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Abstract
We present a new semi-external algorithm that builds the Burrows–Wheeler transform variant of
Bauer et al. (a.k.a., BCR BWT) in linear expected time. Our method uses compression techniques
to reduce the computational costs when the input is massive and repetitive. Concretely, we build
on induced suffix sorting (ISS) and resort to run-length and grammar compression to maintain our
intermediate results in compact form. Our compression format not only saves space, but it also
speeds up the required computations. Our experiments show important savings in both space and
computation time when the text is repetitive. On average, we are 3.7x faster than the baseline
compressed approach, while maintaining a similar memory consumption. These results make our
method stand out as the only one (to our knowledge) that can build the BCR BWT of a collection
of 25 human genomes (75 GB) in about 7.3 hours, and using only 27 GB of working memory.
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1 Introduction

The Burrows–Wheeler transform (BWT) [6] is a reversible string transformation that reorders
the symbols of a text T according the lexicographical ranks of its suffixes. The features of
this transform have turned it into a key component for text compression and indexing [32, 25].
In addition to being reversible, the reordering produced by the BWT reduces the number
of equal-symbol runs in T , thus improving the compresibility. On the other hand, its
combinatorial properties [10] enable the creation of self-indexes [9, 28] that support pattern
matching in time proportional to the pattern length. Popular bionformatic tools [18, 21]
rely on the BWT to process data, as collections in this discipline are typically massive and
repetitive, and the patterns to search for are short.

There are several algorithms in literature that produce the BWT in linear time [34, 1,
23, 8, 3]. Nevertheless, the computational resources their implementations require when the
input is large are still too high for practical purposes. This problem is particularly evident
in Genomics applications, where the amount of data is growing at an astronomical rate [35].

Although genomic collections are becoming more and more massive, the effective inform-
ation they contain remains low compared to their sizes [27]. A promising solution to deal
with this kind of data is then to design BWT algorithms that scale with the amount of
information in the collection, not with its size.
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29:2 Efficient Construction of the BWT Using String Compression

Motivated by these ideas, some authors have developed new BWT algorithms that exploit
text repetitions to reduce the computational requirements [14, 5, 13, 15, 4]. Their approach
consists of extracting a set of representative strings from the text, perform calculations
on them, and then extrapolate the results to the copies of those strings. For instance,
the methods of Boucher et al. [5, 4] based on prefix-free parsing (PFP) use Karp–Rabin
fingerprints [12] to create a dictionary of prefix-free phrases from T . Then, they create a
parse by replacing the phrases in T with metasymbols, and finally construct the BWT using
the dictionary and the parse. Similarly, Kempa et al. [14] consider a subset of positions in T

that they call a string synchronizing set, from which they compute a partial BWT they then
extrapolate to the whole text.

Although these repetition-aware techniques are promising, some of them are at a theoret-
ical stage [14, 13, 15], while the rest [5, 4] have been empirically tested only under controlled
settings, and their results depend on parameters that are not simple to tune. Thus, it is
difficult to assess their performance under real circumstances.

Recently, Nunes et al. [31] proposed a method called GCIS that adapts the concept of
induced suffix sorting (ISS) for compression. Their ideas are closely related to the linear-time
BWT algorithm of Okanohara et al. [34]. Briefly, Okanohara et al. cut the text into phrases
using ISS, assign symbols to the phrases, and then replace the phrases with their symbols.
They apply this procedure recursively until all the symbols in the text are different. Then,
when they go back from the recursions, they induce an intermediate BWT i for the text of
every recursion i using the previous BWT i+1. On the other hand, GCIS stores the dictionaries
that ISS generates in the recursions in a context-free grammar. The connection between
these two methods is that GCIS captures in the grammar precisely the information that
Okanohara et al. use to compute the BWT. Additionally, Díaz-Domínguez et al. [7] recently
demonstrated that ISS-based compressors such as GCIS require much less computational
resources than state-of-the-art methods like RePair [19] to encode the data, while maintaining
high compression ratios. The simple construction of ISS makes it an attractive alternative to
process high volumes of text. In particular, combining the ideas of Okanohara et al. with
ISS-based compression is a promising alternative for computing big BWTs.

Our contribution. Induced suffix sorting (ISS) [17] has proved useful for compression [31, 7]
and for constructing the BWT [34]. In this work, we show that compression can be
incorporated in the internal stages of the BWT computation in a way that saves both
working space and time. Okanohara et al. [34] use ISS to construct the BWT in recursive
stages of parsing (which cuts the text into metasymbols) and partial construction of the
BWT of the metasymbols; the final BWT is obtained when returning from the recursion. We
use a technique similar to grammar compression to store the dictionaries of metasymbols, and
run-length compression for the partial BWTs. This approach is shown not only to save the
space required for those intermediate results, but importantly, the format we choose actually
speeds up the computation of the final BWT as we return from the recursion, because the
factorizations that help save space also save redundant computations. Unlike Okanohara
et al., we receive as input a string collection and output its BCR BWT [1], a variant for
string collections. The reason is that massive datasets usually contain multiple strings, in
which case the BCR BWT variant is simpler to construct. Our experiments show that,
when the input is a collection of human genomes (a repetitive dataset), our implementation
requires 3.7x less computation time than ropeBWT2 [21], an efficient implementation of the
BCR BWT algorithm. Additionally, we use 7.6x less working memory than pfp-ebwt [4], a
recent method that uses an strategy similar to ours. Under not so repetitive scenarios, our
performance is competitive with BCR_LCP_GSA [1] or gsufsort [8].
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2 Related Concepts

2.1 The Burrows–Wheeler Transform
Consider a string T [1, n − 1] over alphabet Σ[2, σ], and the sentinel symbol Σ[1] = $, which
we insert at T [n]. The suffix array [26] of T is a permutation SA[1, n] that enumerates
the suffixes T [i, n] of T in increasing lexicographic order, T [SA[i], n] < T [SA[i + 1], n], for
i ∈ [1, n − 1].

The Burrows–Wheeler transform (BWT) [6] is a reversible string transformation that
stores in BWT [i] the symbol that precedes the ith suffix of T in lexicographical order, i.e.,
BWT [i] = T [SA[i] − 1] (assuming T [0] = T [n] = $).

The mechanism to revert the transformation is the so-called LF mapping. Given an
input position BWT [j] that maps a symbol T [i], LF(j) = j′ returns the index j′ such
that BWT [j′] = T [i − 1] maps the preceding symbol of T [i]. Thus, spelling T reduces to
continuously applying LF from BWT [1], the symbol to the left of T [n] = $, until reaching
BWT [j] = $.

