2, then 

(i) The sequence {| p-& lb) is decreasing and bounded, and hence it converges. 

(ii) The sequence {p"} converges to p*. 

With the purpose of analyzing the algorithm’s behavior, we need to describe some properties 

related to the inner iterative steps arising from the use of ACCIM, which is the basis for 

computing approximate solutions to problem (11) in the RIOP algorithm. These results are 

needed for proving the convergence of the new algorithm. 

4.1. Properties of the ACCIM algorithm 

Assume that Ay = bis a consistent system where 4 € R”*”, and y* a solution to it. Let o” } be the 

sequence generated by a version of the ACCIM algorithm with a D-norm, and s/ = Ay? — b the 

residual at each iterate y/. 
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The direction d” defined in ACCIM (see Appendix A in Scolnik et al., 2008) by combining 

projections (9) is 

di =S PP) —» == 2 ay. (20) 
[=] l=1 FE: E? 1 

At each iterate y/ 4 y*, j>0, the direction used is d/ = P,. (d/), where v = d/~!, and the next 

iterate y/+! = y/ + 1,d! is defined for satisfying 

(d/)" Dv! + Adi — y*) =0. (21) 

Furthermore, from the definition of d/ and /;, it is possible to obtain: 

Lemma 1. Jf y/ 4 y*, j>0, is generated by the ACCIM algorithm, then 

(i) d' is D-orthogonal to y* — y', for all i<j. 
(ii) di is D-orthogonal to d' and d' , for all i<j. 

Furthermore, 

(iii) y* — y is D-orthogonal to di, for alli<j, and as a consequence is also D-orthogonal to y/ — y®. 

Proof. See the proof of Lemma 2 in Appendix A of Scolnik et al. (2008). | 

In particular, the application of ACCIM for solving Az —Jy,,r=6 has the following 

characteristics: 

Given p* = [x*;r*] and g* = [x*; 0], k > 0, ACCIM computes an approximation [z; y’] to the 
projection p?.. (q*). 

From the satin Point [z°; u°] = g* = [x*;0], for each iterate [z/;w/], we denote by s’ the 
residual sí = Az/ — p/ — b. The direction d/ € R”"*”"™ can be written as 

m+n s, 

d =—S > w,—5—D"'a;, (22) 
= laio 

à; = [a;;—e;] being the i-th column of [A, Ten], where e, denotes the i-th column of J,,.,,. The 

square of the norm of each row of the matrix [A,—J,,,,], induced by the inverse of D, is 
1+[1/(Dy+n)d, if |la;|| = 1, and (D,,+,); denotes the i-th element of the diagonal of D,,.,. Hence, 
the direction d/ = [d'; d? i] has its first n components given by 

To Wi (Dinen) 
d=-y° ona, (23) 

i-] I+ (Data); 

and the next m+n components are 

aww + 
— Dm-+n) as . (24) 

Dmin) 
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We choose for this application of ACCIM the values w; = 1 + (Din+n);, because they privilege the 
rows with greatest 1+(D,,+,);. Thus, at each iterate [z/; u/], the directions are 

m+n m+n 

di! = — >. (Dinsn) aii? = A’ Dinin(—8), and dy! = Des = sf. (25) 

i=l i=l 

This direction d/ is such that dy = A" Dinin(—do/). Similar behavior has the direction 

di =[d,/;d>/|,_ where d¡!= A Dinen(—ao! ). This expression follows from considering 

Si (di'\"Ddin o ~ (do Ddi. ny ; 
di! = dy” A do! = dy! Dog, and using that d° coincides with 

[d 5 dp 
d°. Hence, for each j>0, [z’; vu” satisfies 2 — 2º = A Dminí=p0). 

Remark 3. We will now describe the properties of the accepted approximation p = [z/; |, in the 

iterations of Algorithm 2. 

(a) From (iii) of the previous Lemma, we know that for every solution [z*; u*] of Áz—-u= 

b, [2*;u*] — [z;; uj] is D-orthogonal to [z;; u;] — (zo, Ho]. Thus, for all p e ?, we have that 

(p — p) D(P — q) = (26) 
(b) From (i) of the previous Lemma, we know that for every [2/3], j > 0, the direction d! satisfies 

dl" D([z*: Jo [29 97) =0. Then, because pe? and q=[2;10], in particular 
di “Dip —g)= 0. " Hence, using the expression of d’ in (25), and considering that p* — q* = 

[0;1%], we obtain 

s/ is Dn +n-orthogonal to rf. (27) 

(c) Furthermore, considering (a) and (b), it follows that p* — p is D-orthogonal to [0; s/]. 

