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Map distance is one of the key measures in genetics and indicates the expected number of crossovers between two loci. Map
distance is estimated from the observed recombination frequency using mapping functions, the most widely used of those,
Haldane and Kosambi, being developed at the time when the number of markers was low and unobserved crossovers had a
substantial effect on the recombination fractions. In contemporary high-density marker data, the probability of multiple crossovers
between adjacent loci is negligible and different mapping functions yield the same result, that is, the recombination frequency
between adjacent loci is equal to the map distance in Morgans. However, high-density linkage maps contain an interpretation
problem: the map distance over a long interval is additive and its association with recombination frequency is not defined. Here, we
demonstrate with high-density linkage maps from humans and stickleback fishes that the inverses of Haldane’s and Kosambi’s
mapping functions systematically underpredict recombination frequencies from map distance. To remedy this, we formulate a
piecewise function that yields more accurate predictions of recombination frequency from map distance. Our results demonstrate
that the association between map distance and recombination frequency is context-dependent and without a universal solution.

Heredity (2023) 130:114–121; https://doi.org/10.1038/s41437-022-00585-3

INTRODUCTION
Crossovers in meiosis break the physical linkage among loci and
allow formation of recombinant chromosomes and ensure
chromosome segregation in meiosis I (Koehler et al. 1996, Hassold
et al. 2021). Although crossovers and the resultant recombinations
have been studied for more than a hundred years (Sturtevant 1913;
Sturtevant 1915), many related questions remain unanswered. Due
to their profound importance in sexual reproduction, substantial
research efforts have focused on better understanding the among-
organism and individual variation of crossover rate (e.g., Stapley
et al. 2017; Haenel et al. 2018), and on the other hand, recent
technologies have been utilized for detecting recombinations at
the gamete level (Dréau et al. 2019; Bell et al. 2020; Yang et al.
2022). Crossovers also have implications for statistical properties
essential in population genetics, such as the variance of genetic
relatedness (Veller et al. 2020). However, one aspect that has
gained little attention in the era of high-throughput sequencing is
the interpretation of genetic map distances.
Recombinant gametes or offspring can be utilized to build

linkage maps that quantify the physical order and map distance
(i.e., expected number of crossovers) between loci. Map distances
are estimated with mapping functions that attempt to account for
the non-additivity of the recombination frequencies due to
multiple crossovers between adjacent loci. The two most widely
recognized mapping functions are probably those of Haldane
(1919) and Kosambi (1944), (e.g., Lynch and Walsh 1998; Visscher
et al. 2006; Hill and Weir 2011; Otto and Payseur 2019). However,
modern sequencing methods and increasing marker density have
reduced the utility of these functions in linkage map reconstruc-
tion; the probability of multiple crossovers between closely

positioned adjacent loci is negligible and all mapping functions
yield essentially the same result, r= d, where r is recombination
frequency and d is map distance in Morgans (e.g., Purcell et al.
2007). Map distances are estimated only for adjacent loci; they are,
by definition, additive over longer intervals. Consequently,
recombination frequencies over intermediate or long map
distances (e.g., 50 cM) do not follow any simple association.
Although the importance of mapping functions in linkage map

construction has decreased over time with increasing access to
dense marker data, inverse mapping functions have recently been
utilized to predict genetic shuffling in meiosis (Veller et al. 2019)
and from that the variance in genetic relatedness (Veller et al.
2020). It is technically trivial to translate map distance to
recombination frequency with an inverse of mapping function,
but as all mapping functions effectively yield the same map for
high-density data, it is not clear which inverse mapping function to
use. Veller et al. (2020) observed that empirical variance in genetic
relatedness among human (Homo sapiens) subjects did not match
those predicted with the inverse of Kosambi function, indicating
that the inverse of Kosambi function is invalid for translating map
distances into recombination frequencies.
Here, we show with empirical data from humans and from nine-

spined (Pungitius pungitius) and three-spined (Gasterosteus aculeatus)
sticklebacks, that the inverse of Kosambi, Haldane, or linear mapping
functions do not translate additive map distances correctly to
recombination frequencies. To that end, we propose a new approach
to translate map distances to recombination frequencies using a
piecewise function based on the probability of no crossovers between
the markers. We demonstrate this approach and its performance with
empirical data from humans, nine- and three-spined sticklebacks.