The BCR BWT [1] is a variant of the original BWT that encodes a string collection
T = {T1, T2, . . . , Tk} instead of a single string T . Briefly, if two (or more) symbols a =
Tx[k] and b = Ty[k′], from different strings Tx, Ty ∈ T , are preceded by identical suffixes
Tx[k + 1..] = Ty[k′ + 1..], the order of a and b in BWT is the same as the relative order of Tx

and Ty in T . The BCR BWT also appends sentinel symbols $ to the strings of T to detect
their boundaries in the BWT. A position BWT [j] = $ represents the start of a string Tu,
and BWT [LF(j)] maps the end of a string Tu′ ∈ T that is not necessarily Tu.

2.2 Grammar and Run-length Compression
Grammar compression [16] consists of encoding a text T as a small context-free grammar
G that only produces T . Formally, a grammar is a tuple (V, Σ, R, S), where V is the set of
nonterminals, Σ is the set of terminals, R is the set of replacement rules and S ∈ V is the
start symbol. The right-hand side of S → C ∈ R is referred to as the compressed form of T .
The size of G is usually measured in terms of the number of rules, the sum of the lengths of
the right-hand sides of R, and the length of the compressed string.

Run-length compression encodes the equal-symbol runs of maximal length in T as pairs.
More specifically, T becomes a sequence (a1, l1), (a2, l2), . . . , (an′ , ln′) of n′ ≤ n pairs, where
every (ai, li), with i ∈ [1, n′], stores the symbol ai ∈ Σ of the ith run and its length li ≥ 1.
For instance, let T [i, j] = aaaa be a substring with four consecutive copies of a, where
T [i − 1] ̸= a and T [j + 1] ̸= a. Then T [i, j] compresses to (a, 4).

2.3 Induced Suffix Sorting
Induced suffix sorting (ISS) [17] computes the lexicographical ranks of a subset of suffixes in
T and then uses the result to induce the order of the rest. This method is the underlying
procedure in several algorithms that build the suffix array [30, 29, 22] and the BWT [34, 5]
in linear time. The ISS idea introduced by the suffix array algorithm SA-IS of Nong et al. [30]
is of interest to this work. The authors give the following definitions:

▶ Definition 1. A symbol T [i] is called L-type if T [i] > T [i + 1] or if T [i] = T [i + 1] and
T [i + 1] also L-type. On the other hand, T [i] is said to be S-type if T [i] < T [i + 1] or if
T [i] = T [i + 1] and T [i + 1] is also S-type. By definition, symbol T [n], the one with the
sentinel, is S-type.

CPM 2022
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▶ Definition 2. A symbol T [i], with i ∈ [1, n], is called leftmost S-type, or LMS-type, if T [i]
is S-type and T [i − 1] is L-type.

▶ Definition 3. An LMS substring is (i) a substring T [i, j] with both T [i] and T [j] being LMS
symbols, and there is no other LMS symbol in the substring, for i ̸= j; or (ii) the sentinel
itself.

SA-IS is a recursive method. In every recursion i, it initializes an empty suffix array Ai

for the input text T i (i=1). Then, it scans T i from right to left to classify the symbols as
L-type, S-type or LMS-type. As it moves through the text, the algorithm records the text
positions of the LMS substrings in Ai. More specifically, if T i[j] = a is the first symbol of an
LMS substring, it inserts j in the right-most empty position in the bucket a of Ai. After
scanning T i, SA-IS sorts the LMS substrings in Ai using ISS. This procedure only requires
two linear scans of Ai (we refer the reader to Nong et al. [30] for further detail).

ISS sorts the LMS substrings in a way that is slightly different from lexicographic ordering,
we refer to it as ≺LMS ordering. In particular, if an LMS substring T i[a, b] is a prefix of
another LMS substring T i[a′, b′], then T i[a, b] gets higher order. However, the higher rank of
T i[a, b] implies that the suffix T i[a..] is lexicographically greater than the suffix T i[a′..]. The
cause of this property is explained in Section 2 of Ko and Aluru [17].

The idea now is to use the sorted LMS substrings to induce the order of the suffixes in T i

that are not prefixed by LMS substrings. Still, LMS substring with the same sequence are
still unsorted in Ai. Nong et al. solve this problem by creating a new string T i+1 in which
they replace the distinct LMS substrings with their orders in Ai, and use T i+1 as input for
another recursive call i + 1. The base case for the recursion is when all the suffixes in Ai are
prefixed by different symbols, in which case they return Ai without further processing.

When the (i + 1)th recursive call ends, the suffixes of T i prefixed by the same LMS
substrings are completely sorted in Ai+1, so SA-IS proceeds to complete Ai. For doing so, it
resets Ai, inserts the LMS substrings arranged as they respective symbols appear in Ai+1,
and performs ISS again to reorder the unsorted suffixes of T i. Once it finishes, it passes Ai

to the previous recursion i − 1. The final array A1 is the suffix array for T .

3 Methods

3.1 Definitions
We consider a collection T = {T1, T2, . . . , Tk} of k strings over the alphabet Σ[2, σ]. The
input for our algorithm is thus the sequence T = T1$T2 . . . Tk$ of total length n = |T | that
represents the concatenation of T . The symbol $ is a sentinel that we use as a boundary
between consecutive strings in T . We map $ = Σ[1] to the smallest symbol in the alphabet.

Let D = {D1, D2, . . . , Dy} be a string set that is not suffix-free. A suffix Dj [u..], with
Dj ∈ D, is proper if 1 < u ≤ |Dj |. Additionally, we consider a suffix Dj [u..], with Dj ∈ D,
to be left-maximal if there is at least one other suffix Dj′ [u′..], with Dj′ ∈ D, such that (i)
j ≠ j′, (ii) Dj′ [u′..] = Dj [u..], and (iii) both Dj′ [u′..] and Dj [u..] are proper suffixes with
Dj′ [u′ − 1] ̸= Dj [u − 1] or one of them is not a proper suffix.

3.2 Overview of Our Algorithm
We call our algorithm for computing the BCR BWT of T grlBWT. This method relies on the
ideas developed by Nong et al. in the SA-IS algorithm (Section 2.3), but includes elements of
grammar and run-length compression (Section 2.2). These new features reduce the space
usage of the temporal data that grlBWT maintains in memory, thus decreasing both working
memory and computing time. We now give a brief overview of our approach.
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Our method works in two phases: the parsing phase and the induction phase. The parsing
phase is similar to the recursive steps of SA-IS. In every iteration i (or parsing round), we
first scan the input string T i (T 1 = T ) to build a dictionary Di with the phrases that occur
as LMS substrings. We also record the frequency of every phrase, i.e., the number of times
it occurs as an LMS substring in T i. Subsequently, we use the phrases in Di and their
frequencies to construct a preliminary BWT for T i (pBWT i), which we complete in the
induction phase. We say pBWT i is partial because it has empty spaces we can not fill just
with the information in Di. To make the completion more efficient during the induction
phase, we encode pBWT i using run-length compression and Di using a technique similar to
grammar compression. Finally, we store pBWT i and Di on disk, and create a new text T i+1

for the next parsing round i + 1. We construct T i+1 by replacing the LMS substrings of T i

with their associated symbols in Di. The parsing phase finishes when no new dictionary
phrases can be extracted from the input text T i (see Section 3.3).

