
Strategy for Improving Source Code Compliance to a
Style Guide

Pablo Becker, Luis Olsina, and María Fernanda Papa

GIDIS_Web, Facultad de Ingeniería, UNLPam, General Pico, LP, Argentina
[beckerp, olsinal, pmfer]@ing.unlpam.edu.ar

Abstract. This paper illustrates the evaluation and improvement of a Java source
code considering the non-compliance with a selected set of items of the Google
Java Style Guide. To do this, a strategy was used to understand and improve the
Java source code. The strategy has activities that allow specifying non-functional
requirements (characteristics and attributes) and designing and implementing
measurement, evaluation, analysis, and change. The case was applied in the con-
text of an advanced undergraduate course in System Engineering as a mandatory
exam. The evaluation results of attributes' adherence to the aforementioned cod-
ing style guide and the improvement of non-compliances are discussed.

Keywords: Java Source Code, Google Java Style Guide, Compliance, Improve-
ment, Evaluation Strategy.

1 Introduction

As stated by Elish et al. [6] “The use of agreed-upon coding practices is believed to
enhance program comprehension, which directly affects reuse and maintainability”.
There are agreed coding conventions and style guides for different programming lan-
guages that try to improve the readability and maintainability of software source code.
Recently, dos Santos et al. [4] conducted a field study with a set of 11 coding practices
to find out the impact on code readability. Their findings were that 8 out of 11 coding
practices had evidence of affecting readability.

Today, it is common for programmers and teams involved in industrial software pro-
jects to work with these coding practices. According to Broekhuis [3] “Teams adopt or
adapt coding styles, and in some cases, they are mandatory. This means coding prac-
tices are an integral part of software development”. In 2021, the author conducted a
survey with 102 responses from professionals in the Netherlands, including 95 devel-
opers, 5 project managers, and 2 testers, and showed that more than 90% of the partic-
ipants used coding styles in their software projects. As a synthesis of his study, he sum-
marizes “It is, therefore, reasonable to conclude that they [coding conventions and style
guides] have a critical role in industries. This could imply the necessity of teaching
these coding styles to students”.

The present work discusses the evaluation and improvement of a Java source code
considering the non-compliance with a selected set of items of the Google Java Style

312

Guide [7]. This online document serves as the complete definition of Google's coding
standards for source code in the Java programming language. As in any other existing
coding style guide, in [7], there is a set of items or guidelines mainly in the categories
‘Source file structure’, ‘Formatting’, and ‘Naming’, among others, that the evaluated
code must comply with.

The case that we show here was applied in the context of an advanced undergraduate
course in System Engineering as a compulsory integrated exam, which regularly lasts
around 35 days. The subject called Software Engineering II is taught in the first semes-
ter of the 5th year of the degree. The conceptual content of the subject deals with non-
functional requirements, measurement, evaluation, and analysis of the quality of a soft-
ware product or system. To apply these contents and promote the technical and trans-
versal competencies of the students, each year, considering the problem to be solved,
an evaluation strategy is selected, from a family of strategies [12].

In the current year (2022), we selected the strategy with the purpose of understanding
and improving the quality of a candidate Java source code, considering the compliance
of the code with a subset of items of [7]. Note that the code we provided to students
was deliberately and slightly modified to partially comply with this coding guide.

The learning objectives were mainly twofold. First, as in any year, apply the con-
cepts of characteristics, attributes, metrics, and indicators, as well as the concept of
analysis of the situation for decision-making. These concepts and practices are embed-
ded in the processes and methods of an evaluation strategy. Second, we consider it
relevant that students as close future professionals learn software coding styles through
practice, as suggested by Broekhuis. In summary, the main contribution of this work is
to illustrate both aspects from a practical point of view. Since the study may be of in-
terest to students of other similar degrees, the complete documentation of the case is
linked to an additional resource.

The rest of the article is organized as follows. Section 2 overviews the improving
strategy and the Google Java Style Guide. Section 3 describes a little more the context
of the case study presented. Section 4 shows in detail the application of the aforemen-
tioned concepts and practices. Section 5 discusses related work and, finally, Section 6
summarizes conclusions.