Received: 14 October 2022 Revised: 8 December 2022 Accepted: 8 December 2022
Published online: 24 December 2022

1Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki
FI-00014, Finland. 2Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki FI-00014, Finland. 3Area of Ecology and Biodiversity, School of Biological Sciences, The
University of Hong Kong, Kadoorie Biological Science Building, Pokfulam Road, Hong Kong SAR, China. Associate editor: Armando Caballero. ✉email: mikko.kivikoski@helsinki.fi

www.nature.com/hdy

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41437-022-00585-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41437-022-00585-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41437-022-00585-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41437-022-00585-3&domain=pdf
http://orcid.org/0000-0001-7105-651X
http://orcid.org/0000-0001-7105-651X
http://orcid.org/0000-0001-7105-651X
http://orcid.org/0000-0001-7105-651X
http://orcid.org/0000-0001-7105-651X
http://orcid.org/0000-0003-2768-1339
http://orcid.org/0000-0003-2768-1339
http://orcid.org/0000-0003-2768-1339
http://orcid.org/0000-0003-2768-1339
http://orcid.org/0000-0003-2768-1339
http://orcid.org/0000-0001-5389-6611
http://orcid.org/0000-0001-5389-6611
http://orcid.org/0000-0001-5389-6611
http://orcid.org/0000-0001-5389-6611
http://orcid.org/0000-0001-5389-6611
http://orcid.org/0000-0001-9614-0072
http://orcid.org/0000-0001-9614-0072
http://orcid.org/0000-0001-9614-0072
http://orcid.org/0000-0001-9614-0072
http://orcid.org/0000-0001-9614-0072
https://doi.org/10.1038/s41437-022-00585-3
mailto:mikko.kivikoski@helsinki.fi
www.nature.com/hdy


MATERIALS AND METHODS
Number of crossovers and recombination frequency
An odd number of gametic crossovers between two loci cause recombination,
and the recombination frequency of two loci is equal to the probability of an
odd number of gametic crossovers between them. Assuming that there is no
chromatid interference, any positive number of crossovers in the bivalent leads
to equal proportions of recombinant and non-recombinant gametes, while the
absence of crossovers between two loci always leads to non-recombinant
gametes. From this follows that recombination frequency, r, can be expressed
as a function of probability of no crossovers between two loci in the bivalent
p0, so that r=½(1− p0) (Mather 1938; Weeks et al. 2009). To translate map
distance into recombination frequency, the association between map distance
and p0 is necessary.

Map distance of two loci is the expected number of gametic crossovers
between them. However, the distance does not tell the variation around
the expectation or the likelihood for no bivalent crossovers (p0) in that
particular interval. Depending on the number of crossovers in the bivalent
and their localization, the same map distance can be associated with
different values of p0 and recombination frequency (Fig. 1). To address this
ambiguity, we formulate a piecewise function p0(k) that gives the
probability of no crossovers between the two loci in the bivalent with k
crossovers.

Derivation of p0(k)
For deriving the p0(k) function, a model of crossover localization per map
distance is needed. We assume that when there are k crossovers in the

Fig. 1 Number and location of crossovers affect the recombination frequency. A An example of a chromosome with always two crossovers
in the bivalent so that one occurs in the yellow and the other one in the blue area. The locations of the crossovers within their distinct regions
are independent. B The table shows the probability for 0, 1, or 2 crossovers between the markers (p0, p1, and p2, respectively) and the expected
number of crossovers in the bivalent, the resulting recombination frequency of the marker pair (in the gamete) and the estimated map distance
for every marker pair using different mapping functions. C Graph showing the relationship between the recombination frequency and map
distance with different mapping functions; the linear function was capped at 0.5, shown with the dashed line. Notably, intervals A–C, A–D, and
A–E have the same recombination frequencies but different map distances, whereas marker pairs A–C and B–D have the same map distances
but different recombination frequencies.
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bivalent they occur in k distinct regions, and within those regions the
exact localization is independent of other crossovers in the bivalent. Let d
be the map length of the whole chromosome. If there are k(k > 0)
crossovers in the bivalent, they are assumed to occur in k non-overlapping
regions of equal size, d

k, such that every crossover occurs in a different
chromosomal region. Within each region, their localizations are uniformly
distributed and independent across the regions. For a given marker pair,
p0 ¼