Let h be the number of iterations the parsing phase of grlBWT incurred with T . The
induction phase starts by building the BWT for T h. After obtaining BWT h, we start a new
iterative process in which we revisit the data we dumped to disk during the parsing phase in
reverse order (i.e., from round h − 1 to round 1). In every iteration i, the BWT i+1 of T i+1

is already computed, and we use it along with compressed version of Di to induce the order
of the symbols in the empty entries of pBWT i. Once we finish the induction, we compact
pBWT i using run-length encoding to create BWT i. The final BCR BWT for T is thus in
BWT 1.

3.3 The Parsing Phase

In this section, we explain the steps we perform during the ith iteration of the parsing phase
of grlBWT. Assume we receive as input a text T i over the alphabet Σi = [1, σi]. We first
initialize a hash table Hi that we will use to construct the dictionary Di. The keys in Hi

will be the phrases that occur as LMS substrings in T i while the values of Hi will be the
frequencies of the keys, i.e., the number of times the keys occur as LMS substrings in T i.

The basic idea to fill Hi consists of scanning T i from right to left to classify its symbols
according the definitions of Section 2.3, and hash an LMS subtring every time we reach an
LMS-type symbol. This mechanism is almost the same as the one described by Nong et
al. [30] to detect the LMS substrings (except for the hashing). However, we add an extra
consideration. The detection of LMS substrings is oblivious of the fact that T 1 encodes a
string collection rather than a single string. More precisely, in any parsing round i > 1, we
could have an LMS substring of T i whose expansion1 produces a substring of T 1 that covers
two or more strings of T . These border phrases make the computation of the BCR BWT a
bit more difficult as we need to treat them differently. We avoid this problem by maintaining
a bit vector Bi[1, σi] that marks which symbols in T i expand to suffixes of strings in T .
Thus, during the right-to-left scan of T i, each time we reach a position T i[j], such that
Bi[T i[j]] = 1, we truncate the active LMS substring. We record the phrase F = T i[j + 1, j′]
in Hi, where T [j′] is the last LMS-type symbol we accessed, and start a new phrase from
position T i[j]. Notice that the truncated strings are not LMS substrings by definition, but

1 Let T i[j, j′] be a substring of T i. We define the expansion of T i[j, j′] as the string in Σ1 we obtain
by recursively replacing every symbol T i[j] ∈ Σi, for j ∈ [j, j′], with its corresponding phrases in the
dictionaries Di−1, Di−2, . . . , D1.

CPM 2022



29:6 Efficient Construction of the BWT Using String Compression

they do not affect our algorithm (the reasons are explained in Definition 4 and Lemma 3 of
Díaz-Domínguez et al. [7]). We receive Bi as input along with T i at the beginning of the
parsing round i, and we compute the next Bi+1[1, σi+1] when we finish the round.

For practical reasons, we change the representation of Di, encoded in Hi for the moment,
to a more convenient data structure. First, we concatenate all the keys of Di in one single
vector Ri. We mark the boundaries of consecutive phrases in Ri with a bit vector Li in
which we set Li[j] = 1 if Ri[j] is the first symbol of a phrase, and set Li[j] = 0 otherwise. We
also augment Li with a data structure that supports rank1 queries [33] to map each symbol
Di[j] to its corresponding phrase. We store the values of Di in another vector N i[1, |Di|].
We maintain the relative order so that the value N i[o] maps the oth phrase we inserted into
Ri. For simplicity, we will refer to the representation (Ri, Li, N i) just like Di. We still need
Hi to construct the parse T i+1, so we do not discard it but store it into disk.

The next step is to build pBWT i from Di. For that purpose, we use the following
observations:

▶ Lemma 4. Let X[1, x] and Y [1, y] be two different strings over the alphabet Σi, with lengths
x > 1 and y > 1 (respectively). Assume both occur as suffixes in one or more phrases of Di.
Let X be the list of positions in T i where X occurs as a suffix of an LMS substring. More
specifically, each j ∈ X is a position such that T i[j, j + x − 1] is an occurrence of X and
T i[j − j′, j + x − 1], with j′ ≥ 0, is an LMS substring. Let us define a list Y equivalent to X ,
but for Y . If X ≺LMS Y (see Section 2.3), then all the suffixes of T i starting at positions in
X are lexicographically greater than the suffixes starting at positions in Y.

Proof. Assume first that X is not a prefix of Y (and vice versa). We compare the sequences
of these strings from left to right until we find a mismatching position u (i.e., X[u] ̸= Y [u]).
We know that symbols X[u] and Y [u] define the lexicographical order of the suffixes in X
relative to the suffixes in Y. In the other scenario, when one string is a prefix of the other,
we can not use this mechanism as we will not find a mismatching position X[u] ̸= Y [u]. For
this case, we resort to the symbol types of Section 2.3. We assume for this proof that X is
a prefix of Y , but the other way is equivalent. We know that X[x] and Y [x] have different
types. X[x] is LMS type because X is a suffix of an LMS substring. On the other hand, Y [x]
is L type because if it were S type, then it would also be LMS type, and thus Y [1, x] would
be an occurrence for X. This observation is due to Y [x − 1] = X[x − 1] is L type. Given
the types of X[x] and Y [x], the occurrences of X in X are always followed in T i by symbols
that are greater than Y [x + 1], meaning that the suffixes of T i starting at positions in X are
lexicographically greater than the suffixes starting at positions in Y. This observation does
not hold when X or Y have length one: X[x] equals Y [1] and both are LMS type, so there is
no enough information to decide the lexicographical order of the suffixes in X and Y. ◀

The consequence of Lemma 4 is that the suffixes of length > 1 in Di induce a partition
over SAi (the suffix array of T i):

