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ABSTRACT

Objectives. Paraplegia is devastating complication associated with thoracic and thoracoabdominal aor-
tic aneurysm repair. Vast evidence has been gathered on pre-, peri- and postoperative protective
adjuncts aiming to minimize spinal cord ischemia. This review focuses on the pretreatment phase of
open surgical or endovascular aortic procedures and gathers the experimental data on the interven-
tional preconditioning and priming methods that increase the spinal cord ischemic tolerance. Design.
By the start of March 2021, a systematic review was performed in PubMed, Scopus and Web of
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Science core collection to identify the articles that reported (i) either an ischemic preconditioning,
remote ischemic preconditioning or priming method prior to (ii) experimental spinal cord ischemia
performed in endovascular or open surgical fashion mimicking either thoracic, abdominal or
thoracoabdominal aortic aneurysm procedures. (iii) The outcomes were reported via neurological,
motor-evoked potential, somatosensory-evoked potential, histopathological, immunohistochemical,
physiological analysis, or in different combinations of these measurements. Results. The search yielded
7802 articles, and 57 articles were included in the systematic review. The articles were assessed by the
evaluated species, the utilized pretreatment, the measured protective effects, and the suggested
underlying mechanisms. Conclusions. The reviewed articles showed several possible mechanisms in
ischemic and remote ischemic preconditioning for prevention of spinal cord ischemia. The main sug-
gested method for priming was arteriogenetic stimulus. Future studies should confirm these hints of

network; paraplegia;
preconditioning; priming;
spinal cord protection;
spinal cord ischemia

arteriogenetic stimulus with more precise quantification of the protective recruitment process.

Introduction

Ischemic spinal cord injury (SCI) remains the most devas-
tating setback during and after the repair of thoracic and
thoracoabdominal aortic aneurysms (TAAs, TAAAs). In
open surgical repair, the reported overall incidence of SCI is
up to 32%, and even in experienced centers the pooled spi-
nal cord ischemia rate is 8.3% [1,2]. The most extensive aor-
tic repairs, Crawford type II, managed via open surgically or
endovascularly, still carry a risk up to 7.7%-12.7% in con-
temporary series [3-5]. The adverse neurological outcome is
not just a personal tragedy for the individual affecting long-
term survival and resulting in a socio-economical burden
[3,6]. The plasticity of the spinal cord vasculature was rec-
ognized in the unintended staged replacement of the aorta
in clinical studies. Retrospective data of patients having
extensive thoracoabdominal aortic surgery either in single-
stage or in two-stage revealed lower permanent paraplegia
rates (15% vs. 0%, respectively) between the groups despite
a significantly higher number of segmental arteries sacrificed
in the two-stage group [7].

However, there exists limited consensus on the develop-
ment of SCI and its prevention strategies. Some experts rely
on the reattachment of the segmental arteries (SAs), extend-
ing intraoperative aortic clamp and ischemia times, aiming
on elimination of critical hypoperfusion during the peri-
and postoperative period. Whereas others sacrifice segmen-
tal arteries prior to aneurysm sack opening in order to avoid
backbleeding and extensive prolonged intraoperative ische-
mia. The latter surgical strategy relies on the plasticity of
the spinal cord vasculature [8].

Early studies of the spinal cord anatomy date back to the
nineteenth century. The concept of one certain prominent
artery, so called artery of Adamkiewicz, built the basis of
the understanding of the spinal cord perfusion, and thus the
surgical strategy later on for decades [9]. Lazorthes et al.
broadened our understanding of the spinal cord blood sup-
ply with multiple anastomotic pathways outside the spinal
canal within nearby tissues [10]. Thereafter, the concept of
collateral network (CN) within the paraspinal muscles that
situate alongside spinal canal bilaterally, was introduced by
Etz et al. after extensive experimental and clinical analysis
over the past decades. The features of the CN include
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dynamic alterations of the nutrient flow, axial network of
small arteries with multiple anastomoses in the spinal canal,
in the perivertebral tissue and in the paraspinous muscles.
Inputs into the network involve segmental and extrasegmen-
tal, subclavian and hypogastric arteries [11-13].