Pn
k¼0 P no crossoversj kð ÞP k crossoversð Þ ¼ Pn

k¼0 pkp0 kð Þ, where n is
the highest possible number of crossovers in the bivalent, pk is the
probability of k crossovers in the bivalent and p0(k) is the probability of no
crossovers between the markers when there are k crossovers in the
bivalent. For markers at map positions mi and mj (mj ≥mi), p0(k) is defined
as:

p0 kð Þ ¼

1; if k ¼ 0

1� mj�mij j
d
k

; if dmj
d
k
e ¼ dmi

d
k
e and k > 0

1� bi�mij j
d
k

� �
bj�mjj j

d
k

; if dmj
d
k
e � dmi

d
k
e ¼ 1 and k > 0

0; if dmj
d
k
e � dmi

d
k
e> 1 and k > 0

8>>>>>>><
>>>>>>>:

(1)

where dmi
d
k
e and dmj

d
k
e are the crossover regions of the markers mi and mj,

respectively, and bi and bj are the upper boundaries for these regions,
respectively, so that bi ¼ dmi

d
k
e d
k and bj ¼ dmj

d
k
e d
k. Notation ⌈⌉ refers to ceiling

function, and dmj
d
k
e is the least integer greater than, or equal to mj

d
k
.

This function is also applicable for multiple loci. In the case of three
markers (mi, mj, mk), the recombination frequencies derived with this
function meet the criteria rij þ rjk � rik , where rij, rjk, and rik are the
recombination frequencies between markers mi and mj, mj and mk, and mi

and mk, respectively (Karlin and Liberman 1978; Weeks 1994; see also
Supplementary Methods). Example of applying the function is presented in
Supplementary Fig. S1.
Our approach is built on three premises: (1) Absence of chromatid

interference; (2) even spacing of crossovers due to crossover interference;
and (3) the fact that the number of bivalent crossovers in meiosis I varies
across individuals, chromosomes, sexes, and species. The second and the
third premises have been demonstrated several times in the literature and
are merely facts. Crossover interference causes even distribution of
crossovers by their physical distances (micrometers) (Zhang et al. 2014;
Zickler and Kleckner 2015) and approximately by base pairs, as the
chromatin packing ratio per nucleus is roughly constant (see Supplemen-
tary Fig. S2 in Veller et al. 2019). However, the spatial distribution per map
distance cannot be concluded directly. The number of crossovers per
chromosome is not constant but varies between chromosomes, nuclei,
individuals, sexes, and species (e.g., Stapley et al. 2017) and hence affects
the spatial distribution of crossovers (Charles 1938; Zhang et al. 2014).
While the absence of chromatid interference is a common assumption in
the literature (e.g., Weinstein 1936; Zhao and Speed 1996; Sandor et al.
2012), this has been empirically tested and confirmed only in a few
organisms, including humans and yeast (Zhao et al. 1995; Mancera et al.
2008; Hou et al. 2013; Wang et al. 2019).
In contrast to existing mapping functions, the proposed model is not

based on the renewal process (Zhao and Speed 1996) and it does not
model crossover interference parametrically. Instead, crossover interfer-
ence is implemented structurally by assuming that crossovers occur in
close proximity less often than would be expected by chance in the
absence of crossover interference.
We applied the function for sex-specific recombination data in the 21

chromosomes of nine- and three-spined sticklebacks and in the 22 human
autosomes. The total map lengths were derived from the linkage maps and
the likelihoods for different numbers of crossovers in the bivalent were
inferred from the observed number of crossovers (see ‘Inference of
crossover frequency’ below). Implementation of the p0(k) function in R is
provided in the ‘Data availability’ section.