Remark 4. The inequality (14), used in Algorithm 2 to accept [7; ww], arises from replacing in the 

inequality of (12), |lp — Pl)lip = 15/15, and Ipº — dllp = Il(pº — 4º) — ( — q)]l'. Moreover, 
from (26) we know that p, —p and p—g are D- orthogonal, and using the fact that 

lp = lp = 1110:-]]15 = We*lIb,,,.» We obtain |p" — lp = = lp, — IP — lp. Also, using again 
the results of Lemma 1, we get lo — q“ = || — 9º lb. 

m+n 

4.2. Proof of Theorem 1 

Proof. To prove (i), let us consider the computation of the distance ||p* — g*||7, and ||p“! — gb. 
The first, ||p* — g*||7 De using the intermediate point gt! =[x**!;0], coincides with 
[|p* — ge, + Ig] — TJ +24 px D(g — q*'!). Then, using the coordinates of the 
points represented by p’, q! and q, we obtain I|pº = qb = lb, +] 4% — 15 + 
|| — ¥ + +2(x A+] xh)" (x — xl), 

Because p**! = [x*+1; +1] it follows from the approximation p = [Z; yx] satisfying condition 
(13), we know that x = 2). fl = y 45), where s/ = Ax?! — y! — b. 

Furthermore, as a consequence of the iterative process of ACCIM we also know, according to 

the results in subsection 4.1, that x! —x* = 4° Dinsy(—p’). Then, (x! = 97 (x — xt) = 
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— “Dont — +1). Taking into account the ACCIM properties (i), (ii) and (iii) of Lemma 1, 

and its specific application | in Remark 2 to the problem solved by Algorithm 2, we obtain 

= Dinvnl(? =" )= — "Dent + HII, 

Hence, [pf — q lp is equal to [5 +! =P + pés! = IP + 2M lb, — 2 Dna 
Let us now consider Ip“! — g:|l5 = |! = =|P + |, . By (b) of Remark 3 we know 

thats Dy nt! = 0, and |! 2, = IIs;llp,, + lle’lb,.,,. Therefore, the difference ||p* — 9*||5 — 

I asia DS! = EP + ME yay 2407 Dir + 
llr" Il, — Il... Ils lo... after having added and subtracted Ip, Then, considering 

2 2 2 2 
that lp, — 24 Dear + ra = rp, 20 we obtain  |p*- 4 II — 

2 
WP =F lla > o! É DD. 

On the other hand, from (a) of Remark 3 we know that ||r*||h 

Also, it is known by condition (12) that IS D 

men” 

m+n 

ll can be described by means | 
    m+n 

2112 2112 
nin = 0° — Pl + llo — Allo. 

< y||p* — All. with 0 < y< 1/2. Then, the 
. = 1)2 — 112 a2 12 2 difference Ip = 215 = Ip! = 716 > lla lb + (= DIB, — Il, Furthermore, 

m+n 

    

  

. . an? 2 2 2 ¡112 considering that ||q* — All3, = |"! 2 + Jl... and E Dl... > llsl3,,. by hypoth- 
esis, and Wye = HII... + IT... we obtain that the difference ||p* — g*||% — 
Ip El > lb, — ro o... Therefore, the sequence {\|p* — ql) is decreasing, 

bounded, and therefore convergent. 

