
A Wizard for Composing SPARQL Queries in
the GF Framework for Ontology-Based Data

Access

Sergio Alejandro Gómez1,2 and Pablo Rubén Fillottrani1,2

1Laboratorio de I+D en Ingenieŕıa de Software y Sistemas de Información (LISSI)
Departmento de Ciencias e Ingeneŕıa en Computación

Universidad Nacional del Sur
San Andrés 800, (8000) Bah́ıa Blanca, Argentina

Email: {sag,prf}@cs.uns.edu.ar
2Comisión de Investigaciones Cient́ıficas de la Provincia de Buenos Aires

Abstract. Ontology-Based Data Access is a methodology concerned
with bridging the gap between legacy data sources and semantic web
technologies by providing protocols and tools for translating old data
into ontologies. Querying modern ontologies represented as networks of
objects interlinked by relations and properties and stored in OWL/RDF
text files requires writing SPARQL queries, an activity requiring techni-
cal proficiency that is not usually in the hands of lay users. We extend
our prototype of OBDA called GF to include the functionality of exe-
cuting arbitrary SPARQL queries posed against OWL/RDF ontologies
obtained by OBDA from H2 relational databases as well as Excel and
CSV spreadsheets. To help naive users with less technical programming
skills perform queries on such ontologies, we introduce a wizard for vi-
sually expressing a subset of SPARQL queries in a Query-By-Example
approach.

Keywords. Ontologies, Ontology-Based Data Access, SPARQL, Knowl-
edge Representation

1 Introduction

The Semantic Web (SW) is a version of the web where data resources have a pre-
cise meaning given in terms of conceptualizations known as ontologies that allow
software agents to reason about such meaning automatically [1]. Ontology-Based
Data Access (OBDA) is a discipline concerned with bridging the gap between
legacy data sources and SW technologies by providing protocols and tools for
translating old data into ontologies [2]. Querying ontologies provides many ben-
efits for querying relational data as it allows the usage of open-world semantics
in contrast to closed-world semantics and also allows to make explicit implicit
conclusions hidden in the non-trivial subclass and composition relations that
describe the underlying application domain modeled by the queried ontologies.

One of the advantages of OBDA is that old, legacy data can be then com-
bined with new ontological data. Legacy data include tabular data as relational

516

database, Excel spreadsheets and CSV text files. Modern ontological data in con-
trast is represented as networks of objects interlinked by relations and properties
and stored as OWL/RDF text files distributed in the SW. Querying modern on-
tologies requires writing SPARQL queries [3], an activity that requires technical
proficiency that quite normally is not in the hands of lay users.

In this work, we extend a prototype of OBDA called GF [4] that we have been
developing in the last years to include the functionality of executing arbitrary
SPARQL queries posed against OWL/RDF ontologies obtained by OBDA from
H2 relational databases as well as Excel and CSV spreadsheets. Also to help naive
users with less technical programming skills to perform queries on such ontolo-
gies, we introduce a wizard for expressing a subset of SPARQL queries visually
based on a Query-By-Example (QBE) approach [5]. Our solution provides a con-
crete way of writing SPARQL queries over legacy data without requiring the user
to know explicitly SPARQL syntax. For reproducibility of the reported results,
an executable file along with the files of the examples presented in this paper
and its results can be checked online at http://cs.uns.edu.ar/~sag/gf-v4.3.

The rest of the work is structured as follows. In Sect. 2, we review the subset
of SPARQL queries that our wizard can generate. In Sect. 3, we present the
wizard to build the queries discussed previously. In Sect. 4, we review related
work. Finally, in Sect. 5, we conclude and foresee future work.

2 Queries in SPARQL

SPARQL is the standard query language and protocol for Linked Open Data and
RDF databases that can efficiently extract information hidden in non-uniform
data and stored in various formats and sources, such as the web or RDF triple-
stores. The distributed nature of SW data, unlike relational databases, helps
users to write queries based on what they want to know instead of how the data
is organized. In contrast to the SQL query language for relational databases,
SPARQL queries are not constrained to working within one database – federated
queries can access multiple data stores (or endpoints) because SPARQL is also
an HTTP-based transport protocol, where any endpoint can be accessed via
a standardized transport layer. RDF results can be returned in several data-
interchange formats and RDF entities, classes, and properties are identified by
IRIs such as <http://example.org/Person/name>, which are difficult to remember
even knowing SPARQL and the underlying structure of the data source.

