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Abstract: Caralluma europaea is a medicinal plant used in Morocco to cure a variety of illnesses.
This study was conducted to determine the chemical composition, the antioxidant, antiproliferative,
anti-inflammatory, and wound healing activities of C. europaea lipids. The chemical composition
of C. europaea was analyzed using time-of-flight mass spectrometry and high-performance liquid
chromatography. The antioxidant potential was determined using the 2,2-di-phenyl-1-picryl hy-
drazyl (DPPH), and ferric reducing antioxidant power (FRAP) tests. The antiproliferative effect
was evaluated by MTT assay against HL60, K562, Huh-7 cancer cells, and normal Vero cells. The
anti-inflammatory potential was conducted against carrageenan-induced paw edema. The wound
healing effect was evaluated against skin burns for 21 days. The identified phytochemical compounds
were docked for their effect on nicotinamide adenine dinucleotide phosphate oxidase, caspase-3,
lipoxygenase, glycogen synthase kinase-3-β, and protein casein kinase-1. The results showed the
presence of some lipids, such as linoleic acid and vitamin D3. The DPPH (IC50 = 0.018 mg/mL)
and FRAP (EC50 = 0.084 mg/mL) of C. europaea lipids showed an important antioxidant effect. For
the anti-inflammatory test, an inhibition of 83.50% was recorded after 6 h of treatment. Our ex-
tract showed the greatest wound retraction on the 21st day (98.20%). C. europaea lipids showed
a remarkable antitumoral effect against the K562 cell line (IC50 = 37.30 µg/mL), with no effect
on Vero cells (IC50 > 100 µg/mL). Lignoceric acid was the most active molecule against caspase-3
(−6.453 kcal/mol). The findings indicate the growing evidence of C. europaea as a potential treatment
for several diseases.

Keywords: Caralluma europaea; MicroTOF; HPLC; antioxidant; wound healing; inflammation; cell
survival; leukemia; hepatocellular carcinoma; Vero cells; molecular docking

1. Introduction

Under normal physiological conditions, free radicals are constantly produced by
our body to control the transduction of many signaling pathways such as tumor cell

Separations 2023, 10, 172. https://doi.org/10.3390/separations10030172 https://www.mdpi.com/journal/separations

https://doi.org/10.3390/separations10030172
https://doi.org/10.3390/separations10030172
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/separations
https://www.mdpi.com
https://orcid.org/0000-0002-8068-3627
https://orcid.org/0000-0002-8846-6299
https://orcid.org/0000-0001-6614-9594
https://orcid.org/0000-0003-4706-4311
https://orcid.org/0000-0001-9258-3108
https://orcid.org/0000-0001-9001-7954
https://orcid.org/0000-0001-6609-0094
https://doi.org/10.3390/separations10030172
https://www.mdpi.com/journal/separations
https://www.mdpi.com/article/10.3390/separations10030172?type=check_update&version=1


Separations 2023, 10, 172 2 of 16

apoptosis, immune cell activation, and cell differentiation [1]. This production is controlled
by endogenous enzymes present naturally in the body. Increased levels of free radicals can
lead to oxidative stress, which is the origin of the promotion and progression of several
illnesses, such as inflammation and cancer [2]. Furthermore, inflammation is one of the
essential phases of the wound healing process and is considered an early innate immune
response to tissue damage [3]. On the other hand, advances in medical science have not
eliminated cancer as one of the leading causes of related death in the world [4].

Throughout history, medicinal plants have been used as a remedy for the treatment of
various illnesses. Nowadays, these plants and their by-products still occupy an important
place as safe and effective agents for the treatment of many diseases [5]. Consequently, to
reduce the risks associated with excessive free radicals, scientists are interested in studying
natural antioxidants. In this context, several compounds have been studied for their
pharmacological effects including vitamins, polyphenols, saponins, and lipids [6].

Lipids are primary plant metabolites; these compounds are mainly involved in the
basic vital functions of the plant and provide various pharmacological effects. Modern
chemistry showed the involvement of primary plant metabolites, e.g., lipids, in fundamen-
tal biological processes such as cell division, respiration, and reproduction [7]. Moreover,
plant lipids have been reported in several studies to possess beneficial health effects [8,9].
In addition, many fatty acids from plants have been reported as excellent antioxidants for
the treatment of cancer and inflammation [10–12].