Stickleback linkage maps
The crossover frequencies and locations were estimated from the linkage
maps described in Kivikoski et al. (2021). For the nine-spined stickleback,
high-density linkage maps (22,468 markers informative to conclude
crossover) were reconstructed with Lep-MAP3 software (Rastas 2017) from
a data set of 133 parents and 938 F1 offspring. The parental fish, 46 females
and 87 males, were wild-caught individuals from the Baltic Sea coast of
Finland (Helsinki, 60 °13’N, 25 °11’E) that were artificially crossed in

laboratory to produce the aforementioned F1 offspring (Kivikoski et al.
2021, see also Rastas et al. 2016). Five females were each crossed with a
different male, forming five full-sib families, and the other 41 females were
each crossed with two different males, which formed 41 half-sib families.
Identification of the single nucleotide polymorphisms (SNPs) of the

parental and the F1 fish were based on whole-genome sequencing of the
parents (5–10X coverage; Illumina Hiseq platforms, BGI Hong Kong) and
DarTseq (Diversity Arrays Technology, Pty Ltd) genotyping of the F1 fish
(Kivikoski et al. 2021). The read mapping was conducted with BWA-mem
(ver. 0.7.15, Li 2013) and the variants were called with SAMtools mpileup
(ver 1.9, Li et al. 2009) following the Lep-MAP3 software pipeline (Rastas
2017). The linkage maps were built with Lep-MAP3, and the number of
paternal and maternal crossovers were inferred from the observed
changes in the haplotype phase of the F1 offspring. Crossovers could
not be inferred for four crosses with only single offspring, and the final
dataset included 934 offspring in total.
The three-spined stickleback linkage maps were based on previously

published sequencing data (Pritchard et al. 2017). In short, ninety wild-
caught parental fish (Baltic Sea, Helsinki, Finland, 60°13’N, 25°11’E) were
crossed such that the males (n= 30) were each crossed with two different
females (n= 60). This yielded 60 and 30 full-sib and half-sib families,
respectively, with 517 F1 offspring. Genotyping of the parental and the F1
fish were based on genotype-by-sequencing, according to the Restriction-
site Associated DNA (RAD) sequencing protocol of Elshire et al. (2011). The
crossing, rearing protocols and sequencing data are explained in more
detail in Leder et al. (2015) and Pritchard et al. (2017). For this study, the
RAD reads from Pritchard et al. (2017) were mapped to three-spined
stickleback reference genome (v4, Peichel et al. 2017) and the variants
were called following the Lep-MAP3 pipeline as for the nine-spined
sticklebacks. This yielded 28,187 informative markers to build linkage maps
with Lep-MAP3.
For all linkage maps (maternal and paternal maps of the nine- and three-

spined stickleback), the genetic distances between the adjacent markers
were calculated from recombination frequency with the Haldane mapping
function. The distances are additive for non-adjacent markers. There were,
on average, 1070 and 1342 markers per chromosome in the nine- and
three-spined stickleback maps, respectively. Hence, the inter-marker
distances were short: on average 19,571 bp corresponding to 0.054 cM
and 0.106 cM in the paternal and maternal maps of the nine-spined
stickleback, respectively, and 15,461 bp corresponding to 0.043 cM and
0.075 cM in the paternal and maternal maps of the three-spined
stickleback, respectively. As all conventional functions yield very similar
results for small recombination frequencies, the choice of the mapping
function has a minor impact on the map distances.

Analysis of human recombination data
To evaluate the general applicability of the new function, we analyzed human
data from Halldorsson et al. (2019). This consisted of sex-specific linkage maps
(their Supplementary Data S1 and S2) and the crossover data (their
Supplementary Data S4). Crossover locations and counts were obtained from
the column ‘medsnp’ of the sex-specific linkage maps for the 41,092 probands
with both paternal and maternal crossover information. All crossovers were
used irrespective of their status regarding the gene conversions (complex,
non-complex, or not assessed; see Halldorsson et al. 2019). Moreover, no
probands were discarded based on the total number of crossovers in them;
the highest number of crossovers per proband per chromosome was 17
maternal crossovers in chromosome 13. The number of markers in the linkage
maps ranged from 17,894 to 90,036 depending on the chromosome. We used
R (ver. 4.1.1 R Core Team 2018) with seed value 2021 to sample 1.5% of the
markers of every chromosome, which yielded 268–1351 markers (i.e.,
35,778–911,925 marker pairs) per chromosome. For every marker pair, we
estimated the sex-specific recombination frequency by calculating the
proportion of the studied probands (n= 41,092) with an odd number of
crossovers between the markers.