2 Overview of the Evaluation Strategy and Coding Style Guide

In [12], a family of evaluation strategies guided by measurement and evaluation activ-
ities is presented. Those strategies allow achieving different purposes such as to under-
stand, improve, monitor, compare and adopt, among others. In this work, the strategy
called Goal-Oriented Context-Aware Measurement, Evaluation and Change
(GOCAMEC) is used, which allows us to understand and improve the current state of
an entity that in the present case is a Java source code. Fig. 1 shows the GOCAMEC
process using the UML activity diagram and the SPEM notation.

As depicted in Fig. 1, the process begins by performing the Define Non-Functional
Requirements (NFRs) activity (A1), which aims to define the quality attributes and
characteristics to be evaluated. A1 has as input a quality model (e.g. those prescribed
in [8] and [9]) and produces a “NFRs Specification”, which includes “NFRs Tree”.

313

In the Design Measurement and Evaluation activity (A2), metrics and indicators are
defined or selected from a repository. Then, the Implement Measurement and Evalua-
tion activity (A3) implies obtaining the measures and indicator values.

In A4.1 the analysis is designed, which includes, among other aspects, establishing
the criteria for the analysis of the results. As seen in Fig. 1, A4.1 can be performed in
parallel with A3. Next, in the Analyze Results activity (A4.2), the measures, the indica-
tor values, and the “Analysis Specification” are used as input, to produce the “Conclu-
sion/Recommendation Report”. The objective of this activity is to detect weaknesses in
the evaluated entity and recommend changes.

If there are no recommendations for changes, for example, because the level of sat-
isfaction achieved is optimal, the process ends. But, if there are recommendations for
change due to detected weaknesses, Design Changes (A5) is carried out, generating an
“Improvement Plan” in which the specific changes to be made are indicated. Then, the
plan serves as input to Implement Changes (A6). The result is a new version of the
entity under study.

As shown in Fig. 1, once A6 activity is finished, A3 must be executed again in order
to carry out the measurement and evaluation of the new entity. Based on these new
results, A4.2 analyzes whether the changes have increased the level of satisfaction
achieved by the NFRs. If the improvement is not enough to reach the main business
goal, new cycles of change, re-evaluation, and analysis can be carried out until the goal
established by the organization is reached.

Fig. 1. Generic process specification for the GOCAMEC strategy.

On the other hand, regarding the coding style guide, we use the Google Java Style
Guide. This guide includes sections related to: Source file basics (that deals with file-
names, file encoding, whitespace characters, and special characters), Source file struc-
ture (that deals with license information, package and import statements, and class
member ordering), Formatting (that deals with braces, indents, line wrapping,

314

whitespace, parentheses, enums, arrays, switch statements, annotations, comments, and
modifiers), Naming (that deals with identifiers such as package, class, method, constant,
field, local variable, type variable), Programming Practices (that deals with @Over-
ride, exceptions, static members and finalizers), and Javadoc (pointing out how to for-
mat Javadoc and where it is required).

3 More Details of the Context Used for the Practical Case

As commented in the Introduction Section, the case was applied within the framework
of the Software Engineering II subject in the first semester of the 5th year of the Systems
Engineering degree. The study is illustrated in detail in Section 4 and here we describe
a little more about the context.

Firstly, we selected the Java code since the students dedicate about 90 hours to the
previous subject called Object Oriented Programming, in the first semester of the 3rd
year, using this language to program a video game. The given program for this case
named “GUICalculator.java” has 116 lines and is available in Annex IV at
http://bit.ly/CACIC_Annexes. We deliberately modified this source code a bit to intro-
duce some violations of the [7] coding conventions. Code lines with at least one evalu-
ated incident are shaded orange in this Annex.