Medicinal plants’ potential to cure illnesses, such as inflammation, skin burn, and
cancer, inspired researchers to study their pharmacological effects [13]. Caralluma europaea
(Guss.) (Apocynaceae) is one of such plants used in popular Moroccan phytomedicine to
treat several illnesses including inflammation, hepatotoxicity, and cancer [14–16]. Generally,
this plant is grown in some Mediterranean countries such as Libya, Egypt, Italy, Algeria,
Spain, and Tunisia [17]. The chemical composition of C. europaea is widely studied and
numerous studies have been reported on the phytochemical characteristics of different
extracts and essential oil of this plant [18,19].

Until now, there have been no studies on C. europaea lipids. The current study aims to
determine the chemical composition of C. europaea lipids, and to determine its antioxidant,
cytotoxic, anti-inflammatory, and wound healing properties. In order to understand the
chemical properties of the identified compounds, in silico study was conducted with
the main compounds on NADPH oxidase, caspase-3, lipoxygenase, glycogen synthase
kinase-3β, and protein casein kinase-1.

2. Material and Methods
2.1. Plant Material

The aerial parts of C. europaea were harvested in April 2021, around the Middle Atlas
Mountains of Morocco (30◦40′48′′ N 9◦28′58′′ W). The identification of the plant was carried
out by a botanist (Amina Bari), and a reference specimen has been stored in the herbarium
of the biology department (USMBA, Fez, Morocco), under voucher number “18I4C001”.
The plant was washed, cut, and dried in an oven (40 ◦C), then ground into a fine powder
using an electric grinder (Figure 1). This plant was chosen based on the findings of our
botanical study conducted in the Fez-Meknes region [14].

2.2. Preparation of Lipids Extract

One hundred grams of C. europaea powder was mixed with a solution of 200 mL
of methanol and 100 mL of chloroform. To this mixture, 100 mL chloroform was then
added and after blending, 100 mL of distilled water was added. The obtained solution was
filtered using Whatman filter paper. After separation and clarification of the filtrate, the
chloroform layer was recorded and the methanol layer was aspirated out. The chloroform
layer contains C. europaea lipids [20]. The yield of C. europaea lipids was 21.997%.



Separations 2023, 10, 172 3 of 16Separations 2023, 10, x FOR PEER REVIEW 3 of 17 
 

 

 
Figure 1. An aerial part of C. europaea. 

2.2. Preparation of Lipids Extract 
One hundred grams of C. europaea powder was mixed with a solution of 200 mL of 

methanol and 100 mL of chloroform. To this mixture, 100 mL chloroform was then added 
and after blending, 100 mL of distilled water was added. The obtained solution was fil-
tered using Whatman filter paper. After separation and clarification of the filtrate, the 
chloroform layer was recorded and the methanol layer was aspirated out. The chloroform 
layer contains C. europaea lipids [20]. The yield of C. europaea lipids was 21.997%. 

2.3. Animal Material 
Adult Wistar rats aged 2 months of both sexes were obtained from the animal house 

of the faculty of sciences Dhar El-Mahraz (USMBA, Fez, Morocco). They were kept under 
controlled laboratory conditions, with a day/night photoperiod of 12 h and a temperature 
of 23 ± 2 °C. Animals were allowed free access to water and food. All animal experiments 
were carried out in conformity with the ethical guidelines for the use and experimentation 
of laboratory animals [21]. 

2.4. Ointment Preparation 
The ointment was prepared following the method described by Mssillou et al. [22]. 

One gram of the lipids extract was melted in nine grams of Vaseline®. In a beaker put in a 
water bath at 50 °C, the lipids extract was added to Vaseline® and continuously stirred 
until homogeneous. The ointment was stored at 4 °C in airtight containers.  

2.5. Chemical Analysis of Lipids Compounds 
2.5.1. Solvents and Reagents 

Cholesterol, lauric acid, stearic acid, palmitic acid, myristic acid, ascorbic acid, tri-
chloroacetic acid, acetic acid, acetonitrile, methanol, chloroform, HL60 (ATCC® 
CCL-240TM), K562 (ATCC® CCL-243TM), Vero cell line, RPMI medium, sterile PBS, and 
MTT (3-(4,5-dimethyl thiazol-2-yl)-2, 5-diphenyl tetrazolium bromide) were purchased 
from Sigma Aldrich (Hamburg, Germany). 