▶ Lemma 5. Let S = {S1, S2, . . . , Sk} be the set of strings of length > 1 that occur as suffixes
in the phrases of Di. Additionally, let O = {O1, O2, . . . , Ok} be the set of occurrences in T i

for the strings in S. For every Su ∈ S, its associated list Ou ∈ O stores each position j such
that T i[j, j + |Sj | − 1] is an occurrence of Su and T i[j − j′, j + |Sj | − 1], with j′ ≥ 0, is an
LMS substring. It holds that O induces a partition over the suffix array of T i (SAi) as the
lexicographical sorting places the elements of each Ou ∈ O in a consecutive range of SAi.
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Proof. We demonstrate the lemma by showing that the lexicographical sorting does not
interleave suffixes of T i in SAi that belong to different lists of O. Assume a string Su ∈ S,
associated with the list Ou ∈ O, is a prefix in another string Su′ ∈ S, which in turn is
associated with the list Ou′ ∈ O. Even though we do not know the symbols that occur to the
right of Su in its occurrences of Ou, we do know that both Su and Su′ are suffixes of LMS
substrings, and by Lemma 4, we know that all the suffixes of T i in Ou are lexicographically
greater than the suffixes in Ou′ . Hence, the interleaving of suffixes in SAi from different lists
of O is not possible, even if S is not a prefix-free set. ◀

Lemma 5 gives us a simple way to construct the preliminary BWT for T i (pBWT i). We
consider for the moment pBWT i to be a vector of lists to simplify the explanations. We first
sort the strings of S in ≺LMS order. Then, for every oth string S ∈ S in ≺LMS order, we
insert in the list pBWT i[o] the symbols that occur to the left of S in Di. There are three
cases to consider for this task:

▶ Lemma 6. Let S ∈ S be the string with ≺LMS order o among the other strings in S. If S

is left-maximal in Di, then the list pBWT i[o] contains more than one distinct symbol, and it
is not possible to decide the relative order of those symbols with the information of Di.

Proof. Let X and Y be two phrases of Di where S occurs as a suffix. Assume the left symbol
of S in X is x ∈ Σi and the left symbol in Y is y ∈ Σi. In this scenario, the relative order of
x and y is not decided by S, but for the sequences that occur to the right of X and Y in T i.
However, those sequences are not accessible directly from Di. Hence, it is not possible to
decide the order of x and y in pBWT i[o]. ◀

▶ Lemma 7. Consider the string S ∈ S of Lemma 6. When S occurs as a non-proper suffix
in a phrase F ∈ Di, it is not possible to complete the sequence of symbols for pBWT i[o].

Proof. The symbols that occur to the left of S in T i are stored in the LMS substrings that
precede F in T i. However, it is not possible to know from Di which are those substrings. ◀

We now describe the information of pBWT i that we can extract from Di:

▶ Lemma 8. Let S ∈ S be the string of Lemma 6. Additionally, let O ∈ O be the list of
occurrences of S in T i as described in Lemma 5. If all the suffixes of T i in O are preceded
by the same symbol s ∈ Σi (i.e., S is not left-maximal), then pBWT i[o] = (s, l) is an
equal-symbol run of length l = |O|, where o is the ≺LMS order of S in S.

Proof. By Lemma 5, we know that the suffixes of T i in O are prefixed by S, and that they
form a consecutive range SAi[j, j′]. Additionally, the symbols that occur to the left of the
suffixes in SAi[j, j′] are those for the list of pBWT i[o]. However, we still have not resolved
the relative order of the suffixes in SAi[j, j′], so (in theory) we do not know how rearrange
the symbols in pBWT i[o]. The suffixes of T i in O are preceded by the same symbol s, so it
is no necessary to further sort SAi[j, j′] because the outcome for pBWT i[o] will be always
an equal-symbol run for s of length l = |O|. ◀

The problem is that we do not store O, so we do not know value for l in (s, l). Nevertheless,
we do have the frequencies of the phrases in Di, in the vector N i. In this way, we can
compute l by summing the frequencies in N i for the phrases of Di where S occurs as a suffix.

Now that we have covered all the theoretical aspects of the parsing phrase, we proceed to
describe our procedure to build pBWT i.
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3.3.1 Constructing the Preliminary BWT for the Parsing Round
The computation of pBWT i starts with the construction of a generalized suffix array SADi

for Di. We say SADi is generalized because it only considers the suffixes of the dictionary
phrases. If a string S ∈ S appears as a suffix in two or more phrases, those occurrences
maintain in SADi the relative order in which their enclosing phrases appear in Di. In practice,
the values we store in SADi are the positions in Ri, the vector storing the concatenated
phrases of Di (see the encoding of Di in Subsection 3.3).

We compute SADi using a modified version of the ISS method mentioned in Subsection 2.3.
The first difference is that, in step one, we insert in SADi the position in Ri of the last
symbol of each phrase. Put it another way, suppose Ri[j], with Li[j + 1] = 1, is the last
symbol of a phrase F , then we insert j in the right-most available cell in the bucket Ri[j] of
SADi . The step one in the original ISS puts LMS-type symbols at the end of the buckets. In
our case, the last symbol of a phrase is, by definition, LMS type in T i, so the operation is
homologous. The second difference of our ISS variation is that, during step two and three,
we skip each position SADi [u] representing the start of a phrase (Li[SADi [u]] = 1) as they
do not induce suffixes.

The next step is to scan SADi from left to right to compute pBWT i. From now on, we
consider pBWT i to be a run-length compressed vector instead of a vector of lists. As we
move throughout the suffix array, we search for every range SADi [j, j′], with j′ − j + 1 ≥ 1,
that encode suffixes with the same sequence2. Nevertheless, we consider only the ranges that
either represent suffixes of length > 1 or suffixes of length 1 that expand to suffixes of T .
Recall that the left-most symbol of an LMS substring is the same as the right-most symbol
of the LMS substring that precedes it. Hence, considering all the suffixes in Di will produce
a redundant (and incorrect) BWT. The only exception to this rule are the LMS substrings
at the beginning of the strings of T as they do not share a symbol with the LMS substring
to their left. This kind of substrings only appear when we cross from Tu+1 to Tu in T i, with
Tu, Tu+1 ∈ T . We can detect this situation using Bi, the bit vector marking the symbols in
Σi that expand to suffixes of strings in T (see Section 3.3).

We define the length of SADi [j, j′] as l =
∑j′

u=j N i[rank(Li, SADi [u])]. This value is the
sum of the frequencies of the phrases where the suffixes in SADi [j, j′] occur.

If all the suffixes of SADi [j, j′] are followed by the same symbol s ∈ Σi, we append (s, l)
to pBWT i (see Lemma 8). Otherwise we append (*, l). The symbol * represents an empty
entry and it is out of Σi. We will resolve (*, l) in the next phase of grlBWT (see Lemmas 6
and 7). After scanning SADi , we store pBWT i into disk and discard SADi .

3.3.2 Grammar Compression and Next Parsing Round
Once we finish constructing pBWT i, the next step in the parsing round i is to store Di in a
compact form to use it later during the induction phase of grlBWT. We first explain why we
need Di during the induction phase and then describe the format we choose to encode it.