Because we know that the sequence {||p* — *||;,} converges, we get a similar result for the 

sequence {|p —p*|[p} considering that |p‘ — p*|[p = ||@ — 7) -— @ —F)Ilp- Using the 
orthogonality between p< —p* and p*—g*, and considering that p* — g* =[0;r*], we get 

lp" —P*llp = 10" — & lp — Ir" llp,,,,. Therefore, because the sequence {||p* — q*||p} is decreasing 

and convergent, the sequence {||p* A *I15) also converges. 
From the fact that the distances {||p* — p*||7,} decrease, p* being the element defined in (19), it 

follows that the sequence {p*} is in a compact set Bo, centered in p*, because it satisfies 

lp" — Dl < ||p° — pl. Hence, a subsequence {p} = {[x*:r]} exists, satisfying = 

Ax‘: — b, convergent to [%;7] E Bo. 
By (iv) of Lemma 3 in Scolnik et al. (2008), we know that 4 Domin s tends to zero; then, 

Á “Dai = 0. Therefore, [X;7] satisfies the optimality condition of problem (15). Moreover, 

F=r* because of the unicity of the minimal residual +r*. Furthermore, because 

\|x — < xs — || + |jx“ — x*|), due to (v) of Lemma 3 in Scolnik et al. (2008), we know 

that ||x*: — x*|| < ||x“º — x!|; therefore, || — x*|| < 2||x* — x||. Hence, we obtain that ¥ = x*. 
Finally, because the sequence of the norms ||p* — p*||, converges, and {||p* — p*||,} goes to 

zero, the sequence {||p* — p*||} tends to zero. Therefore, the sequence {p*} converges to p*. 

      

5. Numerical experiments 

The main purpose of the experiments reported here is to compare the RIOP performance, applied 

to the solution of regularized least-squares problems (5), with the one of IOP (1). The latter is 
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taken as a reference because in Scolnik et al. (2008), we have reported comparisons of IOP with 

ART (underrelaxed), CAV (Censor et al., 2001), LANDW (Landweber, 1951), and KE (Popa, 

1998), showing that IOP was the most efficient algorithm for the test problems and algorithms 

used for the comparison. 

Also in Scolnik et al. (2006), we compared the IOP algorithm with KERP (Popa and Zdunek, 

2004), both converging to the minimum norm solution in the case of rank-deficient problems. 

Those experiments were performed using two image models, “‘phantoms’’, kindly provided by 

Popa and Zdunek, and reported in their paper (Popa and Zdunek, 2005). Although the results 

were promising, it was possible to see that the quality of the reconstructed images deteriorated 

after a certain number of iterations. Therefore, the aim of the following experiments is to test the 

efficiency of the regularized model combined with RIOP. 

The algorithms were implemented sequentially, and the experiments were run on a Pentium IV, 

with 512 MB RAM. In the implementation of IOP and RIOP we consider the parameter y = 107? 

in the initial iteration; then, y = 107 1 

Both algorithms stop when the condition |||**!]| — ||r*||| < ¢ max(||r°||, 1) is satisfied. 
For every problem the initial point was x° = 0. 

In order to create the symmetric matrix M € *R"*", we have considered for each pixel 

i=1,...,n, the weight of its interaction with its neighbors /, j¢.S; by means of w, = 1 if / interacts 

horizontally or vertically, and wy = 1/./2 for the diagonal interactions. Other possibilities were 

tested but the above led to the best results. From these assignments it follows that the matrix 

M has diagonal entries M; = > es, wij, and My= — 1 if the index j corresponds to a vertical or 
a horizontal neighbor, and M; = —1/v2 if j indicates a diagonal neighbor. 

5.1. Test problems 

The experiments were performed using two image models, “phantoms”, provided by Popa and 

Zdunek, reported in their paper (Popa and Zdunek, 2005). They lead to rank-deficient problems 

and are those used in Scolnik et al. (2006). Also aiming at testing problems with larger 

dimensions, we considered two cases (B8 and B7), which have characteristics different from the 

first two, and are given in the SNARK system (Browne et al., 1993), a software package for testing 

and evaluating algorithms for image reconstruction problems. 

The first two simulate real objects in electromagnetic geotomography, whose data come from 

projections made with a limited angular range (Popa and Zdunek, 2004, 2005). These problems 

are modeled by means of a system Ax = h, where 5; is the attenuation of the electromagnetic field 

along the i-th ray, and each a, element of A represents the contribution of the j-th pixel, in relation 

to the i-th ray, to the attenuation bh, These problems lead to inconsistent systems, and the 

corresponding matrix has a deficient rank due to the angle limitations of the projections. The first 

model (4, matrix), whose original image is given in Fig. 1 (left), is associated with an area of 

12m x 12mina square of 12 x 12 pixels, the total number of rays being 144. The second model 

(42 matrix), whose original image is presented in Fig. 1 (right), has an area of 30m x 30m, 

represented in a square of 30 x 30 pixels, using 900 rays. The characteristics of matrices 4, and A) 

are given in Table 1. 