2.5.2. Micro-TOF Analysis  
Time-of-flight mass spectrometry (ESI-TOF MS; microTOF, Bruker Daltonics, Bre-

men, Germany), was used for the chemical screening of C. europaea lipid extract. The set-
tings for the negative ionization mode were kept equal for all measurements. The pulse 
frequency was 10 × 1.1 Hz, the capillary voltage was 5000 V, the pressure of the nebulizer 
gas was 0.7 bar, and the temperature and the flow rate of the drying gas were 250 °C and 
6 L min−1, respectively. All solutions were injected by a syringe pump (KDScientific, Hol-
liston, USA) using a rate of 240 mm3/h. The instrument was calibrated before each analysis 

Figure 1. An aerial part of C. europaea.

2.3. Animal Material

Adult Wistar rats aged 2 months of both sexes were obtained from the animal house
of the faculty of sciences Dhar El-Mahraz (USMBA, Fez, Morocco). They were kept under
controlled laboratory conditions, with a day/night photoperiod of 12 h and a temperature
of 23 ± 2 ◦C. Animals were allowed free access to water and food. All animal experiments
were carried out in conformity with the ethical guidelines for the use and experimentation
of laboratory animals [21].

2.4. Ointment Preparation

The ointment was prepared following the method described by Mssillou et al. [22].
One gram of the lipids extract was melted in nine grams of Vaseline®. In a beaker put in
a water bath at 50 ◦C, the lipids extract was added to Vaseline® and continuously stirred
until homogeneous. The ointment was stored at 4 ◦C in airtight containers.

2.5. Chemical Analysis of Lipids Compounds
2.5.1. Solvents and Reagents

Cholesterol, lauric acid, stearic acid, palmitic acid, myristic acid, ascorbic acid, tri-
chloroacetic acid, acetic acid, acetonitrile, methanol, chloroform, HL60 (ATCC® CCL 240TM),
K562 (ATCC® CCL 243TM), Vero cell line, RPMI medium, sterile PBS, and MTT (3-(4,5-
dimethyl thiazol-2-yl)-2, 5-diphenyl tetrazolium bromide) were purchased from Sigma
Aldrich (Hamburg, Germany).

2.5.2. Micro-TOF Analysis

Time-of-flight mass spectrometry (ESI-TOF MS; microTOF, Bruker Daltonics, Bremen,
Germany), was used for the chemical screening of C. europaea lipid extract. The settings for
the negative ionization mode were kept equal for all measurements. The pulse frequency
was 10 × 1.1 Hz, the capillary voltage was 5000 V, the pressure of the nebulizer gas was
0.7 bar, and the temperature and the flow rate of the drying gas were 250 ◦C and 6 L min−1,
respectively. All solutions were injected by a syringe pump (KDScientific, Holliston, MA,
USA) using a rate of 240 mm3/h. The instrument was calibrated before each analysis with
a sodium formate solution. Data processing was conducted with Bruker Daltonics Data
Analysis Version 3.3 software [23].

2.5.3. HPLCMSD Analysis

The chemical characterization of C. europaea lipids fraction was assessed using high-
performance liquid chromatography coupled with the single quadrupole MS detector,
conforming to the procedure previously described by Seal, with some adjustments [24].
The HPLC system (Agilent Technologies; 6120; Helsinki, Finland) was equipped with a
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quaternary pump (G7111A) coupled with an MS detector (MS1 + TIC, MS1 − TIC). Under
the same conditions, a comparison with standard spectra of myristic acid, lauric acid,
stearic acid, cholesterol, and palmitic acid was used to identify lipids in the C. europaea
extract. Lipids fraction and standards were filtered through a membrane filter (13 mm
syringe filter, 0.2 µm PTFE membrane). Then, 5 µL of C. europaea lipids was injected over
a C18 ZORBAX Eclipse Plus (4.6 × 150 mm) column at a flow rate of 0.7 mL/min with
the temperature adjusted to 30 ◦C. The MS was done with electrospray ionization (ESI);
the mobile phase was composed of acetic acid 0.1% (A) and acetonitrile (B), with a total
running time of 65 mn.