Broadly speaking, the induction process consists of scanning BWT i+1 from left to right,
mapping every symbol BWT i+1[j] ∈ Σi+1 back to the phrase F ∈ Di from which it originated,
and then checking which of the proper suffixes of F produced empty entries in pBWT i (see
Lemmas 6 and 7). Assume the suffix F [u..] = S ∈ S produced an empty entry, then we
append F [u − 1] in the BWT range associated with S (see Lemma 5).

2 In practice, we compute every distinct range SADi [j, j′] during the construction of the suffix array.
We reserve the least significant bit in the cells of SADi to mark every position SADi [j]. We flag these
positions during the execution of our modified version of ISS (Section 2.3).
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The process described above requires Di and a mechanism to map the left-maximal
suffixes in Di back to the empty entries they produce in pBWT i. We solve the problem by
encoding Di with a representation that is similar to grammar compression (Section 2.2).

We start by discarding N i and the rank1 data structure, as they are no longer necessary
(see the current encoding of Di in Section 3.3). For our method to work, we also need each
string S ∈ S associated with an empty entry (*, l) of pBWT i to be a member of Di. This
property might not hold when the string S that produced an empty entry meets Lemma 6.
The problem arises if S always appears as a proper suffix in Di, not as a full phrase. If that
is the case, we create3 a new independent entry for S in Di.

After expanding Di, we create a hash table M i in which we insert each phrase F ∈ Di

occurring as a left-maximal suffix. If F has ≺LMS rank b in Di, then we insert the pair (F, b)
into M i, where F is the key and b is the value. Once we construct M i, we reorder the way
in which the phrases of Di are concatenated in Ri according to their ≺LMS ranks.

The next step consists of compressing Di. We scan Ri from left to right, and for
every F = Ri[j, j′] ∈ Di, with Li[j] = 1 and Li[j′ + 1] = 1, we search for the longest
proper suffix F [u..] that exists in M i as a key. If such key exists, then we replace F with
R[j, j + 1] = F [u − 1]·b′, where b′ is the value associated with F [u..] in M i. If no proper
suffix of F exists in M i, then we replace F as R[j, j + 1] = *·F [|F | − 1], where * is a dummy
symbol. After updating the sequence of F , we mark the symbols in R[j + 2, j′] as discarded
if j′ − j + 1 = |F | ≥ 2. When we finish the scan of the dictionary, we left-contract Ri by
removing the discarded symbols. This process reduces the phrases in Di to strings of length
two, so the vector Li is no longer necessary.

Now we explain the rationale of our encoding. We develop our argument as a chain of
implications. Consider again the phrase F , which we replaced with the sequence F [u − 1]·b′.
We obtained b′ ∈ Σi+1 when we performed a lookup operation of S = F [u..] in M i during
the compression of Di. The value b′ that the lookup returned is the ≺LMS order of S in Di.
The membership of S to the keys of M i implies that S appears as a left-maximal suffix in
Di, which in turn implies that S is a full phrase in Di too (we enforced this property when
we expanded the dictionary). Additionally, the left-maximal condition of S implies that
there were at least two suffix occurrences of S preceded by different symbols. This is why S

produces an empty entry in pBWT i. Now, recall that we sorted the phrases of Di in ≺LMS

order in Ri. Therefore, if we want to access S, we have to go to the substring Ri[2b′ − 1, 2b′].
This substring does not encode the full sequence of S, but its longest left-maximal suffix
Ri[2b] ∈ Σi+1 (which is also a left-maximal suffix of F ) along with the left-context symbol
for that suffix (Ri[2b − 1] ∈ Σi). Recursively, the longest left-maximal symbol of S is not a
sequence either, but a pointer to another position of Ri. We access this nested left-maximal
suffix by setting b′ = Ri[2b′] and updating the values Ri[2b′ − 1, 2b′]. We continue applying
this idea until we reach a range Ri[2b′ − 1, 2b′] where Ri[2b′] ∈ Σi, which implies that we
reached the last suffix of F . This last range will store the sequence *·F [|F | − 1]. Notice that
the right symbol in this case is not the last symbol of F but its left context F [|F | − 1]. This
is because the LMS substrings overlap by one character in T i, so F [|F |] is redundant as it
also appears as a prefix in another phrase. However, we need F [|F | − 1], as we will append it
to one of the empty entries of pBWT i in the next phase of grlBWT. The only exception to
this rule is when F expands to a suffix of a string in T . In that case, we store F [|F |] instead
of F [|F | − 1] in R[2b′ − 1, 2b′] as F [|F |] = Ri[2b′] is not a prefix in any other phrase. On the

3 It means we append the sequence of F at the end of Ri and expand Li accordingly.
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Figure 1 Parsing round i = 1 of grlBWT for the collection T = {gtacc, gtaatagtacc}, with
T = gtacc$gtaatagtacc$. (A) Construction of the dictionary D1 = {R1, L1, N1} from T 1 = T .
The sequence in gray below T 1 stores the symbol types: L-type is L, S-type is S and LMS-type is S∗.
The dashed vertical lines in R1 mark the boundaries between dictionary phrases. (B) Constructing
pBW T 1 from the suffix array SADi of Di. The ranges of SAD1 enclosed by dashed boxes produce
empty entries in pBW T i. Notice we do not use the entries SADi [5, 7] = 3, 7, 11 for computing
pBW T 1 as their corresponding symbols are redundant. For instance, consider R1[3] = a, which is a
suffix in R1[1, 3] = gta. The last symbol in the occurrences of gta in T 1 overlaps the first symbol
of acc$ or aata. Therefore, the symbol R1[3] = a of gta is covered by acc$ or aata in pBW T 1.
We represent pBW T 1 as a sequence of equal-symbol runs. The upper row depicts the run symbols
while the lower row show the run lengths. (C) Compressing D1. The strings at the top are the
dictionary phrases sorted in ≺LMS order. We add the string ta to the dictionary as it appears as a
left-maximal suffix in Di, and hence, produces an empty entry in pBW T 1. The sequences in gray
are the longest left-maximal suffixes of the phrases. The underlined symbols are the left contexts of
those suffixes. Notice we compress F = acc$ directly to *$ as F does not have a left-maximal suffix.
Besides, as F does not overlap other phrases in T 1 (because of $), we store F [|F |] = $ instead of
F [|F | − 1] = c. A different situation occurs with S = ta. This phrase does not have left-maximal
suffixes of length > 1. However, in this case, we store S[|S| − 1] = t instead of S[|S|] = a as S

overlaps other phrases in T 1. (D) The parse T 2 we obtain by replacing the phrases of T 1 with their
≺LMS orders in Di. The gray symbols expand to suffixes of strings in T .

other hand, we need the dummy symbol * to maintain the invariant that all the phrases
encoded in Ri have length two. Once we finish the compression, we store Ri on disk. From
now on, we use Di to refer to Ri.