Inference of crossover frequency
Assuming there is no chromatid interference, the probability of observing k
crossovers in a randomly sampled meiotic product depends on the
number of crossovers in the bivalent so that PðkÞ ¼ n

k

� �
1
2

� �n
, where n is the

number of crossovers in the bivalent and 0 ≤ k ≤ n (Weinstein 1936). The
number of crossovers in the bivalent varies not only between the sexes
and chromosomes but also between individuals and individual meioses
(see Broman and Weber 2000 for an example). Therefore, the observed
crossovers in the gamete pool are a sample of crossovers from meioses
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with a different number of crossovers in the bivalent. As the sampling
function above is known, the multinomial distribution of the number of
crossovers in the bivalent can be estimated. We used the expectation-
maximization (EM) algorithm of Yu and Feingold (2001) to estimate the
multinomial distribution for different numbers of crossovers in bivalent.
The algorithm approximates the multinomial distribution that maximizes
the likelihood of the data consisting of the numbers of meiotic products
with 0 … N observed crossovers in each chromosome. According to Yu
and Feingold (2001), for data where the highest number of observed
crossovers in a single meiotic product is N, it is sufficient to estimate the
multinomial distribution between 0 and 2N−1. The algorithm was applied
separately for maternal and paternal crossovers and for each chromosome
by pooling all meiotic products (n= 934, n= 517, n= 41,092 for nine- and
three-spined stickleback and human data, respectively, Supplementary
Tables S1–S6). The estimated multinomial distribution includes the
maximum-likelihood estimate for no crossovers in the bivalent. We
applied the bootstrapping test of Yu and Feingold (2001) to estimate if,
in case of an estimate above zero, the deviation from that is statistically
significant (p < 0.05). For the chromosomes with non-significant p-values,
we used a restricted multinomial distribution that restricts the likelihood of
no crossovers to zero for further analyses. This choice was made to assume
the obligate crossover as a null hypothesis.
Chromosomes with p-value below 0.05 were chr15 of the three-spined

stickleback (paternal meioses) and in humans chr21 and chr22 (both
maternal and paternal meioses) and chr3 (paternal meioses). For humans,
meioses with no crossovers in chromosomes 21 and 22 have been
previously reported in cytological studies (e.g. Wang et al. 2017; Hassold
et al. 2021), but we are not aware of such findings for the chr3 and further
verification is needed. For the sticklebacks, this is the first study testing the
obligate crossover hypothesis.

Performance assessment of functions
The performance of p0(k) and the three inverse mapping functions in
predicting recombination frequency from map distance were assessed by
calculating the mean absolute error of the predictions and the intra-
chromosomal component of genetic shuffling, r (Veller et al. 2019). The
equations for the inverse mapping functions were: r ¼ 1

2 ð1� e�2dÞ (Haldane
1919), r ¼ 1

2 tan h 2dð Þ (Kosambi 1944), and
r ¼ d; when d � 0:5
r ¼ 1

2 ; whend > 0:5

�
(linear).

In all functions, r is the recombination frequency and d is the map distance in
Morgans.
The mean absolute error of the predicted recombination frequency was

calculated as 1
n

P
re � rp
�� ��, where re and rp are empirical and predicted

recombination frequencies per marker pair, respectively, and n is the total
number of marker pairs. The intra-chromosomal component of r is the part
of genetic shuffling due to crossover rate and localization. A higher
number of crossovers, and their even distribution increase r, while a low
crossover rate and terminal or aggregated localization decrease it. Here,
we calculated the intra-chromosomal component of r, by first predicting
the recombination frequency from map distance and then converting it to
shuffling according to Eq. (10) of Veller et al. (2019)

P
i < j rij=

Λ
2

� �
, where rij is

the rate of shuffling, i.e. recombination frequency of locus pair (i, j), Λ is the
number of loci, and Λ

2

� �
is the number of locus pairs.