We analyze the results obtained with IOP and RIOP with the system 4x = 5+0b, arising from 

simulating noisy perturbations of the right-hand side b. These two test problems analyzed here are 
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Fig. 1. Original image: 4, (left), 45 (right). 

  

  

Table 1 

Properties of A; and A> 

Properties Ay A, 

mxn 144 x 144 900 x 900 
Rank 125 805 

Cond (A) 9.39E04 2.15E07 
Sparsity 90.1% 95% 

x" (image) 12 x 12 (pixels) 30 x 30 (pixels) 
  

exactly those of Popa and Zdunek (2005). Starting from the knowledge of Ax***' =), a 

perturbation db is defined satisfying ||65||/||b|| + 5.5%. Because 6b = dba + 6b4:, where db4 € 
R(A) and 6b4: € R(A)~, the case considered satisfies ||6b,|| = ||5b4.|]. These perturbations are 
applied to each problem according to: 

Ay : 1064, || = |]5b4,.|] = 1.76, 
Ar : 100.4, || = [105 ,,. || = 11.3076. 

The other two problems used in these numerical experiments are from the SNARK system that 

was only used for generating the test problems B7 and B8. The visualizations of the reconstructed 

images were obtained with MATLAB 5.3. 

As a consequence of the discretization of the image reconstruction problem by X-ray 

transmission, a Cartesian grid of image square elements called pixels is defined in the region of 

interest in such a way that it covers the totality of the image to be reconstructed. With a suitable 

selection of the variables that define the geometry of the data such as angles between rays, the 

distances between rays when they are parallel, and the localization of the sources, the generated 

problems have full rank matrices. The systems Ax =b (see Censor et al. (2001) for a more 

complete description) are generally overdetermined and inconsistent, because in the fully 

discretized model each line integral of the attenuation along the i-th ray is approximated by a 

finite sum. 

We show the performance of the algorithms on the reconstruction of the Herman head 

phantom (B8) defined by a set of ellipses, with a specific attenuation value attached to each 

original elliptical region. This test is one of the same appearing in Censor et al. (2001) and Scolnik 
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et al. (2008) that arise from considering a different number of projections and number of rays per 

projection, leading in such a way to systems with a different number of variables and equations. 

A 115 x 115 digitization of the phantom is shown in Fig. 2 (right). 

Problem B7 simulates the collection of positron emission tomography (PET) data. The test 

phantom was obtained from a computerized overlay atlas based on the average anatomy of the 

brain (Herman and Odhner, 1991). In this phantom, neuro-anatomical structures are represented 

by various ellipses and rectangles at suitable locations. A 95 x 95 digitization of this phantom is 

shown in Fig. 2 (left). To simulate data obtained from a PET system with a ring of 300 detectors 

and with each detector in coincidence with 101 detectors opposite to it, divergent projection data 

have been generated over 300 view angles with 101 rays per view. In this case it is assumed that the 

detectors are arranged on an arc. Poisson noise is introduced into the projection measurements 

and the phantom densities are scaled by a factor of 0.51 (see Browne et al., 1993). 

In Table 2 the dimensions of the test problems are shown using m for the number of rows, and 

n for the number of columns. 

5.2. Parameters 

The matrix D,, used for problems 4,, 45, and B8 in the implementation of algorithms was 

Dm = diag(|la;|||°), that is the one that gave the best performance with respect to the descent of the 
norm of the residual, among several alternatives. For solving the problem B7 from SNARK, the 

matrix D,, used in the implementation was D,, = diag(10~7), because the residuals of the true 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

110 

10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 8090100110 
   

Fig. 2. Original image: B7 (left), B8 (right). 

  

  

Table 2 

Test of SNARK 

Equations (m) Variables (7) Image size (N x N) Projections Rays 

B7 27,376 9025 95 x 95 300 101 
B8 22,303 13,225 115 x 115 151 175 
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solution are very large due to the simulation made with the system, and thus it is not convenient to 

force the residuals to become too small. 