The final step for the parsing round i is to create the new text T i+1. We first reload
from disk the hash table Hi we produced at the beginning of the iteration, and replace its
values with the keys’ ≺LMS orders. More specifically, if a key F ∈ Di of Hi has ≺LMS order
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b among the other strings that produced empty entries in pBWT i, then we update the value
of F in Hi to b. Notice that the strings we stored as keys in Hi are not the same as those
we have now in Di because we compress them. Therefore, we can not lookup the phrases of
Di in the keys of Hi to update the hash table values. Still, we can overcome this problem if
we modify Hi after sorting Di in ≺LMS order but before we compress it.

Once we update Hi, we construct T i+1 by scanning T i again and replacing the LMS
substrings with their associated values in Hi. If T i+1 has length k (the number of strings in
T ), then we stop the parsing phase as all the strings in T are now compressed to one symbol.
An example of the parsing step is depicted in Figure 1.

3.4 The Induction Phase
The induction phase starts with the computation of BWT h, the BCR BWT for the text
T h of the last parsing round h. This step is trivial as each symbol in T h encodes a full
string of T (see the ending condition of the parsing phase). Hence, the left context of every
symbol is the symbol itself. BCR BWT maintains the relative order of the strings in T (see
Section 2.1), so BWT h is T h itself.

We now describe the steps we perform during every induction step i < h. In this case,
assume we receive as input (i) BWT i+1 from the previous phase, (ii) Di, and (iii) pBWT i.
Before explaining our procedure, we describe some important properties of BWT i+1.

▶ Lemma 9. Let BWT i+1[j] and BWT i+1[j′] be two symbols at different positions j and
j′, with j < j′, whose mapping phrases in Di are F and F ′, respectively. Also, let the proper
suffixes F [u..] = F ′[u′..] = S ∈ S (see Lemma 5 for the description of S) be two occurrences
in T i of a string S that appears as a left-maximal suffix in Di. The suffix of T i prefixed by
F [u..] precedes in SAi (the suffix array of T i) the suffix of T i prefixed by F [u′..].

Proof. As F [u..] and F ′[u′..] are equal, their relative orders are decided by the right contexts
in T i of the occurrences BWT i+1[j] and BWT i+1[j′] of F and F ′ (respectively). By induction,
we know that BWT i+1 is complete, and as BWT i+1[j] precedes BWT i+1[j′] in the BWT,
the right context of F [u..] has a smaller order in SAi than the right context of F ′[u′..]. ◀

If we generalize Lemma 9 to x ≥ 1 occurrences of S, then we can use the following lemma
to compute the sequence for the empty entry of pBWT i generated by S:

▶ Lemma 10. Let S be a string of S. Additionally, let J = {j1, j2, . . . , jx} be a list of strictly
increasing positions of BWT i+1. Every BWT i+1[jo], with jo ∈ J , is a symbol b ∈ Σi+1

generated from a phrase F ∈ Di where S = F [u..] occurs as a proper suffix. The symbols of
Bi+1 referenced by J are not necessarily equal, and hence, their associated phrases in Di are
not necessarily the same. However, these phrases of Di are all suffixed by S. Assume we
scan J from left to right, and for every jo, we extract the symbol F [u − 1] ∈ Σi that precedes
S and append it to a list LS. The resulting list LS ∈ Σi∗ has the same sequence of symbols
as the BWT i range that maps the block for S in the partition of S.

Proof. Because of Lemma 9, the suffix of T i prefixed by the occurrence BWT i+1[jo] of S

precedes the suffix of T i prefixed by the occurrence BWT i+1[jo+1]. This property holds for
every jo, with o ∈ [1, x − 1]. Hence, the suffixes of T i prefixed by S are already sorted J . ◀

Our compressed representation for Di (see Section 3.3.2) has precisely the information we
need to construct LS as described in the procedure of Lemma 10. Still, the idea only works
when S always appears as a proper suffix in the phrases of Di. When S matches a full phrase
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(see Lemma 7), there is no left-context symbol for S we can extract from Di. Nevertheless,
there is only one phrase F ∈ Di where S can be a non-proper suffix, and because S comes
from BWT i+1, F has to be an LMS substring in T i. This observation implies that F maps
to a symbol b ∈ Σi+1 in T i+1. Hence, we can extract the left-context symbols of S from the
range in BWT i+1 that corresponds to the bth bucket of SAi+1. We explain how to carry out
this process in the next subsection.

3.5 The Induction Algorithm
Let p be the sum of the lengths in the empty entries of pBWT i. These lengths correspond
to the second field in the run-length representation of pBWT i. We start the induction
by creating a vector P i[1, p], which we logically divide into σi+1 buckets (recall that σi+1

matches the number of empty entries in pBWT i). Every bucket b of P i will be of size lb,
the length of the bth empty entry (from left to right) of pBWT i. Subsequently, we perform
a scan over BWT i+1 from left to right. For each symbol BWT i+1[j] = b ∈ σi+1, we first
check if its associated LMS substring F ∈ Di (the string from which we obtain the symbol
b during the parsing round i) exists as a suffix in other phrases of Di. This information is
already encoded in a bit vector V i[1, σi+1] we constructed during the parsing round i. When
F occurs as an LMS substring and as a proper suffix in other dictionary phrases (V i[b] = 1),
we append a dummy symbol in the bucket b of P . This is the situation we described at the
end of the previous subsection. After processing b, we decompress the left-maximal suffixes
of its phrase F from the compressed representation of Di.

The decompression of F begins by accessing the range Di[2b − 1, 2b] (see Section 3.3.2). If
o = Di[2b] belongs to Σi+1, then the symbol o encodes a string F [u..] = S, with u > 1, whose
sequence is a left-maximal suffix in Di. During the parsing phase of grlBWT, we inserted
S to Di as an independent string as it yields an empty entry for pBWT i (see Lemma 6).
The order of S in Di is precisely o, its ≺LMS rank among the other phrases of Di. On the
other hand, the left-context symbol of S is Di[2b − 1] ∈ Σi. With this information, we apply
Lemma 10 by appending the symbol Di[2b − 1] to the bucket o of P . Then, we move to the
next left-maximal suffix of F by setting b = o and updating the range Di[2b − 1, 2b].

The decompression of F stops when Di[2s] belongs to Σi, which means we reach the
last symbol of F . For the moment, we do not know for which phrase of Di Di[2s] is its left
context. Hence, we set BWT i+1[j] = Di[2s] and leave this position on hold to process it
later. After finishing the scan of BWT i+1, its symbols are now over the alphabet Σi. These
values are the ones we have to insert in the dummy positions of P i. Notice that the entries
in P i and BWT i+1 are already sorted by their right contexts in T i. Hence, the completion
of the dummy positions reduces to a merge of two sorted lists.