Secondly, the Software Engineering II course assesses students' technical skills on
non-functional requirements (using characteristics and attributes to specify non-func-
tional requirements), measurement (using metrics), and evaluation (using indicators) of
entities. Note that “establishing software metrics and quality standards” is a specific
competency in the new curricular standard in Argentina for Information Systems ca-
reers. Thus, the specification of quality requirements and the design and implementa-
tion of metrics and indicators are mandatory concepts and practices to pass this course.
Consequently, for the presented problem to students, we established that one attribute
(as an elementary quality requirement) must be mapped to a single item of the Google
Java Style Guide. The maximum number of attributes was 8 mapped to 8 items of the
guide. In the present work, we expand the scope of the assignment given to students,
by including 11 attributes and by specifying 3 attributes for 1 item of the guide. Specif-
ically, to the “3.3.3 Ordering and spacing” item in [7], we evaluate the adherence of
the GUICalculator.java code to it by using the following attributes: 1.1.1. Compliance
with the ordering of types of imports; 1.1.2. Spacing compliance between static and
non-static import blocks; and, 1.1.3. Spacing compliance between import sentences. In
total, the present work evaluates 11 attributes mapped to 9 items of the guide. This will
be illustrated in detail in the next section.

By allocating this problem to students that represents an integrated exam, we pro-
mote group work. In the current year (2022), there were 10 students (one international,
by institutional exchange). The sizes of the groups were 1 with three members, 3 with
two members, and 1 student who decided to work alone. There were slightly different
restrictions regarding the size of the group, such as the number of attributes/character-
istics and the size of the monograph as the final report to be examined. For instance,
the group of 3 students must have requirements specified by two sub-characteristics of

315

Compliance [8] and 8 attributes. Additionally, they had to inspect the code beforehand
to ensure that the requirements tree included at least 3 attributes that would have to be
changed later in the code to fully comply with the guide. The resulting monographs
ranged from 33 to 68 pages, including appendices.

Lastly, we give an account of some transversal competencies of the students, encour-
aging group work, providing all the material in English, and promoting oral and written
communication skills in the native language.

4 Application of the Evaluation Strategy to Improve Code
Compliance to Google Java Style Guide Items

This section illustrates the application of the GOCAMEC strategy to improve the com-
pliance of the “GUICalculator.java” source code to the Google Java Style Guide. To
achieve this goal, the strategy used allows: i) understand the degree of compliance of
the source code to the style guide; ii) based on non-compliances apply changes to the
current version of the source code (v. 1.0) to improve compliance with the style guide;
and iii) understand the degree of source code compliance after the changes (that is, to
the version 1.1 of the code). The activities carried out are illustrated below.

Table 1. Google Java Style Guide items mapped to characteristics and attributes related to “Main-
tainability” and “Compliance” of a Java source code and its evaluation results (in [%]). Note:
The symbol  means “Satisfactory”;  “Marginal”, and  “Unsatisfactory”. Additionally, op
stands for “operator”, EI for “Elementary Indicator” and DI for “Derived Indicator”.

Google Java Style Guide
Items

Characteristics and
Attributes (in italic)