As mentioned in the introduction, we propose a wizard for visually composing
SPARQL queries posed against a data source expressed as an OWL/RDF ontol-
ogy. We now present the subset of queries that we solve with our implementation.
We present a running example with which we present some prototypical queries
and in Sect. 3 we show how these queries can be solved by using the wizard that
we defined. We present a relational database schema for which the GF system
produces an ontology automatically. Then we show some SPARQL queries posed
against the ontology. We will see that writing those queries from scratch present
an important challenge even for experienced users and that the proposed wizard

517

can help in easing such task by allowing the composition of queries by a Query-
By-Example methodology (i.e., visually and abstracting from some of the inner
details of the query structure and the queried dataset).

Example 1. In Fig. 1, we define the schema of a very simple relational database
and show how its translation to an OWL Description Logic (DL)1 ontology
should be and then propose some iconic SPARQL queries. There are two tables:
Person and Phone. A person has a unique identifier, a name, a weight in kilo-
grams, a sex that is false if the person is female and true if the person is male,
also a person has a birth date. A phone has a unique identifier, a number, a
price, and its owner. There is an implicit one-to-many relation from Person to
Phone, meaning that a person can have 0, 1, or more phones and a phone can
belong to 0 or at most 1 person.

Notice that in this work, we have added extra functionality to the direct
mapping specification programmed in previous versions of GF (see [4] and ref-
erences therein for details) in order to simulate the natural joins between tables
and be able to retrieve that characteristic from SPARQL. Thus, the person now
knows his phones and vice versa.

Person (personID, name, weight, sex, birthDate)

Phone (phoneID, number, price, owner)

Person Phone

personID name weight sex birthDate

1 John 120.0 true 2001-01-01
2 Paul 110.0 true 2002-01-01
3 Mary 60.0 false 2001-01-01

phoneID number price owner

1 555-1234 200.00 1
2 555-1235 220.00 1
3 555-1236 230.00 2

Fig. 1. Relational schema and instance for tables Person and Phone

Example 2 (Continues Ex. 1). In Fig. 2, the UML design of the classes Person
and Phone can be seen. In Fig. 3, the instances of classes Person and Phone
are shown. There are three people, two males named John and Paul, and one
female of name Mary. John has two phones (viz., 1 and 2), Paul has only one
(viz., 3) but Mary has none. The class HeavyYoungMan is defined as a subclass
of Person according to the SQL filter: select "personID" from "Person" where

"sex"=true and "birthDate">=’2001-01-01’ and "weight">=100.0.

We now explore several paradigmatic query cases in SPARQL. The choice of
the particular syntax of some queries is due to that they are presented in the
exact way that they are composed by our tool employing the visual specification
that we present in Sect. 3. We solve a very specific subset of queries and categorize
its cases as: queries over a single class, queries over a simple hierarchy of classes,
and queries over an association.

1 In this context, we see a DL ontology as a mathematical conceptualization of an
equivalent OWL/RDF file, which is understood as the serialization of such ontology.
We refer the reader to [6].

518

owner

1

phone

*

Person

personID : int
name : string
weight : float
sex : boolean
birthDate : Date

HeavyYoungMan

Phone

phoneID : int
number : int
price : float

A male person born after 2001
that weighs more than 100 kg.
A male person born after 2001
that weighs more than 100 kg.

Fig. 2. UML class diagram for people and their phones obtained via OBDA from Fig. 1

Person(p1). personID(p1,1) name(p1, john). weight(p1,120.0). sex(p1,true).
birthDate(p1,2001-01-01). phone(p1,t1) phone(p1,t2). HeavyYoungMan(p1).
Person(p2). personID(p2,2). name(p2, paul). weight(p2,110.0). sex(p2,true).
birthDate(p2,2002-01-01). phone(p2,t3). HeavyYoungMan(p2).
Person(p3). personID(p3,2). name(p3, mary). weight(p3,60.0). sex(p3,false).
birthDate(p3,2001-01-01).
Phone(t1). number(t1, 555-1234). price(t1, 200.0). owner(t1, p1).
Phone(t2). number(t2, 555-1235). price(t2, 220.0). owner(t1, p1).
Phone(t3). number(t3, 555-1236). price(t3, 230.0). owner(t1, p2).