The last step in the induction round i consists of merging pBWT i, BWT i+1 and P i in
BWT i. We scan pBWT i and we append its entries to BWT i as long as they are not empty.
Then, when we reach an empty entry (*, l), we proceed as follows: assume the current pair
(*, l) is the bth empty entry of pBWT i. Then, we check if the phrase F ∈ Di that produced
this entry (the one with ≺LMS order b) only occurs as a full LMS substring in T i (V i[b] = 0).
If that is the case, we append the next l symbols of BWT i+1 into BWT i. On the other
hand, when F occurs as an LMS substring, but also as a proper suffix in other phrases of
Di (V i[b] = 1), the next l symbols of BWT i are a mix of entries from the bucket b of P i

and BWT i+1. We append symbols from the bucket b of P i as long as they are not dummy.
When we reach a dummy symbol in P i, we change the list, and append the next x symbols
of BWT i+1 into BWT i, where x is the number of consecutive dummy symbols we saw in P i.
Once we process the x entries of BWT i+1, we go back to P and continue back and forth
between P and BWT i until we process all the symbols in the bucket b of P .
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The last case we have to cover for the merge is when F always occurs as a proper suffix
in Di (i.e., it is not an LMS substring of T i). This situation is simple as we marked F in V i

(V i[b] = 1). Hence, we just copy the content of the bucket b of P into BWT i. Notice this
bucket will not have dummy entries as b does not appear in Bi+1 as a symbol. We obtain
occurrences of b while decompressing other phrases of Di whose ≺LMS ranks do appear as
symbols in Bi+1, and where F is a proper left-maximal suffix. Once we complete all the
induction rounds, the final BCR BWT is in BWT i.

3.5.1 Speeding up the Induction with Compression

If we run-length encode BWT i+1, the induction becomes more efficient. Every position
BWT i+1[j] is not a symbol b, but a pair (l, b) that represents l consecutive copies of b. Thus,
instead of decompressing l times the left-maximal suffixes of the phrase associated with b,
we decompress them only once, and copy the result l times to the different buckets of P i.

Maintaining P i as a run-length encoded sequence also improves efficiency. A compact
representation of P i reduces the working memory, which in turn reduces the number of
cache misses. The only problem with this idea is that we do not know before the induction
how many equal-symbols runs P i will have. There are two solutions to this problem. First,
we could represent P i as a dynamic vector [2]. Its initial size would be σi+1, and then we
expand the buckets as we insert new equal-symbol runs into them. The second option is to
perform a preliminary scan of BWT i+1 to compute the size of the run-length compressed
version of P i, then we scan BWT i+1 again to perform the induction.

3.6 Complexity of our Method

We show that the construction of the BWT remains linear, even though we perform com-
pression during the intermediate steps.

▶ Theorem 11. Let T = {T1, T2, . . . , Tk} be a collection with k strings and n symbols. The
algorithm grlBWT constructs the BCR BWT of T in expected O(n) time and requires O(n)
bits of working space.

Proof. The complexities in the theorem were already proved for the linear-time algorithms
that construct the suffix array [30] and the BWT [34] using ISS. We show that these
complexities are not altered by our compression scheme. Let ni = |T i| be the length of the
input text we receive at parsing round i. Hashing the dictionary phrases from T i runs in
O(ni) expected time and requires O(ni) bits of space. The construction of SADi runs in
O(ni) time and space as we use ISS to build it, and the number of symbols in Di is never
greater than ni. The extra steps of the parsing round only require a constant number of
linear scans over SADi . During the induction phase, we only perform linear scans over BWT i

and pBWT i. We still have the cost of accessing the left-maximal suffixes of Di when we
scan BWT i+1 during the induction phase. However, our simple compressed representation
for Di (Section 3.3.2) supports random access in O(1) time to the symbols, and the number
of left-maximal suffixes we visit during the scan of BWT i+1 is no more than ni. In every
parsing round, the size of T i+1 is at most half the size of T i, so the sum of the text lengths
n1, n2, . . . , nh is O(n) (see Nong et al. [30]). This property also implies that grlBWT never
visits more than O(n) left-maximal suffixes during its induction phase. ◀
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Table 1 Datasets. The upper rows are the Illumina reads while the lower rows are the human
genomes. Columns four and five are the minimum and average string length (respectively) in the
collection. The value for r is the number of equal-symbol runs in the BCR BWT of the collection.

Dataset σ Number of strings Max. length Avg. length n n/r

ILL1 5 84,006,956 151 151 12,769,057,312 3.18
ILL2 5 160,285,798 151 151 24,363,441,296 4.07
ILL3 5 235,805,550 151 151 35,842,443,600 4.67
ILL4 5 305,931,740 151 151 46,501,624,480 5.03
ILL5 5 377,453,488 151 151 57,372,930,176 5.33

HGA05 16 334,065 248,956,422 42,715 14,269,998,434 4.82
HGA10 16 759,341 250,522,664 39,025 29,634,170,092 8.76
HGA15 16 835,485 250,522,664 53,918 45,048,695,199 12.02
HGA20 16 874,235 250,522,664 68,650 60,017,146,889 15.67
HGA25 16 899,424 250,522,664 83,447 75,055,723,570 19.42

4 Experiments

We implemented grlBWT as a C++ tool, also called grlBWT. This software uses the SDSL-lite
library [11] to operate with bit vectors and rank data structures. Our source code is
available at https://github.com/ddiazdom/grlBWT. We compared the performance of
grlBWT against other tools that compute BWTs for string collections:

ropebwt24 : a variation of the original BCR algorithm of Bauer et al. [1] that uses rope
data structures [2]. This method is described in Heng Lee [20].
pfp-eBWT5 : the eBWT algorithm of Boucher et al. [4] that builds on PFP and ISS.
BCR_LCP_GSA6 : the current implementation of the semi-external BCR algorithm [1].
egap7: a semi-external algorithm of Edigi et al. [8] that builds the BCR BWT.
gsufsort8: an in-memory method proposed by Louza et al. [23] that computes the BCR
BWT and (optionally) other data structures.

We also considered the tool bwt-lcp-em [3] for the experiments. Still, by default it builds
both the BWT and the LCP array, and there is no option to turn off the LCP array, so we
discarded it. We compiled all the tools according to their authors’ description. For grlBWT,
we used the compiler flags -O3 -msse4.2 -funroll-loops.