op
v1.0

EI/DI
v1.1

EI/DI
1 Maintainability 73.74  100 

 1.1 Compliance C-+ 73.74  100 

3. Source file structure 1.1.1 Source file structure compliance A 53.33  100 

3.3.3 Ordering and spacing

1.1.1.1 Compliance with the ordering of
types of imports

100  100 

1.1.1.2 Spacing compliance between
static and non-static import blocks

100  100 

1.1.1.3 Spacing compliance between im-
port sentences

0  100 

3.4.1 Exactly one top-level
class declaration

1.1.1.4 Compliance with the number of
top-level class declarations per source file

33.33  100 

4. Formatting 1.1.2 Formatting compliance A 72.10  100 

4.1.1 Use of optional
braces

1.1.2.1 Compliance with the use of op-
tional braces

9.09  100 

4.8.2.1 One variable per
declaration

1.1.2.2 Compliance with the number of
variables per declaration

82.61  100 

4.3 One statement per line 1.1.2.3 Compliance with the number of
statements per line

88.24  100 

4.4 Column limit: 100 1.1.2.4 Compliance with the maximum
line size

95.15  100 

5. Naming 1.1.3 Naming compliance C-- 82.96  100 

5.2.2 Class names 1.1.3.1 Class naming compliance 60.00  100 

5.2.3 Method names 1.1.3.2 Method naming compliance 100  100 

5.2.6 Parameter names 1.1.3.3 Parameter naming compliance 100  100 

316

(A1) Define Non-Functional Requirements: For this activity, we consider the qual-
ity models prescribed in [8] and [9]. Since adherence to a coding style guide favors the
source code maintainability, we use the model for external and internal quality pro-
posed in [8]. This quality model includes the “Maintainability” characteristic, which in
turn explicitly includes the “Compliance” sub-characteristic that was removed from [9].
The “Compliance” characteristic is defined as “The degree to which the software prod-
uct (e.g. the source code) adheres to standards or conventions relating to maintaina-
bility”. Then, from the Google Java Style Guide we select a set of items to evaluate (see
Table 1, 1st column) and for each item, we define one or more attributes. E.g., for item
3.3.3 Ordering and spacing we define 3 attributes while for item 3.4.1 Exactly one top-
level class declaration we define a single attribute. The 2nd column of Table 1 shows
the identified attributes and their mapping to the guide items. All the characteristic and
attribute definitions can be seen in Annex I at http://bit.ly/CACIC_Annexes.

(A2) Design Measurement and Evaluation: In this activity, a set of metrics were
defined to quantify all the attributes. E.g., to quantify the attribute “Compliance with
the number of top-level class declarations per source file” (coded 1.1.1.4 in Table 1)
the indirect metric “Percentage of top-level class declarations per source file” (%TLC)
was defined. Table 2 shows the specification of this indirect metric. Additionally, for
each indirect metric, one or more direct metrics were specified. E.g., for the indirect
metric %TLC, the direct metric “Availability of valid top-level class” (AVTLC) was
defined. The measurement procedure for this metric was defined as follows: “AVTLC
= 0; if (class declaration defines a top-level class) and (class name is equal to the
source file name) then AVTLC = 1;”

It is important to say that to clarify the measurement procedures, sometimes some
notes were included. E.g., for the previous measurement procedure we include the fol-
lowing notes: “1. A top-level class is any class that is not a nested class. A nested class
is any class whose declaration occurs within the body of another class or interface. 2.
The keyword "class" is the tag for any class declaration in Java. 3. Class name and
source file name are case-sensitive”.

The rest of the indirect and direct metrics defined for this work can be found in
Annex II of the document available at http://bit.ly/CACIC_Annexes.

Table 2. Indirect metric specification to quantify the “Compliance with the number of top-level
class declarations per source file” attribute coded 1.1.1.4 in Table 1.

Metric Name: Percentage of top-level class declarations per source file (%TLC)
Objective: Determine the percentage of valid top-level classes with respect to the total of top-level classes
in the source code to be measured.
Author: Pablo Becker and Luis Olsina Version: 1.0

Calculation Procedure Formula: %𝑇𝐿𝐶 = (
∑ ∑ 𝐴𝑉𝑇𝐿𝐶𝑖𝑗

#𝑇𝐿𝐶
𝑗=1

#𝐽𝐹
𝑖=1

∑ #𝑇𝐿𝐶𝑖
#𝐽𝐹
𝑖=1

) ∗ 100

Scale: Numeric Scale Type name: Ratio Value Type: Real Representation: Continuous
Unit: Name: Percentage Acronym: %
Related Direct Metrics: AVTLC: Availability of valid top-level class; #TLC: Number of top-level clas-
ses; #JF: Number of Java files

Since the measured values do not represent the level of satisfaction of an elementary
requirement (attribute), a transformation must be performed that converts the measured

317

http://bit.ly/CACIC_Annexes
http://bit.ly/CACIC_Annexes

value into a new value that can be interpreted. Therefore, for each attribute, an elemen-
tary indicator was specified. For this work, the elementary indicator for the attribute
1.1.1.4 is specified in Table 3. The rest of the elementary indicators can be found in
Annex III at http://bit.ly/CACIC_Annexes.