Fig. 3. Assertional knowledge about people and their phones for UML diagram in
Fig. 2 obtained from the relational instance in Fig. 1

Example 3 (Continues Ex. 2). We start with a selection query having several
conditions over a single class : Select the portion of the data that comprise all
the females that were born in 2001 that weigh less than 70 kilos, and her name
optionally starts with an M, contains an r, and ends with a y. When relevant in
all queries we ask the query processor to show at most 10 results starting with
the first result. The text of the SPARQL query can be seen in Listing 1.1. The
result of the query is computed in tabular form: id name isMale bd weight

3 Mary false 2001-01-01 60.0

Example 4 (Continues Ex. 2). We now show a totalization query : select the
average weight of the men. The source code for the query is shown in Listing 1.2.
The result of the query is: averageWeight

115.0

Example 5 (Continues Ex. 2). We now show a query that works by grouping
similar data according to the value of a field : Categorize people by sex and
compute the average and maximum weight, least birthdate, person count, and
sum of weights. The code of the query can be read in Listing 1.3. The result of

the query is:
isMale averageWeight maximumWeight leastBirthDate personCount weightSum

false 60.0 60.0 2001-01-01T00:00:00 1 60.0
true 115.0 120.0 2001-01-01T00:00:00 2 230.0

Example 6 (Continues Ex. 2). We now show a query over a simple hierarchy
of classes, in particular showing the case of inheritance of attributes in sub-
classing: Find the name of all the young heavy weighted men. The source code

is in Listing 1.4. The result of the query reads as:
personID name

1 John
2 Paul

519

PREFIX r d f : <ht tp : //www.w3 . org /1999/02/22− rd f−syntax−ns#>
PREFIX xsd : <ht tp : //www.w3 . org /2001/XMLSchema#>

SELECT ? i d ?name ? i sMa l e ?bd ? we ight
WHERE
{

?x r d f : t ype <ht tp : // example . org /Person> .
? x <ht tp : // example . org /Person / personID> ? i d .
? x <ht tp : // example . org /Person /name> ?name .
?x <ht tp : // example . org /Person / sex> ? i sMa l e .
? x <ht tp : // example . org /Person / b i r thDate> ?bd .
?x <ht tp : // example . org /Person / b i r thDate> ?bd .
?x <ht tp : // example . org /Person /weight> ? we ight .
? x <ht tp : // example . org /Person /name> ?name .
?x <ht tp : // example . org /Person /name> ?name .
FILTER (s t r s t a r t s (s t r (? name) , ’M’) && ? i sMa l e = f a l s e && ?bd >= ’2001−01−01T00 : 0 0 : 0 0 ’ ˆˆ xsd : dateTime
&& ?bd <= ’2001−12−31T00 : 0 0 : 0 0 ’ ˆˆ xsd : dateTime && ?we ight < 70
&& regex (s t r (? name) , ’ r ’ , ” i ”) && s t r e n d s (s t r (? name) , ’ y ’))

}
ORDER BY DESC(? name)
LIMIT 10
OFFSET 0

Listing 1.1. SPARQL query for all the females that were born in 2001 that
weigh less than 70 kilos, and her name optionally starts with an M, contains an
r and ends with a y

PREFIX r d f : <ht tp : //www.w3 . org /1999/02/22− rd f−syntax−ns#>
PREFIX xsd : <ht tp : //www.w3 . org /2001/XMLSchema#>

SELECT (AVG(? we ight) AS ? averageWeight)
WHERE
{

?x r d f : t ype <ht tp : // example . org /Person> .
? x <ht tp : // example . org /Person /weight> ? we ight .
? x <ht tp : // example . org /Person / sex> ? i sMa l e .
FILTER (? i sMa l e = t rue)

}

Listing 1.2. SPARQL query for the average weight of the men

PREFIX r d f : <ht tp : //www.w3 . org /1999/02/22− rd f−syntax−ns#>
PREFIX xsd : <ht tp : //www.w3 . org /2001/XMLSchema#>

SELECT ? i sMa l e (AVG(? we ight) AS ? averageWeight) (MAX(? we ight) AS ?maximumWeight) (MIN(? bd) AS ? l e a s tB i r t hDa t e)
(COUNT(? i d) AS ? personCount) (SUM(? we ight) AS ?weightSum)
WHERE
{

?x r d f : t ype <ht tp : // example . org /Person> .
? x <ht tp : // example . org /Person / sex> ? i sMa l e .
? x <ht tp : // example . org /Person /weight> ? we ight .
? x <ht tp : // example . org /Person /weight> ? we ight .
? x <ht tp : // example . org /Person / b i r thDate> ?bd .
?x <ht tp : // example . org /Person / personID> ? i d .
? x <ht tp : // example . org /Person /weight> ? we ight .