2.6. Antioxidant Effect
2.6.1. Free Radical-Scavenging Capacity (DPPH)

DPPH solution was obtained by mixing 4 mg of DPPH with 100 mL of methanol. An
amount of 20 µL of the C. europaea lipids in different concentrations were combined with
the DPPH solution (60 µM). After 2 h of incubation, the optical density was determined at
517 nm [25]. Ascorbic acid served as a reference. The inhibition percentage of DPPH• was
evaluated as follows:

IP(%) =
A0−A

A0
∗ 100

IP (%): Inhibition percentage of DPPH radicals;
A0: Absorbance of DPPH without lipid fraction;
A: Absorbance of DPPH with lipid fraction.

2.6.2. Ferric Reducing Antioxidant Power (FRAP)

The ferric reducing antioxidant power of C. europaea extract was evaluated as described
by Oyaizu [26] with some changes. Firstly, 2.5 mL of the phosphate buffer solution and
2.5 mL of potassium ferricyanide (1%) were combined with 1 mL of C. europaea extract.
After the incubation of the obtained solution (20 min, 50 ◦C), 2.5 mL of trichloroacetic
acid (10%) was added. The obtained solution was centrifuged (10 min, 3000 rpm). Finally,
2.5 mL of the supernatant, 0.5 mL of FeCl3 (0.1%), and 2.5 mL of distilled water were mixed.
Optical density was performed at 700 nm using a spectrophotometer. The reference utilized
was ascorbic acid.

2.7. Cytotoxic Effect

C. europaea lipids extract was evaluated for its cytotoxicity using the MTT assay (INPA,
Manaus, Brazil). HL60 (ATCC® CCL 240TM), K562 (ATCC® CCL 243TM), Huh-7, and Vero
(kidney cells isolated from an African green monkey) cell lines (2 × 104) were added into a
96-well microplate containing 0.2 mL of RPMI medium per well, for 24 h, at 37 ◦C and 5%
of CO2. Next, the tested cell lines were treated with different doses of C. europaea extract
diluted in DMSO 0.05% before being incubated for 24, 48, and 72 h. Negative and positive
controls were sterile PBS and DMSO 100%, respectively. Each well’s medium was taken out
and 10 µL of diluted MTT was added. After 4 h of incubation, the MTT was removed and
50 µL of MTT solubilization buffer was added to each well; then the mixture was incubated
(10 mn, 37 ◦C). The optical density of the tested extract was determined at 570 nm. The
relative cell survival was evaluated with the following formula:

Relative cell survival =
Optical density of treated cells

Optical density of untreated cells
∗ 100

2.8. Anti-Inflammatory Activity

The anti-inflammatory activity of C. europaea lipids was assessed using carrageenan-
induced paw edema. The animals were divided into three groups (n = 5), then treated
as follows:

Group 1: Vaseline®, (Negative control);
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Group 2: Diclofenac 1%, (Positive control);
Group 3: Lipids fraction of C. europaea.
Ninety minutes after the topical application of C. europaea lipid extract, 0.1 mL of car-

rageenan (0.5%) was injected into the right-hand paws of the animals. The basal paw size was
measured before the injection of carrageenan, and after 3 h, 4 h, 5 h, and 6 h of treatment [27].
The inhibition of edema (%) was calculated according to the following formula:

% inhibition =
(St− S0) control− (St− S0) treated

(St− S0) control
∗ 100

St: Paw diameter after the injection of carrageenan.
S0: Basal paw diameter before the injection of carrageenan.

2.9. Wound Healing Activity

Male Wistar rats were divided into three groups. Pentobarbital (50 mg/kg) was
injected intraperitoneally to anesthetize the animals, and after shaving their dorsal areas,
burns were applied using a burn set with a heated aluminum rod (100 ◦C, 1.5 cm). The
treatment began 24 h after inducing burns. Ointments were applied daily for 21 days to the
entire wound area. The burned area of all rats was photographed using a digital camera
and a ruler as a scale. At the end of the study, skin burn images of each day were analyzed
using ImageJ software to calculate the wound contraction percentage. Madecassol® 1%
served as positive control [22].

Ointments were applied daily for 21 days, over the entire surface of the wound.
Fifteen rats were divided into three groups (n = 5), and treated as follows:
Group 1: Vaseline® (Negative control).
Group 2: Madecassol® 1% (Positive control).
Group 3: Lipids formulation of C. europaea (10%).
The following formula was used to calculate wounds contraction:

WC (%) =
(WS0−WSSD)

WS0
× 100

WC (%): Percentage of wound contraction (%),
WS0: Wound size on day of induction,
WSSD: Wound size on a specific day.