Derived indicators were also defined to interpret the requirements with a higher
level of abstraction, that is, the characteristics and sub-characteristics documented in
Table 1. For all these indicators, an aggregation function named Logic Scoring of Pref-
erence (LSP) [5] was used whose function is:

DI (r) = (w1 * I1
r + w2 * I2 r + ... + wm * Im r)1/ r

where DI represents the derived indicator to be calculated and Ii are the values of the
indicators of the immediate lower level, or grouping in the tree, in a range 0<=Ii<=100;
wi represents the weights that establish the relative importance of the elements within
a grouping and must comply with w1 + w2 + ... + wm = 1, and wi > 0 for i = 1 ... m; and
r is a coefficient for LSP operators. These operators model different relationships
among the inputs to produce an output. There are operators (op) of simultaneity or con-
junction (operators C), replaceability or disjunction (operators D), and independence
(operator A). LSP operators for this work are shown in the 3rd column of Table 1.

As shown in Table 3, the elementary and derived indicators have the same three
acceptability levels. We decided to use the traffic light metaphor to facilitate the visu-
alization of the levels of satisfaction achieved: red / Unsatisfactory (values less than
or equal to 60%), yellow / Marginal (values greater than 60% and less than 100%)
and ⚫green / Satisfactory (values equals to 100%).

Table 3. Elementary indicator specification for the attribute “Compliance with the number of
top-level class declarations per source file” (coded 1.1.1.4 in Table 1). Note: %TLC stands for
the “Percentage of top-level class declarations per source file” metric.

Name: Performance Level of the Compliance with the number of top-level class declarations per source
file (PL_TLC)
Author: Santos L. Version: 1.1
Elementary model: Specification: the mapping is PL_TLC = %TLC
 Decision criterion (3 acceptability levels):

 Name 1: Unsatisfactory; Range: [0 ; 60]
 Description: Indicates that corrective actions must be performed with high priority.

 Name 2: Marginal; Range: (60 ; 100]
 Description: Indicates that corrective actions should be performed.

 Name 3: Satisfactory; Range: [100 ; 100]
 Description: Indicates that corrective actions are not necessary since the attribute meets the re-

quired quality satisfaction level.
Numerical Scale: Value Type: Real Scale Type: Ratio Unit: Name: Percentage Acronym: %

(A3) Implement Measurement and Evaluation: This activity produces the
measures and indicators’ values. E.g., for attribute 1.1.1.4 the value was 33.33%. This
derived measure is produced by applying the calculation procedure specified in Table
2. All the base measures (used to calculate this and other derived measures) can be seen
in Annex V of the document at http://bit.ly/CACIC_Annexes.

Then, the derived measures were used to calculate the values of elementary indica-
tors and the latter to calculate the derived indicators during the evaluation. Indicators’
values both for elementary and derived indicators are shown in Table 1, 4th column.

318

http://bit.ly/CACIC_Annexes
http://bit.ly/CACIC_Annexes

(A4.1) Design Analysis: Concurrently to A3, the A4.1 activity was carried out. In
our case, it was decided to classify the attributes following the decision criteria defined
for the indicators (see Table 3). Those attributes that fall into the Unsatisfactory range
() would be the first to receive attention, and then those that fall into the Marginal
range (). It is important to say that a guide item reaches the Satisfactory level only if
all the mapped attributes fall into the Satisfactory () level.

(A4.2) Analyze Results: Following the guidelines of the “Analysis Specification”,
the values of the 4th column of Table 1 were analyzed and improvements were recom-
mended for the attributes with a low level of performance (values marked with  and
). E.g., under the “1.1.1 Source file structure compliance” characteristic there are 2
attributes with a low level of performance. So, for the “Spacing compliance between
import sentences attribute” (coded 1.1.1.3) which reached 0% the recommendation
was “Blank lines between import sentences must be eliminated”, and for the attribute
coded 1.1.1.4 which reached 33.33%, the recommendation was “Each top-level class
must be defined in a file named as the class considering that names are case-sensitive”.