}
GROUP BY ? i sMa l e

Listing 1.3. SPARQL query for categorizing people by sex and computing the
average and maximum weight, least birthdate, person count, and sum of weights

520

PREFIX r d f : <ht tp : //www.w3 . org /1999/02/22− rd f−syntax−ns#>
PREFIX xsd : <ht tp : //www.w3 . org /2001/XMLSchema#>

SELECT ? pe r son ID ?name
WHERE
{

?x r d f : t ype <ht tp : // example . org /HeavyYoungMan> .
? x <ht tp : // example . org /Person / personID> ? pe r son ID .
?x <ht tp : // example . org /Person /name> ?name .

}
LIMIT 10
OFFSET 0

Listing 1.4. SPARQL query for finding the name of all the young heavy
weighted men

PREFIX r d f : <ht tp : //www.w3 . org /1999/02/22− rd f−syntax−ns#>
PREFIX xsd : <ht tp : //www.w3 . org /2001/XMLSchema#>

SELECT ? pe r son ID ?name ?p ? phoneID ?phoneNumber ? phonePr i c e
WHERE
{

?x r d f : t ype <ht tp : // example . org /HeavyYoungMan> .
? x <ht tp : // example . org /Person / personID> ? pe r son ID .
?x <ht tp : // example . org /Person /name> ?name .
?x <ht tp : // example . org /Person / r e f−phone> ?p .
?p r d f : t ype <ht tp : // example . org /Phone> .
?p <ht tp : // example . org /Phone/phoneID> ? phoneID .
?p <ht tp : // example . org /Phone/number> ?phoneNumber .
?p <ht tp : // example . org /Phone/ p r i c e> ? phonePr i c e .
FILTER (s t r s t a r t s (s t r (? name) , ’ John ’) && regex (s t r (? phoneNumber) , ’ 555 ’ , ” i ”) && ? phonePr i c e >= 100)

}
LIMIT 10
OFFSET 0

Listing 1.5. SPARQL query for finding all the heavy men named John that have
a phone containing 555 in its number and with a price of at least 200 dollars

Example 7 (Continues Ex. 2). We now show a query over an association : Find
all the heavy men named John that have a phone containing 555 in its number
and with a price of at least 200 dollars. The source code of the query is presented
in Listing 1.5 and its result is:

personID name p phoneID phoneNumber phonePrice

1 John http://example.org/Phone/phoneID=1 1 555-1234 200.0
1 John http://example.org/Phone/phoneID=2 2 555-1235 220.0

Example 8 (Continues Ex. 2). As our last example, we present a totalization
query over a composition : Find the average price of phones whose owner weighs
between 110 and 120 kg. The source code of the query is in Listing 1.6. The
result of the query is: averagePrice

216.66666666666666

3 A Wizard for Writing SPARQL Queries

Now we present a wizard for writing the queries presented previously in a visual
way. We based our approach on the Query-By-Example (QBE) paradigm where
queries are specified by giving symbolic examples of the information to be re-
trieved. As in most QBE solutions, our program uses the usual form called QBE
grid to indicate the subject, predicate, and object of the triples involved in the

521

PREFIX r d f : <ht tp : //www.w3 . org /1999/02/22− rd f−syntax−ns#>
PREFIX xsd : <ht tp : //www.w3 . org /2001/XMLSchema#>

SELECT (AVG(? phonePr i c e) AS ? a v e r a g eP r i c e)
WHERE
{

? phone r d f : t ype <ht tp : // example . org /Phone> .
? phone <ht tp : // example . org /Phone/ p r i c e> ? phonePr i c e .
? phone <ht tp : // example . org /Phone/ r e f−owner> ?phoneOwner .
?phoneOwner r d f : t ype <ht tp : // example . org /Person> .
? phoneOwner <ht tp : // example . org /Person /weight> ? ownersWeight .
?phoneOwner <ht tp : // example . org /Person /weight> ? ownersWeight .
FILTER (? ownersWeight >= 110 && ? ownersWeight <= 120)