The L-curve (Hansen and O’Leary, 1993) has been used to determine the regularization 

parameter for all problems. In general, the L-curve is a plot of the M-norm of the regularized 

solution versus the norm of the corresponding residual. In Tikhonov’s standard regularization, it 

exhibits a corner behavior as a function of the regularization parameter f. The regularization 

parameter is often chosen to be on the corner of the L-curve (Hansen, 1998), because in this region 

the regularized solution yields both a small residual norm and a small solution M-norm. In our 

case, in which we use a weighted norm of the residual and the matrix M, the L-shape differs from 

the classical one although values are detected such that there is an equilibrium between the 

decrease of the norm of the residual and the decrease of the M-norm of the regularized solution. 

We show in Fig. 3 as an example the shape of the L-curve for 4, and B7, using 50 values of a in 

the interval [10~*, 10]. In order to compare the obtained values, we report the curves of the 

distance as a function of «, taking into account the definition of the distance to the exact solution 

as given in Censor et al. (2001). It can be seen that for A, (left), acceptable values of the 

regularization parameter are those of ae[0.03,0.06], for B7 (right), «e[0.3,0.6]. In our 

implementations, the values used were determined by inspection of the curve, choosing for A, 

a = 0.05, for B7, « = 0.5. Similarly we obtained « = 1.2 for A>, and « = 0.8 for B8. 

5.3. Results 

With the purpose of displaying the quality of the reconstructed image using IOP with those 

obtained with RIOP, we include graphs that compare the performance of algorithms, and curves 

representing the distance of the obtained density with regard to the one of the true images (Censor 

et al., 2001), and also the quality of the reconstructed image by each algorithm. 

Distance: between the solution x* (k-th iteration) and the true image x°**“, which is computed 

Ifo xt = Pexacal Don bjo DD > with exa = ————— EEE =. 
V Noexact VN N 

In Fig. 4 (left), we compare the performances of IOP and RIOP by means of the distance of the 

reconstructed images for problem A,. In Fig. 5, the reconstructed images corresponding to A, are 

shown for IOP and RIOP, respectively. It is necessary to point out that the number of iterations 

are the internal ones for IOP and RIOP. The criterion used for reporting the obtained images at 

the specified iterations was to choose those closer to 150—250—500, as given in Popa and Zdunek 

(2005). 
In Fig. 4 (right) the performance of IOP and RIOP is compared in relation to the distance for 

problem 4». In Fig. 6, we show for problem A> the reconstructed images by IOP and RIOP 

corresponding to the inner iterations closest to 150, 250, and 500. As can be seen in the curves and 

images, RIOP reaches the image closest to the original for both test problems 4, and A>». RIOP 

also obtains the minimum distance, and keeps it below the one corresponding to IOP, between the 

50th and the 500th iterations. It also obtains the best reconstructions in that interval, obtaining 

the best image in the neighborhood of the 250th iteration. 

exact 

by means of , where Pexact = 
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Fig. 3. L-curve (top), distance-curve (bottom). 

In the following, the results obtained for problems B7 and B8 are shown. In Fig. 7 (left), the 

performance of IOP and RIOP is compared by means of the distance for problem B7. In Fig. 8, 

we show for the same problem the reconstructed images by both algorithms corresponding to the 

inner iterations closest to 30, 40, and 60. 

In Fig. 7 (right), the performance of IOP and RIOP is compared in relation to the distance for 

problem B8, while in Fig. 9 we show for the same problem, the reconstructed images by both 

algorithms corresponding to the inner iterations closest to 10, 15, and 20. Also, in Fig. 10, we 

show for the same problem the reconstructed images by those algorithms corresponding to the 
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Fig. 4. Distance IOP-RIOP: 4, (left), A> (right). 
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Fig. 5. A,: IOP (top)-RIOP (bottom) (150-250-500 iterations). 

inner iterations closest to 80, aiming at comparing the differences when the number of iterations is 

increased. In problems B7 and B8, it can be seen in the curves and images that RIOP reaches 

the image closest to the original for both test problems. 