The consistent anatomical and physiological studies of
the spinal cord, involving spinal cord blood flow, spinal
cord perfusion pressure, resin casts and imaging methods,
have extended our knowledge of the collateral network anat-
omy and its physiology both in normal and in simulated
aortic repair environments [12,14-21]. The collateral net-
work divides into paraspinal and intraspinal compartments.
Paraspinal compartment with immature arterioles serves as
reservoir for spinal cord vasculature in long-term when dis-
ruption of network inflow is occurred [22]. Whereas the
intraspinal compartment includes repetitive epidural arcades
and anterior radiculomedullary arteries (ARMAs). Kari et al.
have focused on the intraspinal compartment and cleared its
contributions to the spinal cord blood supply as an immedi-
ate recovery source directly after serial occlusion of the seg-
mental arteries in experimental and clinical studies [23-25].
In acute situations when network inflow is interrupted and
crucial intraspinal arcades maintain sufficient blood pressure
directing blood through ARMAs and further anterior spinal
artery, paraspinal compartment requires blood flow stimulus
which between these components is also secured via intra-
spinal epidural arcades to cover long-term changes in spinal
cord vasculature [22].

The phenomenon of ischemic preconditioning (IPC),
with brief sublethal ischemic periods prior to a more severe
ischemic event, was first introduced by Murry et al. over
three decades ago [26]. They occluded left circumflex artery
in repetitive cycles prior to prolonged occlusion of the same
artery reducing myocardial infarct size. In neural tissue the
same concept of ischemic tolerance was introduced in a ger-
bil model [27]. Further studies found ischemic precondition-
ing to be similarly effective when applied at a distance along
with another non-target tissue referring to a method of
remote ischemic preconditioning [28,29] (RIPC). Gho et al.
reported that short mesenteric artery occlusion contributed
equally as effectively to myocardium protection as myocar-
dial preconditioning [29]. In spinal cord protection, the first
models were canine and rabbit models with ischemic pre-
conditioning [30,31].

The method of priming, permanently altering the spinal
cord vasculature, requires thorough understanding and
acceptance of the collateral network concept introduced by
Etz et al. It was discovered that the spinal cord vasculature
has the ability to adapt to a change in perfusion inflow, by
occlusion of selected segmental arteries as stimulus, rear-
ranging the paraspinal CN resulting from the staged repair
concept of aneurysms in humans [7]. Thereafter, the con-
cept of minimally invasive staged segmental artery coil- and
plug embolization (MISACE) was invented after experimen-
tal and first-in-man study on staged segmental artery sacri-
fice studies [32-36]. This concept was introduced to
stimulate the spinal cord vasculature prior to surgery by
means of minimally-invasive occlusion of a limited number

of SA not resulting in a significant spinal cord ischemia
with the consequence of paraparesis or paraplegia, but
reducing the spinal cord blood flow enough to stimulate
arteriogenesis.

In 2014, experimental pig models were introduced to
prove the technical feasibility of endovascular coiling for all
segmental arteries and optimize its threshold in spinal cord
protection [34,37]. Geisbiisch et al. reported limited number
of coiled segmental arteries prior to simulated hybrid TAA
repair resulting in reduction of histologic damage in the spi-
nal cord [37]. Interestingly, in the earlier canine studies,
Fujimaki et al. and later Kato et al. also considered selective
segmental artery sacrifice as beneficial and not harmful
action prior to extensive en bloc tumor resections in spinal
surgery. They studied the risk level of bilateral occlusion of
segmental arteries producing spinal cord ischemia in differ-
ent levels of the spinal cord [38,39].

We performed a systematic literature review to evaluate
the experimental data concerning the topic preparing the
spinal cord for upcoming ischemia in experimental models
simulating thoracic, abdominal or thoracoabdominal aortic
procedures in open or endovascular fashion. The articles
were analyzed based on the method used to produce ische-
mic tolerance prior to spinal cord ischemia categorizing it
as priming or preconditioning; ischemic or remote ischemic.
The main aim was to evaluate the real protective effects of
each method by reviewing the outcomes of the experimental
studies, and mainly focusing on the final neurological recov-
ery after SCI. Furthermore, the suggested mechanisms
behind the protective actions were considered since the
exact mechanisms of both pretreatments are still unclear.