}

Listing 1.6. SPARQL query to find the average price of phones whose owner
weighs between 110 and 120 kg

query, the conditions they have to satisfy if a totalization or grouping is involved
and aliases for results. The names of properties and concepts are presented syn-
thetically to avoid the information overload associated with full IRIs. As in all
QBE environments, there is a parser that can convert the user’s actions into
statements expressed in a manipulation language, in this case, SPARQL. Be-
hind the scenes, it is this statement that is executed. A suitably comprehensive
front-end can minimize the burden on the user to remember the finer details of
SPARQL, and it is easier and more productive for end-users (and even program-
mers) to select concepts and properties by selecting them rather than typing in
their names.

We now address a brief description of the wizard. The ontology to be queried
has to be loaded into the system. The limitations of the current status of the sys-
tem include that only one ontology can be queried at a time. The ontology that
is queried cannot reference other ontologies except the one that defines the basic
datatypes. Our implementation addresses the visual specification employing a
form, then generates automatically the source code of the equivalent SPARQL
query and this query is evaluated against the ontology using the RDF4J library
(see https://rdf4j.org/) and then generates a web page showing the result of
the query (see accompanying online documentation).

For space reasons, we will only discuss how the queries of Sect. 2 are expressed
in our tool. In Fig. 4, we can see how the SPARQL query presented in Lst. 1.1 is
visually codified. The user has to name the subject of the triples (viz., x), then
establish the concept the subject belongs to (viz., Person), and then for each
property that the user desires a column in the result, has to assign an alias and
establish a condition, that can be deemed as invisible and/or optional if desired
(viz., property sex with alias isMale and value equal to false). Notice how the
user interface hides the low-level details of IRIs from the user.

In Fig. 5, we can see visual specification of the SPARQL query of Listing 1.2.
In this case, as this totalization query must compute a single number (i.e., the
average weight of the men), only one field has to be made visible and the result
column for this property has to be named (viz., averageWeight). More impor-
tantly, in this kind of query a totalization function has to be selected (viz.,
Average).

522

Fig. 4. Querying people with several conditions

Fig. 5. Finding the average weight of the men

In Fig. 6, we can see the visual specification of the SPARQL query of List-
ing 1.3. This kind of query shows how to partition a set of individuals using the
values of a property (in this case sex). As the sex property is of Boolean type,
the set of people is partitioned into two disjoint subsets (assuming that the sex
for all people is determined), this is done by using the Group function. For
each sex, the usage of several totalization functions are shown: Average, Max ,
Min, Count , and Sum for computing the average and maximum weight, least
date of birth, the number of people and the sum of their weights. Notice that
variables for the results must be defined (viz., averageWeight , maximumWeight ,
leastBirthDate, personCount , and weightSum.

Fig. 6. Totalizing functions according to sex

In Fig. 7, we see that querying a hierarchy of classes is straightforward as
the inheritance of properties (attributes) is computed seamlessly. In this case,
it is shown how the names and identifiers of people can be used for the class
HeavyYoungMan which is a subclass (sub-concept) of Person. Notice that in par-
ticular, this is the visual presentation of the SPARQL query of Listing 1.4.

In Fig. 8, we see how an association between classes can be queried (this is the
visualization of the SPARQL query in Listing 1.5). In particular, two variables
for the subjects have to be defined: x for people and p for phones. Notice in the
third row how x is associated with p by means of the Person/ref-phone property.

Finally, in Fig. 9, we can observe the visual expression of the SPARQL query
in Listing. 1.6 showing how to perform a totalization over an association. Notice

523

Fig. 7. Querying a hierarchy: Find the name of heavy men

Fig. 8. Querying an association: Find the heavy men with their phones

how again two different variables for the subject have to be defined for indicating
the association between subject and objects in RDF triples and also how the
averagePrice variable in the result column has to be declared.