2.10. Molecular Docking

In this molecular docking study, we studied the various effects of all lipid compounds
revealed in C. europaea extract, including their antioxidant effect (NADPH oxidase), anti-
cancer effect (caspase-3), anti-inflammatory effect (lipooxygenase), and wound-healing
effect (GSK-3, and CK1).

All lipids identified in C. europaea by the MicroTOF method were uploaded in SDF
format from the PubChem database. Afterward, they were prepared using the LigPrep tool
in the Maestro Schrödinger Software V. 11.5. After the ionization states at pH 7.0 ± 2.0, each
ligand could produce a maximum of 32 stereoisomers. Using the protein data bank, the 3D
crystal structure of NADPH oxidase, caspase-3, lipoxygenase, casein kinase-1 (CK1), and
glycogen synthase kinase-3 (GSK3-β) were downloaded in PDB format, with the following
PDB IDs: 4EY7, 3GJQ, 6V99, 6GZD, and 1Q5K, respectively. The structure was prepared
and refined using the Protein Preparation Wizard of Schrödinger-Maestro version 11.5.
The OPLS3 force field was used to minimize the structure. The receptor grid was set and
the volumetric spacing was 20 × 20 × 20. SP flexible ligand docking was performed in
the Glide of Schrödinger-Maestro v11.5. The most energy-efficient positions were used to
determine the glide score of each identified molecule. The ligand’s best-docked position
with the lowest glide score value was noted for each ligand [13].
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2.11. Statistical Analysis

All statistical analyses of the obtained results were done through GraphPad Prism
(GraphPad 5 software, La Jolla), using one-way ANOVA followed by Dunnett’s post hoc
test. Results were expressed as mean ± SEM. Values are considered significant at * p < 0.05,
** p < 0.01, *** p < 0.001, and **** p < 0.0001.

3. Results
3.1. Chemical Analysis
3.1.1. MicroTOF Analysis

In the present research, microTOF analysis provides screening information on the
lipid composition of C. europaea fraction. The microTOF analysis revealed the presence
of palmitic acid, myristic acid, lignoceric acid, linoleic acid, behenic acid, arachidic acid,
stearic acid, and vitamin D3 (Figure 2; Table 1).
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Figure 2. Micro-TOF profile of lipids extracted from C. europaea.

Table 1. Compounds revealed in lipids extract of C. europaea.

Pic Identified Compound Formula MW Theoretical [M-H]− Found [M-H]− Error [ppm]

1 Myristic acid C14H28O2 228.37 227.2017 227.2041 10.765767

2 Palmitic acid C16H32O2 256.40 255.2329 255.2355 9.975

3 Linoleic acid C18H32O2 280.45 279.2330 279.2353 8.402

4 Stearic acid C18H36O2 284.48 283.2643 283.2661 6.517

5 Arachidic acid C20H40O2 312.53 311.2956 311.2248 −227.115

6 Behenic acid C22H44O2 340.58 339.3269 339.3299 8.977

7 Lignoceric acid C24H48O2 368.63 367.3582 367.3616 9.380

8 Cholecalciferol (Vitamin D3) C27H44O 384.65 383.3319 383.3561 63.026

The results of the identified molecules in C. europaea extract by MicroTOF analysis are
summarized in Table 1.

3.1.2. HPLCMSD Analysis

Compared with the standard retention time, the HPLCMSD analysis of lipids extracted
from C. europaea confirmed the presence of three potentially lipidic compounds: stearic
acid, palmitic acid, and myristic acid (Figure 3; Table 2).
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Figure 3. Total ion chromatogram of the lipids extracted from C. europaea.

Table 2. Compounds identified by HPLCMSD in lipids extract of C. europaea.

Peak Lipidic Compound RT (min) Formula

1 Stearic acid 52.192 C18H36O2

2 Palmitic acid 52.914 C16H32O2

3 Myristic acid 54.186 C14H28O2

The obtained results of the chemical analysis by HPLCMSD of C. europaea lipids are
summarized in Table 2.