Considering the “1.1.3 Naming compliance” characteristic, the recommendation for
the “Class naming compliance” (1.1.3.1) –which reached 60%- was: “All class names
must be in upper camel case”. Similarly, recommendations for each attribute under the
“1.1.2 Formatting compliance” characteristic were made.

(A5) Design Changes: Using the “Recommendation Report” generated in A4.2, the
changes to be made were designed. E.g., to improve the level of satisfaction achieved
by the attribute coded 1.1.3.1, it was proposed that the classes named “calculatorFrame”
and “calculatorpanel” were renamed as “CalculatorFrame” and “CalculatorPanel”, re-
spectively. Additionally, to improve the attribute coded 1.1.1.4, it was proposed that
the classes named “CalculatorFrame” and “CalculatorPanel” (which are top-level clas-
ses) be defined in other source files, which should be called “CalculatorFrame.java”
and “CalculatorPanel.java”, respectively. All proposed changes were recorded in the
“Improvement Plan” document.

(A6) Implement Changes: In this activity, the changes proposed in the “Improve-
ment Plan” were made. The reader can find the new version (v1.1) of the source code
in Annex VIII at http://bit.ly/CACIC_Annexes.

As prescribed by the GOCAMEC process (recall Fig. 1), once A5 and A6 activities
were completed, a re-evaluation must be performed. Therefore, A3 and A4.2 activities
were enacted again to determine the level of satisfaction achieved by the new version
of the source code after the changes.

(A3) Implement Measurement and Evaluation: In this second execution of A3,
the same metrics and indicators were used on the new source code (v 1.1). The results
obtained are shown in the 5th column of Table 1.

(A4.2) Analyze Results: As can be seen in column 5th of Table 1, all the attributes
reached 100% (), that is, the new version of the source code satisfies all the Google
Java Style Guide items considered for this work. Since new cycles of change, re-eval-
uation, and analysis are not required because the goal was successfully achieved, the
process is finished.

319

5 Related Work and Discussion

Coding conventions for programmers to follow have been proposed since the mid-
1970s. One of the most cited examples is Kernighan et al. [10], which gave many hints
on how to write readable code in C language using real software cases.

Particularly for the Java language, the best-known coding style guidelines and con-
ventions emerged from the work of Sun Microsystems in 1997 [15], and of Reddy in
2000 [14], who was also a member of this company. After these proposals, the Google
Java Style Guide [7] appeared. We selected this guide for the current case, as it has the
main categories and items to make code readable, as well as easy formatting and online
access. Another recent reference for Java coding conventions and practices is Bogdano-
vych et al. [2], to name just a few.

Many studies and experiments of different coding styles that affect code readability
have emerged, such as those by Lee et al. [11], dos Santos et al. [4], to mention just a
couple of those works carried out so far. As commented in the Introduction Section,
according to the survey conducted by Broekhuis [3], out of 102 responses from industry
professionals, only 3% did not use a coding style in their software projects. This can
emphasize the role that the learning process in academia should continue to play in
these beneficial concepts and practices. For the case shown, this was one of the learning
objectives established in Software Engineering II.

To the best of our knowledge, what is not present in related works is the mapping of
non-functional requirements in the form of characteristics and attributes with categories
and items from the coding style guides, as illustrated in Section 4. This mapping enables
systematic understanding and improvement of source code compliance by using met-
rics, indicators, and refactoring as methods for performing the measurement, evalua-
tion, and change activities. In turn, these methods and activities are well established
and specified in GOCAMEC. The employment of these concepts and practices was
another of the learning objectives established in Software Engineering II. For this learn-
ing objective, the use of tools and analyzers was not promoted as is done in other works,
but the design of metrics and indicators, and the elaboration of code changes manually
from the data recorded from the implementation. However, the implementation of all
these methods and activities for code evaluation and refactoring could be automated.