RESULTS
Map distance and recombination frequency do not have a
fixed association
Mapping functions formulate a fixed association between recombi-
nation frequency and the expected number of crossovers in a
gamete, the map distance. However, the same additive map distance
can be associated with different recombination frequencies depend-
ing on the crossover positions and the context of the focal loci
(Fig. 1). This demonstrates that inverse mapping functions have
limitations in predicting recombination frequency from map
distance. Maternal crossovers in chromosome 8 of the nine-spined
stickleback have a distribution similar to the idealized example
(Fig. 2), suggesting that a structural model of crossover localization
may be applicable in predicting recombination frequency from map
distance. Another limitation of the mapping functions (and their
inverses) is that they do not account for the variation in the number
of bivalent crossovers. Inferred probabilities for bivalent crossover
counts show that the number of crossovers varies between sexes,
among chromosomes, and in meioses in all three studied species
(Fig. 3, Supplementary Tables S1–S6). This further indicates that the
inverse of the Kosambi or Haldane mapping function may not be
suitable for different species, sexes, or chromosomes.

Inverse Kosambi and Haldane mapping functions
underestimate recombination frequency
For the three studied species, empirical recombination
frequencies lie between the predictions of the inverse Kosambi
and linear function (Fig. 4, Supplementary Figs. S2–S4). This
shows that inverse Kosambi and Haldane mapping functions
systematically underestimate the recombination frequencies
and the linear function overestimates them. The poor perfor-
mance of the inverse Haldane function is not surprising as it
assumes no crossover interference. However, the fact that the
inverse Kosambi function, which does implement crossover
interference, systematically underestimates recombination fre-
quencies implies that its crossover interference model does not
reflect the underlying biology.

The new p0(k) function outperforms the existing functions
We evaluated the new function against existing functions by
calculating the mean absolute error of predictions and the intra-
chromosomal component of genetic shuffling for the two sexes of
three different species. The predictions made with the new p0(k)
function depict the pattern of empirical data (Fig. 4, Supplementary
Figs. S5–S7), and the mean absolute error of those predictions are
clearly lowest in five out of the six cases. In nine-spined stickleback
males, most meioses have one crossover and the linear function gives
a slightly lower error than p0(k) (Table 1). The excellent overall
performance (Supplementary Tables S7–S9) demonstrates that the

Fig. 2 Observed spatial distribution of maternal crossovers in gametes with two maternal crossovers. A Each dot corresponds to one
offspring (n= 265) and coordinates show the map positions of the two crossovers, ‘A’ referring to the crossover closer to chromosome start
and ‘B’ to the one closer to chromosome end (r= 0.029, p= 0.64). B Density plots show the distribution of the two crossovers. Densities are
calculated in 5 cM windows. In both panels, the dashed-line rectangles show the expected distribution of crossovers expected under the
model presented here.
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Fig. 4 Examples of empirical recombination frequencies (left panels) and predictions by the new function (right) in the nine-spined
stickleback (top), three-spined stickleback (middle), and human (bottom). Solid lines show the three inverse mapping functions; the linear
function was capped at 0.5, shown with the dashed line. Each orange and blue dot is a marker pair in maternal and paternal data, respectively.

Fig. 3 Observed (gametic) and inferred (bivalent) crossover frequency distributions in the nine-spined stickleback (P. pungitius), three-
spined stickleback (G. aculeatus), and human (H. sapiens). Each bar shows the proportion of offspring with a certain number of crossovers
(Observed) and the inferred proportions of meiosis with a certain number of crossovers in the bivalent in maternal and paternal meioses
(Inferred). The inference is based on the expectation-maximization algorithm by Yu and Feingold (2001). Chromosomes are ordered from
shortest to longest by length in base pairs. Crossover counts 6–11 and 12–21 are grouped for readability.
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new function works for different species and on different types of
chromosomes. Consistent with the mean absolute error, the new
function is superior when assessed on the intra-chromosomal
components of r estimated from the empirical and predicted
recombination frequencies. For each species and for both sexes, the
predictions made by the p0(k) function gave results closest to the
empirical results (Table 2), demonstrating its potential for the
application.
Altogether, our analyses show that the inverses of the Kosambi

and the Haldane mapping functions systematically underestimate
the recombination frequencies. Although the linear function
works for chromosomes with an overall crossover rate close to 1
(map length ca. 50 cM), the p0(k) function does not underestimate
the recombination frequency to the same extent as the other two
functions. Overall, the new p0(k) function gives qualitatively and
quantitatively the best results.