3.2. Antioxidant Activity

The antioxidant effect of lipids extracted from C. europaea was evaluated by FRAP and
DPPH tests. Using the FRAP assay, the tested extract showed an important antioxidant
effect when compared with ascorbic acid, with an EC50 of 0.084 and 0.254 mg/ mL, respec-
tively. DPPH test showed an IC50 of 0.018 and 0.003 mg/mL for the lipids fraction and
ascorbic acid, respectively (Figure 4).
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Figure 4. Antioxidant potential of C. europaea lipids using FRAP (A) and DPPH (B) assays.

3.3. Cytotoxic Effect

C. europaea extract was evaluated for its cytotoxic effect on three cancer cell lines, K562,
HL60, and Huh-7, and on the normal Vero cell line. As shown in Figures 5 and 6, and Table 3,
C. europaea lipids extract was able to inhibit cell survival of K562 cells (IC50 = 37.30 µg/mL).
No cytotoxicity was observed on HL60, Huh-7, and Vero cells (IC50 > 100 µg/mL).
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Table 3. Cytotoxicity of C. europaea lipids.

IC50 (µg/mL)

Human chronic
myelogenous leukemia
(K562 cell line)

Human hepatocellular
carcinoma
(Huh-7 cell line)

Human acute
promyelocytic leukemia
(HL60 cell line)

Normal cell line
(Vero cells)

37.30 *** - >100 >100
*** Activity observed only during the 72 h of treatment.

To test the possibility of having a selective cytotoxic effect of C. europaea extract on
cancerous cells, but not on normal cells, we have tested the effect of our extract on normal
Vero cells.

Table 3 represents the results of half-maximal inhibitory concentration (IC50) of
C. europaea extract towards K562, HL60, Huh-7, and Vero cells by using the MTT test.

3.4. Anti-Inflammatory Activity

In comparison with the positive control (Diclofenac®), the topical application of
C. europaea lipid induced important anti-inflammatory activity. The treatment of rats with
C. europaea lipids inhibited paw edema, which reached 83.33% after 6 h of the treatment.
The obtained data did not show significant statistical results compared to Diclofenac®

(10 mg/Kg) (Table 4). Inhibition at 22.22% was observed in the group treated with
C. europaea lipids fraction, after 3 h of the carrageenan injection.

Table 4. Anti-inflammatory effect of lipid extract on carrageenan-induced paw edema in Wistar rats
after 3, 4, 5, and 6 h of the injection.

Treatment
Group

Initial Diameter
(cm)

Edema Diameter after the Injection of Carrageenan (cm)/Inhibition of Edema (%)

3 h 4 h 5 h 6 h

Vaseline 2.370 ± 0.049 2.670 ± 0.037 2.870 ± 0.037 2.838 ± 0.066 2.570 ± 0.020

Diclofenac®

(1%)
2.226 ± 0.035 2.424 ± 0.037 **

34%
2.358 ± 0.034 *

73.60%
2.302 ± 0.028

83.76%
2.256 ± 0.030

85%

Lipids CE
(10%) 2.417 ± 0.044 2.650 ± 0.050 *

22.33%
2.567 ± 0.067

70%
2.500 ± 0.057

82.27%
2.450 ± 0.050

83.50%

Results are statistically different from the negative control: * p < 0.05; ** p < 0.01.

3.5. Wound Healing Activity

In comparison with the groups of control animals, the topical application of the
lipid ointment derived from C. europaea accelerated the healing of the burns. The images
in Figure 7 showed the burn healing process for the control group animals, as well as
the group treated with the C. europaea lipid ointment. C. europaea ointment significantly
reduced wound contraction from the first to the last day. After the 21st day of the test,
topical application of C. europaea ointment led to wound closure. However, the wounds in
the positive control group (Madecassol®), and the negative control group (Vaseline®) did
not completely close (Figure 8).

The results of wound contractions during the 4th, 8th, 12th, 16th, and 21st days are
shown in Figure 8. The animals treated with the C. europaea lipid showed the highest
percentage of wound contraction on the 4th (17.96%), 8th (62.53%), 12th (79.79%), 16th
(93.88%), and 21st day (98.20%).
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3.6. Molecular Docking Study

Generally, the in silico study revealed that arachidic acid, lignoceric acid, and vitamin
D3 were the most active molecules. In anticancer activity, lignoceric acid and arachidic
acid were the most active molecules against caspase-3, with a bond energy of −6.453 and
−5.652 kcal/mol, respectively. For antioxidant activity, arachidic acid was the most active
molecule against NADPH oxidase with a glide score of −3.479 kcal/mol.