Both IOP and RIOP rapidly decrease the distances in the first iterations, but RIOP continues 

to decrease and keeps them below those of IOP. It also obtains the best reconstructions from the 

point of view of roughness. It is very important to point out that by enlarging the images it can be 
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Fig. 7. Distance IOP-RIOP: B7(left), B&(right). 

seen that the quality obtained with IOP deteriorates after a certain number of iterations (Fig. 10), 

while RIOP maintains both the distance and the quality of the reconstructed images. In Table 3, 

we give the CPU times required by each algorithm for reaching a solution satisfying the 

convergence criterion with different tolerances (parameter ¢ = 10~°, 5.10~°, 10~*). We include in 

the table the obtained distance to the exact image for each case. It is worth noting that RIOP 

solves an augmented system, although the matrix M of the aggregated system is sparse and with a 
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Fig. 8. B7: IOP (top) -RIOP (bottom), 30-40-60 iterations. 

known structure (no more than 9 nonzero entries per row). Hence, the CPU time is not increased 

in a sensible way as can be seen in the table. 

6. Conclusions 

In the field of ECT (emission computed tomography), iterative reconstruction techniques include 

the maximum likelihood expectation maximization (ML-EM), ordered subsets expectation 

maximization (OS-EM), rescaled block iterative expectation maximization (RBI-EM) (Byrne, 

1998), and row action maximization likelihood (RAMLA) techniques (Browne and De Pierro, 

1996). However, and just to show possible uses of the RIOP approach, we restricted ourselves to 

the use of what can be considered as similar algorithms, without claiming that the results obtained 

are better than those that can be given by RAMLA, etc. In fact, to use the framework presented 

here (combined with, for instance, blobs (Lewitt, 1990)) is something that can be done in the 

future. 

We recall that the aim of this paper was to present a modification of least-squares model (1) 

used for image reconstruction problems. That was because the minimum norm solution does not 

always turn out to be the closest to the true image due to the underlying discretized model. Hence, 
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Fig. 9. B8: IOP (top) -RIOP (bottom), 10-15-20. 
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Fig. 10. B8: IOP (left)-RIOP (right), 80 iterations. 

we have studied an approach for regularizing model (1) in order to match convergence with image 

quality. As the numerical results show, the RIOP effectiveness is remarkable in several problems. 

However, when the inhomogeneity comprises an area larger than the considered neighborhood, 

the actual regularization is not that effective (case A») because it does not reduce the parasite 

smearings meaningfully. 
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Table 3 

CPU time required for reaching convergence 

Problem Method Iter CPU time (s) Distance 

B7 RIOP 56 9.20 0.232445 

e=10-° IOP 227 35.42 0.959450 
B7 RIOP 38 6.23 0.232704 

e=5.10"º IOP 102 15.86 0.718537 
B7 RIOP 32 5.31 0.234127 

e=10"* IOP 68 10.61 0.587310 

B8 RIOP 91 15.27 0.087620 

e=10 IOP 142 22.47 0.207481 

B8 RIOP 61 10.31 0.087616 

e=5.10"º IOP 83 13.19 0.174564 
B8 RIOP 61 10.25 0.087616 

e=10"* IOP 64 10.17 0.161811 
  

IOP, incomplete oblique projections; RIOP, regularized incomplete oblique projections. 

In forthcoming papers, we will analyse alternative functions for a regularized least-squares 

problem, aiming at smoothing images. Likewise, for the same R(x) used in this paper, we will study 

the effect of adding neighboring pixels expanding the radius, and also what suitable weights should 

be chosen from a practical viewpoint. Another open question is to estimate the regularization 

parameter, together with the regularization function U(x). It is worthwhile to mention that 

methods that converge to a minimal-norm solution compute an optimum point in which both 

regularization errors and perturbation errors are well balanced (Bjork, 1996; Hansen and O’Leary, 

1993). This point corresponds to the corner on the L-curve (Hansen, 1998) or is the minimun of the 

GCV criterion (Bjork, 1996, p. 212). Also, other authors (Pralat and Zdunek, 2005) state that the 

parameter f is roughly estimated with the curves of U(x*) versus f, where x* = x*(f) is a final 
solution obtained after a suitable number of iterations at f. The minima of the curves should 

determine the optimum values of f for each reconstruction. This is because the total energy 

function U(x) can be interpreted as a measure of the total roughness of the image. For low values 

of f, the solution is dominated by the classical least-squares model. For high values of f, the 

regularization term dominates in the solution and the effect of oversmoothing may take place. 
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