DISCUSSION
Intrinsic limitations of mapping functions
Map distance tells the expected number of crossovers between
two loci and can be used as a proxy of recombination; the
longer the map distance the higher the recombination
frequency. In principle, translating a map distance to a
recombination frequency is trivial, one only needs an inverse
of a mapping function such as Kosambi’s (1944) or Haldane’s
(1919). However, the problem with this approach is that in
modern high-density linkage maps, map distances of non-
adjacent loci are additive and an inverse mapping function is
not guaranteed to give the correct recombination frequency.
The intrinsic limitations of mapping functions, namely that they

describe the interference only at a general level and do not
account for the variation in the strength of crossover interference
or the number of crossovers, have been previously recognized
(Crow 1990; Zhao and Speed 1996; Otto and Payseur 2019).
However, empirical tests on the performance of inverse mapping
functions with modern data are scarce.

Inverse Kosambi and Haldane mapping functions err with
high-density data
Here, we demonstrated that additive map distance can yield an
array of different recombination frequencies (Fig. 1) and

showed with empirical data from humans and nine- and the
three-spined sticklebacks that the inverse of Kosambi and
Haldane mapping functions underpredict the recombination
frequencies (Fig. 4). We also formulated a new function that
outperforms those mapping functions in this task and yields
lower error (Table 1) and a more accurate estimate of genetic
shuffling (Table 2). The fact that inverse mapping functions fail
to predict recombination frequencies implies that those models
of crossover interference do not predict crossover localization
correctly.
Similar findings were reported by Veller et al. (2020), who

showed that the per-chromosome variances of genetic related-
ness estimated with the inverse of Kosambi function were higher
than those from cytological data that should approximate “true”
variance. Our results regarding both sexes of all three studied
species were concordant: inverse Kosambi and Haldane functions
systematically underpredict recombination frequencies and con-
sequently genetic shuffling (r), causing overestimation of variance
in genetic relatedness, which decreases as a function of r (Veller
et al. 2020).
Stickleback males have primarily one crossover per bivalent

(Fig. 3, Supplementary Tables S2 and S4) and in those
chromosomes the linear function had the best performance
(Supplementary Tables S7–S9). The linear function predicts
recombination frequency equal to map distance, whereas the
p0(k) gives the map distance per the total map length of the
chromosome, which yields an underestimate in certain chro-
mosomes. This indicates that the linear function is adequate
and should be preferred for chromosomes that mainly have one
bivalent crossover, especially in species where this is a norm,
such as in Caenorhabditis elegans (Meneely et al. 2002; Hollis
et al. 2020) or Lepidoptera (Davey et al. 2017).
Accurate estimates of recombination frequency are needed

in predicting genetic shuffling and from that the variance in
genetic relatedness. On the other hand, map distance per base
pair (cM/Mbp) is used as a measure of recombination in
comparative genomics, especially in non-model organisms
(Stapley et al. 2017; Martin et al. 2019). This metric is easy to
obtain from linkage maps, but as shown here, meaningful
interpretation of map distance requires knowledge of the
recombination process and interpretation with an inverse
mapping function can lead to biased estimates.

Table 2. Intra-chromosomal components of genetic shuffling (r) for autosomes.

Species Sex Haldane Kosambi Linear p0(k) Empirical

Human Paternal 0.012799 0.014872 0.016796 0.015558 0.015882

Maternal 0.018091 0.020133 0.021721 0.020672 0.020831

Nine-spined stickleback Paternal 0.007945 0.009261 0.01041 0.009627 0.009819

Maternal 0.01243 0.01449 0.01646 0.01509 0.01538

Three-spined stickleback Paternal 0.007979 0.009292 0.010406 0.009733 0.009648

Maternal 0.011867 0.013869 0.015800 0.014449 0.014815

The five columns show r calculated from the empirical recombination frequencies and those predicted by the four functions.