Fig. 9. Querying an association: Find the average price of phones of people weighing
between 110 and 120 kg

4 Related Work

Swipe [7] implements a search-by-example approach to query Wikipedia where
naive users can enter query conditions directly on the Infobox of a Wikipedia
page, and then Swipe uses these conditions to generate equivalent SPARQL
queries and execute them on DBPedia. As Swipe, our system makes querying
ontologies user-friendly but our system is more general as it is not limited to
DBPedia. Our system could do something similar by, given a Wikipedia page,
first downloading the associated DBPedia OWL ontology and loading it in GF,
then expressing the query on the GF wizard and executing it. Like DBPedia,
iSparQL end-point [8], our system allows also us to enter a SPARQL query in
text form to be submitted against the current ontology loaded in the program.
Diaz et al. [9] present SPARQLByE (for SPARQL by Example) which is a front-
end for DBPedia where a naive user can input positive and negative examples
of what he desires, and then the system uses a reverse engineering heuristic to
induce a SPARQL query. As our system, SPARQLByE abstracts full IRIs and
works with joins and optional statements. Horridge and Musen [10] present Snap-
SPARQL, a Java framework for working with SPARQL and OWL, that includes
a parser, axiom template API, SPARQL algebra implementation, and graphi-
cal user interface components for reading, processing, and executing SPARQL

524

queries. Our system does this by using an auxiliary library and provides a visual
interface for the composition of queries. In brief, our solution provides a concrete
way of writing SPARQL queries over legacy data expressed as an OWL ontology
without requiring the user to know explicitly SPARQL syntax and it is available
as a downloadable standalone application unlike many of the solutions reviewed
here that are custom built for specific ontologies. However, referring to external
ontologies is not supported in the current version of GF’s implementation.

5 Conclusions and Future Work

We presented an extension for the GF framework for ontology integration to
allow a naive user to build SPARQL queries visually by using a Query-By-
Example approach. We presented several examples of how the approach works.
The limitations of our approach include that in its current state it is only capable
of working with a single data source comprised of an OWL ontology loaded into
memory. Then it does not allow to make use of several data sources at the same
time nor make the query refer to other data sources. We have not tested our
implementation with naive users to account for its usability in real cases. Part
of our current research is focused on solving these matters.

Acknowledgments. This work was supported by Secretaŕıa General de Ciencia y Técnica,

Universidad Nacional del Sur, Argentina, and by Comisión de Investigaciones Cient́ıficas

de la Provincia de Buenos Aires (CIC-PBA).

References

1. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American
284(5) (2001) 34–43

2. Xiao, G., Calvanese, D., Kontchakov, R., Lembo, D., Poggi, A., Rosati, R., Za-
kharyaschev, M.: Ontology-Based Data Access – A Survey. In: Proceedings of the
Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-
18). (2018) 5511–5519

3. Harris, S., Seaborne, A.: SPARQL 1.1 Query Language for RDF W3C recommen-
dation 21 march 2013 (2013) https://www.w3.org/TR/rdf-sparql-query/.

4. Gómez, S.A., Fillottrani, P.R.: Ontology Metrics and Evolution in the GF Frame-
work for Ontology-Based Data Access. In: Computer Science – CACIC 2021.
Springer International (2022)

5. Zloof, M.M.: Query by Example. In: NCC (proceedings). Volume 44. Anaheim,
California: AFIPS (May 1975)

6. Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description
Logic. Cambridge University Press (2017)

7. Atzori, M., Zaniolo, C.: Swipe: searching wikipedia by example. In: Proceedings
of the 21st International Conference on World Wide Web. (2012) 309–312

8. Grobe, M.: RDF, Jena, SparQL and the Semantic Web. In: SIGUCCS ’09: Pro-
ceedings of the 37th annual ACM SIGUCCS fall conference: communication and
collaboration. (oct 2009) 131–138

9. Diaz, G., Arenas, M., Benedikt, M.: SPARQLByE: querying RDF data by example.
Proceedings of the VLDB Endowment 9 (09 2016) 1533–1536

10. Horridge, M., Musen, M.: Snap-SPARQL: A Java Framework for Working with
SPARQL and OWL. In: International Experiences and Directions Workshop on
OWL. (04 2016) 154–165

525

	PAPERS - COMPLETO-v2 (2).pdf
	WISS - COMPLETO
	14166-CR 14316-paper_14166_camera_ready