We considered two common types of genomic data for the experiments: short reads
and assembled genomes. We downloaded five collections of Illumina reads produced from
different human genomes 9. We concatenated the strings so that our dataset 1 had one
read collection, dataset 2 had two collections, and so on. We named the files ILLX, where
X is the number of read collections concatenated. We also downloaded from NCBI10 25
collections of fully-assembled human genomes. Like with the reads, we created the inputs

4 https://github.com/lh3/ropebwt2
5 https://github.com/davidecenzato/PFP-eBWT
6 https://github.com/giovannarosone/BCR_LCP_GSA
7 https://github.com/felipelouza/egap
8 https://github.com/felipelouza/gsufsort
9 https://www.internationalgenome.org/data-portal/data-collection/hgdp
10 https://www.ncbi.nlm.nih.gov/assembly

https://github.com/ddiazdom/grlBWT
https://github.com/lh3/ropebwt2
https://github.com/davidecenzato/PFP-eBWT
https://github.com/giovannarosone/BCR_LCP_GSA
https://github.com/felipelouza/egap
https://github.com/felipelouza/gsufsort
https://www.internationalgenome.org/data-portal/data-collection/hgdp
https://www.ncbi.nlm.nih.gov/assembly
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Figure 2 Memory peak usage (GBs) and elapsed time (in hours) for the Illumina reads.

for our experiments so that every dataset has five more genomes than the previous one.
This setup aims to increase the repetitiveness as the collection size increases. We named
each file using the prefix HGA concatenated with the number of genomes it had. The only
prepossessing step we performed on the genomes was to put every chromosome in one line
and set all the characters to upper case. All our inputs are described in Table 1.

We also investigated the effect of page cache [24, Ch. 16] in grlBWT. In every parsing
round i, we keep T i on disk, and linearly scan its file by loading from disk to RAM one data
chunk of 8 MB at the time. Similarly, we keep a buffer of 8 MB in RAM for T i+1, which
we dump into disk every time it gets full. We manipulate BWT i (respectively, BWT i+1)
in the same way. We used the function posix_fadvise to turn off the page cache for T i,
T i+1, BWT i, and BWT i+1. Then we assessed the performance of grlBWT on the assembled
genomes using posix_advice and not using it. We did not evaluate the effect of the page
cache in the other tools.

We limited the RAM usage of egap to three times the input size. For BCR_LCP_GSA,
we turned off the construction of the data structures other than the BCR BWT and left
the memory parameters by default. In the case of gsufsort, we used the flag –bwt to
build only the BWT. For ropebwt2, we set the flag -L to indicate that the data was in
one-sequence-per-line format, and the flag -R to avoid considering the DNA reverse strands
in the BWT. We ran the experiments on the Illumina reads using one thread in all programs
as not all support multi-threading. For this purpose, we set the extra flag -P to ropebwt2 to
indicate single-thread execution. We tested the human genomes only on ropebwt2, grlBWT
and pfp-ebwt. By default, ropebwt2 uses four working threads, so we set the same number
of threads for grlBWT and pfp-ebwt. We did not report results for pfp-ebwt with dataset
ILL25 as the execution crashed. We carried out the experiments on a machine with Debian
4.9, 736 GB of RAM, and processor Intel(R) Xeon(R) Silver @ 2.10GHz, with 32 cores.

5 Results and Discussion

We summarize our experiments in Figures 2 and 3. The results we report for grlBWT do
not consider the use of posix_advice to turn off the page cache. In Illumina reads, the
fastest method was ropeBWT2, with a mean elapsed time of 4.14 hours. It is then followed by
BCR_LCP_GSA, gsufsort, grlBWT, pfp-bwt, and egap, with mean elapsed times of 9.58, 9.43,
10.05, 13.08, and 27.30 hours, respectively (Figure 2B). We notice that grlBWT is competitive
with BCR_LCP_GSA and gsufsort. However, it gets slightly faster than them from input ILL4
onward. We expected this behaviour since the largest datasets are more repetitive.
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Figure 3 Memory peak usage (GBs) and elapsed time (in hours) for the assembled genomes.

Regarding the working space, the most efficient was BCR_LCP_GSA, with an average
memory peak of 5.73 GB. It is then followed by ropebwt2, with an average memory peak
of 26.64 GB. In both cases, the memory consumption increases slowly with the input size.
In the case of grlBWT, the memory peak is more considerable; 42.20 GB on average, with a
memory consumption that grows faster than the previous methods (see Figure 2A). However,
egap, gsufsort, and pfp-ebwt are far more expensive, and their memory consumption grow
even faster. The tool egap uses 110.94 GBs on average. On the other hand, pfp-ebwt and
gsufsort have similar average memory peaks: 331.98 and 372.68 GBs, respectively.

In the repetitive datasets (human genomes), the results changed drastically (see Figure 3).
Our tool grlBWT outperformed ropebwt2 and pfp-ebwt in elapsed time, with an average of
4.89 hours versus 20.95 and 9.55 hours of ropebwt2 and pfp-ebwt, respectively. As expected,
the time for grlBWT grows smoothly with the input size, while the time for ropeBWT grows
fast. The time function for pfp-ebwt also grows smoothly, but the results are still slower than
those of grlBWT (see Figure 3B). Regarding memory peak, ropebwt2 is the most efficient
tool, with a mean of 18.05 GB. Still, grlBWT obtained competitive results, with an average
peak of 20.38 GB. In this case, the memory consumption growth in grlBWT is slightly steeper
than in ropebwt2, but it remains smooth. In contrast, pfp-ebwt has a more dramatic growth
in memory consumption, with an average memory peak of 156.74 GB (Figure 3A).

We observe that ropeBWT2 and pfp-ebwt performed well in one measure, but not in both.
In contrast, grlBWT maintained a low footprint for both measures, elapsed time and memory
consumption. This result demonstrates that our strategy of keeping the intermediate data of
the BWT algorithm in compressed format works well when the text is repetitive.

Our experiments on the page cache showed there is an average slowdown of 19% in grlBWT
when the cache is disabled with the function posix_advice. This slowdown factor increases
with the input size, being the lowest with HGA05 (12%) and the highest with HGA20 (26%).
This result is expected as we are only using a static buffer of 8 MB. A simple solution would
be to set a dynamic buffer that uses, say, 0.5% of the input instead of the fixed 8 MB.

6 Concluding Remarks

We introduced a method for building the BCR BWT that maintains the data of intermediate
stages in compressed form. The representation we chose not just reduces space usage, but
also reduces computation time. Our experimental results showed that our algorithm is
competitive with the state-of-the-art tools under not so repetitive scenarios, and that it
greatly reduces the computational requirements when the input becomes more repetitive,
standing out as the most efficient tool to date (and to our knowledge) in this context.
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