Two-dimensional and three-dimensional viewers of C. europaea lipid compounds
docked in the caspase-3 active sites demonstrated that lignoceric acid established three
hydrogen bonds with ARG C64, ARG D207, and GLN C161 residues, and one salt bridge
with ARG C64 residue. When arachidic acid was docked in the NADPH oxidase active
sites, it established one hydrogen bond with residue TYR 188 and a slat bridge with residue
LYS 187.
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Moreover, in silico evaluation of the anti-inflammatory effect of C. europaea lipid com-
pounds showed that vitamin D3 and arachidic acid were the most energetic molecules against
lipoxygenase with a glide score of−4.909 and−4.542 kcal/mol (Table 5). Two-dimensional and
three-dimensional viewers of vitamin D3 docked in the active site of lipoxygenase presented
the formation of one hydrogen bond with residue VAL 671 (Figures 9 and 10).

Table 5. Docking results with lipid compounds of C. europaea in the active site of caspase-3, NADPH
oxidase, lipoxygenase, CK1, and GSK3-β.

Molecules
Glide G Score (Kcal/mol)

3GJQ 2CDU 6GZD 1Q5K 3V99

Arachidic acid −5.652 −3.479 −2.853 −2.968 −4.542

Behenic acid −6.334 −2.929 −2.204 −1.817 −4.396

Lignoceric acid −6.453 −1.641 - −1.876 −2.177

Linoleic acid −4.141 −2.478 −1.26 −1.207 −1.992

Myristic acid −3.759 - - 0.042 −0.753

Palmitic acid −3.642 - - −0.46 −1.346

Stearic acid −3.7 −0.753 −0.636 −0.269 −0.637

Vitamin D3 −4.279 - - −4.538 −4.909
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actions of lignoceric acid with the caspase-3 active sites; (B): Interactions of arachidic acid with the
NADPH oxidase active sites; (C): Interactions of arachidic acid with the casein kinase-1 active sites;
and (D): Interactions of vitamin D3 with the lipoxygenase active sites.

Regarding healing activity, arachidic acid and vitamin D3 were the most active molecules
against CK1 and GSK3-β, respectively, with a glide energy of −2.853 and −4.538 kcal/mol,
respectively. Two-dimensional and three-dimensional viewers of arachidic acid docked in the
active site of CK1 revealed the formation of two hydrogen bonds with residues LYS 46 and
TYR 64, and one salt bridge with residue LYS 46.

Caspase-3 (PDB: 3GJQ), NADPH oxidase (PDB: 2CDU), casein kinase-1 (CK1) (PDB:
6GZD), glycogen synthase kinase-3 (GSK3-β) (PDB: 1Q5K), and lipoxygenase (PDB: 3V99).

Figures 9 and 10 shows the number and types of possible bonds between the ligands
and the active sites.

4. Discussion

For many centuries, people have been actively looking for effective natural remedies
extracted from plants to treat various illnesses [28]. Traditional medicine has motivated
researchers worldwide for many years because of its few negative effects and beneficial
impact on health. The World Health Organization stated that different drugs are obtained
from many medicinal plants [29]. In the present work, C. europaea lipids extract was evalu-
ated for its chemical composition, antioxidant effect, and as a treatment of inflammation,
skin injury, and cancer. The interaction of C. europaea lipidic compounds with the active
sites of NADPH oxidase, CK1, GSK3-β, lipoxygenase, and caspase-3 was also assessed
using a molecular docking study.

Chemical screening of C. europaea extract by MicroTOF revealed the presence of some
lipids, 7 fatty acids in particular comprised of 6 saturated (myristic acid, stearic acid, etc.)
and 1 polyunsaturated (linoleic acid) fatty acids, as well as vitamin D3 (Figure 2; Table 1).
Unfortunately, no studies have so far reported the presence of such compounds in the
extracts of this species. However, some other Caralluma species have been studied for their
fatty acid composition. The study conducted by Augustus et Seiler revealed the presence
of seven fatty acids in Caralluma attenuata Wight., including lauric, myristic, palmitic,
stearic, oleic, linoleic, and arachidic acid, with concentrations ranging between 29 and
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366 g/kg [30]. Furthermore, another study reported the presence of palmitic acid in one of
the Caralluma species, Caralluma retrospiciens (Ehrenb) [31]. Oleic acid has been reported in
the aqueous extract of Caralluma dalzielii N.E. Brown [32]. In this sense, fatty acids have
been proven for their biological properties and for being efficient for many pharmacological
activities [33,34].