6 Final Remarks

In this paper, we have discussed the quality evaluation and improvement of a typical
Java source code by considering the compliance with internal quality attributes properly
mapped to a set of Google Java Style Guide elements. To carry out this study, the
GOCAMEC strategy was used, which allows us not only to understand the current state
of the entity but also to design and implement changes that positively affect the quality
of the new version of the entity.

For the problem posed to the students in the context of an undergraduate course, the
resulting Java source code was improved by justifying the different steps and results.

320

Additionally, the learning objectives of the subject and the skills and capabilities ex-
pected after passing were commented as well.

To conclude, we would like to highlight that what is not present in the literature
regarding related works is the correspondence of quality (compliance) requirements in
the form of characteristics and attributes with categories and items of the coding style
guides and conventions, as illustrated in the previous sections. In future work, we are
planning the automation of the presented approach, which can be an assignment for a
student thesis in System Engineering.

Acknowledgment. This line of research is supported partially by the Engineering
School at UNLPam, Argentina, in the project coded 09/F079.

References

1. Becker, P., Tebes, G., Peppino, D., Olsina, L.: Applying an Improving Strategy that embeds
Functional and Non-Functional Requirements Concepts, Journal of Computer Science and
Technology, 19:(2), pp. 153–175, doi: 10.24215/16666038.19.e15, (2019).

2. Bogdanovych, A., Trescak, T.: Coding Style and Decomposition. In: Learning Java Program-
ming in Clara’s World. Springer Nature Switzerland, Chap. 4, pp. 83-100,
https://doi.org/10.1007/978-3-030-75542-3_4, (2021).

3. Broekhuis, S.: The Importance of Coding Styles within Industries, 35th Twente Student Con-
ference on IT (TScIT 35), pp. 1-8, (2021).

4. dos Santos, R. M., Gerosa, M. A.: Impacts of coding practices on readability. In: International
Conference on Software Engineering, pp. 277-285, (2018).

5. Dujmovic, J.: Continuous Preference Logic for System Evaluation, IEEE Transactions on
Fuzzy Systems, (15): 6, pp. 1082-1099, (2007).

6. Elish, M., Offutt J.: The adherence of open source java programmers to standard coding prac-
tices. In: 6th IASTED International Conference on Software Engineering and Applications,
pp. 1-6, (2002).

7. Google Java Style Guide. Available at https://google.github.io/styleguide/javaguide.html,
and Last Accessed June (2022).

8. ISO/IEC 9126-1: Software Engineering – Software Product Quality – Part 1: Quality Model,
International Organization for Standardization, Geneva, (2001).

9. ISO/IEC 25010: Systems and Software Engineering – Systems and software product Quality
Requirements and Evaluation (SQuaRE) – System and software quality models, (2011).

10. Kernighan, B. W., Plauger, P. J.: The elements of programming style. McGraw-Hill, New
York, 1st Ed., (1974).

11. Lee, T., Lee, J. B., In, H. P.: A study of different coding styles affecting code readability. Int’l
Journal of Software Engineering and Its Applications, 7:(5), pp. 413-422, (2013).

12. Olsina, L., Becker, P.: Family of Strategies for Different Evaluation Purposes. In XX
CIbSE’17, Published by Curran Associates, pp. 221–234, (2017).

13. Oman, P. W., Cook, C. R.: A paradigm for programming style research. ACM SIGPLAN
Notices 23:(12), pp 69-78, https://doi.org/10.1145/57669.57675, (1998).

14. Reddy, A.: Java™ coding style guide. Sun MicroSystems, (2000).
15. Sun Microsystems: Java code conventions, Available at

https://www.oracle.com/technetwork/java/codeconventions-150003.pdf, (1997).

321

https://google.github.io/styleguide/javaguide.html
https://www.oracle.com/technetwork/java/codeconventions-150003.pdf

	PAPERS - COMPLETO-v2 (2).pdf
	WIS - COMPLETO
	14205CR 14328-Becker_Olsina_Papa_vFinalCR