Table 1. Means of a per-marker pair absolute error in the predicted recombination frequencies for both sexes of the three study species.

Species Sex Haldane Kosambi Linear p0(k)

Human Paternal 0.0282 0.00936 0.00853 0.00375

Maternal 0.0257 0.00709 0.00823 0.00346

Nine-spined stickleback Paternal 0.0104 0.00442 0.00267 0.00302

Maternal 0.0417 0.0152 0.0154 0.00910

Three-spined stickleback Paternal 0.00867 0.00399 0.00311 0.00232

Maternal 0.0438 0.0167 0.0139 0.00981
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Limitations of the approach
In contrast to existing methods, the approach presented here
builds on the fact that the crossover rate varies among
organisms and meioses, which leads to differences in spatial
distributions of crossover sites, and this variation should be
implemented in the model. However, this approach requires
knowledge about the probability of different numbers of
crossovers in the bivalent, which is not needed by other
methods and that cannot be concluded directly from the total
map length. These can be inferred from gametic crossovers
obtained from linkage maps (as done here) or analysis of
haploid offspring (Liu et al. 2015). Alternatively, cytological
methods can be used to obtain the bivalent crossover counts
directly (Froenicke et al. 2002; Wang et al. 2017). Especially with
gametic crossovers that contain the sampling variance caused
by the fact that only two chromatids are involved in one
crossover event, the sample size must be sufficient to obtain
reasonably accurate probability distributions. Implicitly,
gametic crossovers were, as a null expectation, assumed to
present an unbiased sample of those in the bivalent and that
meiotic drive or selection for crossover count has not occurred.
However, effects of natural selection could also be involved, for
example if the offspring are studied in later life-stages instead
of direct investigation of gametes.
In the p0(k) function itself, the most important assumption is

the uniform distribution of crossovers per map distance and the
arbitrarily defined breakpoints of the “segments”. These
assumptions are simplifications that allow mathematically
tractable formula. The distribution of crossovers per map
distance can be studied from the gametic crossovers only to
some extent because they present a subset of those in the
bivalent. However, the likelihood for gametes with a certain
number of crossovers that show all bivalent crossovers can be
calculated and the inherent uncertainty can be estimated
(Supplementary Methods). Based on the distribution of gametic
crossovers per map distance, the assumptions of the model
approximate the data in many chromosomes (Supplementary
Figs. S8–S10). However, the non-random distribution of error
per map distance shows that all assessed functions have a
systematic bias (Supplementary Figs. S11–S13).
The motivation for the approach presented here came from

wild individuals of the nine-spined stickleback, which is not a
canonical organism to study crossovers. In contrast to humans for
example, the number of crossovers in meiosis varies very little,
especially in males. Despite the overall differences in crossover
rates (map lengths) of human and sticklebacks, the presented
method was demonstrated to work for human data as well.

CONCLUSIONS
The most salient finding of this study is that the inverse of the
Kosambi and the Haldane mapping functions systematically
underpredict recombination frequencies. Another caveat of
using inverse mapping functions to translate additive map
distances to recombination frequencies is that they yield one
prediction per map distance, which does not match empirical
findings. These findings demonstrate that (intermediate) map
distances must be interpreted with care and context-
specifically. We also formulated a piecewise function that
allows the association between map distance and recombina-
tion frequency to be ambiguous. The fact that this function
outperforms existing mapping functions in this task indicates
that its implementation of crossover interference is more
concordant with the data when compared with functions
devised earlier. However, the presented function does not
replace mapping functions in building linkage maps; it only
replaces their inverses in predicting recombination from map
distance.

DATA AVAILABILITY
The stickleback linkage maps and computer code for replication of the analyses of this
study are available in Github https://github.com/mikkokivikoski/InverseMappingFunctions.
The repository contains R functions to implement the p0(k) function and the EM algorithm
to estimate the bivalent crossover rates, as well as an example of how to run the
functions.
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