The lipid extract showed a very interesting DPPH radical scavenging power. This
antioxidant effect may be associated with its phytochemical composition. Previous studies
have shown that myristic acid and vitamin D3 have strong antioxidant capacities [35,36].
NADPH oxidase enzymes have crucial functions as they regulate enzymatic sources of ROS.
Oxidative stress may be successfully reduced by inhibiting NADPH oxidases [37]. This
antioxidant potential may also be due to the effect of arachidic acid on NADPH oxidase.

Our findings demonstrated an important cytotoxicity of C. europaea lipids on K652
tumor cells without affecting the normal Vero cells (Figures 5 and 6); the observed effect
could be attributed to the apoptotic activity of fatty acids on tumor cells [38]. Caspase-3
inhibits free radical production and is required for the efficient execution of apoptosis [39].
Regarding the activation of caspase-3, lignoceric acid and arachidic acid showed strong
activity against the active site of caspase-3; these results may explain the cytotoxic effect
obtained for the lipid extract of C. europaea against the K652 cell line.

The lipids extract of C. europaea presented an important anti-inflammatory effect
(Table 4); our findings supported earlier research which showed that α-linoleic acid sup-
presses the production of the inflammatory genes of iNOS, COX-2, and TNF-α through
the inhibition of NF-κB and MAPKs in activated macrophages [40]. Previous studies
demonstrated that stearic acid has a powerful anti-inflammatory effect, and it is generally
linked to liver functions, including lipoprotein and cholesterol metabolism. Additionally,
stearic acid can suppress inflammatory cell accumulation in the liver by inhibiting NF-
κB activity [38]. Lipoxygenases are oxidative enzymes, which produce pro-inflammatory
mediators (leukotrienes), involved in the inflammatory reaction [41]. The molecular dock-
ing showed that vitamin D3 has an important effect on lipoxygenase, which may further
explain the anti-inflammatory effect of the lipid extract.

The skin is considered the largest organ of the human body and plays crucial roles
with aesthetic effect, therefore the management of skin wounds takes an important place in
medical science [42,43]. The wounds expose the internal structure of the skin directly to the
external environment which can cause severe infections. During the inflammatory phase,
the wound releases reactive oxygen species to promote cell proliferation, apoptosis, and
homeostasis [44,45].

The C. europaea lipid extract demonstrated a stronger wound healing effect (Figure 7);
early studies showed that Lucilia sericata fatty acids accelerate wound healing characterized
by faster healing time, due to their related high angiogenic properties [28]. Fatty acids are
considered to be useful compounds for promoting wound healing. Arachidonic acid is
metabolized by cyclooxygenase and lipoxygenase, and its metabolites act as mediators
for a number of processes, including angiogenesis, cellular growth, and the production
of extracellular matrix during the healing process. Such fatty acids are continuously
metabolized to create intracellular messengers, which in turn regulate a variety of biological
processes, including the proliferation of endothelial cells and angiogenesis [28]. Concerning
the wound healing effect, arachidic acid and vitamin D3 are the most active molecules
against CK1 and GSK3-β, which works with the healing effect of the lipid extract.

5. Conclusions

Caralluma europaea lipid extract has demonstrated antioxidant and cytotoxic effects
against K562 cancer cells without affecting the survival of the normal cell line (Vero), this
extract may have a selective anti-survival effect against leukemia. Topical application of
C. europaea lipids showed anti-inflammatory and wound-healing activities in rats, which
proved its importance as an alternative agent to fight skin burns and inflammatory dis-
eases. The molecular docking study revealed that C. europaea compounds might exert
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the antioxidant effect by NADPH oxidase inhibition; enhance wound healing via CK1
and GSK3-β inhibition; exert an anti-inflammatory effect via lipoxygenase inhibition; and
induce apoptosis via caspase-3 activation. Further studies are required for the optimization
and validation of this extract and its related lipid composition for therapeutic treatments.
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saline; PRO: proline; RPMI: Roswell Park Memorial Institute; TIC: total ion chromatogram; TOF: time
of flight; Tyr: tyrosine.
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