Materials and methods

By the start of March 2021, systematic literature searches in
the PubMed, in the Scopus and in the Web of Science core
collection were performed according to the Preferred
Reporting Items for Systematic reviews and Meta-analyses
(PRISMA) guideline [40] and its newly updated version [41]
to identify full-length, English-language articles with the fol-
lowing search term: ‘(spinal cord protection OR spinal cord
ischemia) AND (preconditioning OR remote ischemic pre-
conditioning OR MISACE OR coiling OR staging OR seg-
mental artery occlusion OR segmental artery ligation OR
segmental artery sacrifice OR collateral network OR staged
repair OR staged approach OR priming)’.

Studies with the following criteria were included: (i)
experimental animal models were used; (ii) the preparing
method was interventionally produced: clamped, coiled, cov-
ered altering the systemic or spinal cord blood flow balance
prior to spinal cord ischemia; (iii) the spinal cord ischemia
set-up simulated thoracic, abdominal or thoracoabdominal
aortic procedure in open or endovascular fashion; (iv) the
results were reported with neurological outcome; histo-
pathological analysis; immunohistochemical analysis; physio-
logical characteristics i.e. direct spinal cord perfusion
pressure, cerebrospinal fluid pressure, regional spinal cord



blood flow; motor-evoked potential (MEP) or somatosen-
sory-evoked potential (SSEP) monitoring.

Only original articles, English-written articles, articles
studying experimental animal model, interventional pretreat-
ments and studies simulating aortic procedures were included.
In addition, reference list screening was performed to search
eligible articles according to the defined criteria. The defined
terms of paraplegia were borrowed from the authors and any
variables or terms were not defined additionally.

Results

The results are summarized in Supplementary Tables 1-4.
This systematic review included 57 articles (Figure 1). Two
articles published results of the same study population
[42,43]. The additional information of the second article
was evaluated and clearly marked in the Supplementary
Tables 2 and 4. The included articles studied the following
species: pig (18 articles; 16 articles of the original study
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population), dog (three articles), rabbit (19 articles), rat (16
articles) and mouse (one article) models. The articles
included pretreatment methods as ischemic preconditioning
in 32 articles [30,31,44-73], remote ischemic precondition-
ing in 11 articles [74-83] or compared the protective actions
of ischemic preconditioning, remote ischemic precondition-
ing, ischemic postconditioning or different combinations of
the aforementioned methods in five articles [84-88]. The
rest nine articles [20,32,33,36,37,43,89-91] involved the
method of priming as pretreatment. There were varieties of
ways providing spinal cord ischemia, preconditioning: ische-
mic and remote ischemic and priming, as well as reporting
neurological outcome and these are summarized in
Supplementary Tables 1-4.

Ischemic preconditioning

The suggested mechanisms underlying ischemic precondi-
tioning protection were heat shock proteins alone or
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Figure 1. Flow chart of the systematic review process. Studies not written in English, not studying experimental animals, not using mechanical pretreatment, and

not using simulated endovascular or open surgical aortic models for spinal cord

ischemia were excluded. In total, 57 studies were included. Flow-chart modified

after Moher et al. [40]. *Three articles were included in the analysis through reference list search.
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together with cytoskeleton elements and their signaling
pathways or tissue architecture elements
[27,44,48,49,57,68,69]. Catecholamine and its metabolites by
Fan et al. [46], as well as, copper, calcium, magnesium, zinc
by Yu et al. [61], oxidative stress by Lee et al. [63], prolif-
erative, degenerating and ependymal cells by Orendacova
et al. [55,59] were also evaluated as possible mechanisms.
Spinal cord blood flow and autoregulation, as physiological
changes were also suggested mechanisms in the studies by
Ueno et al. and Zvara et al. [50,56]. Tight junction protein
marker, vascular permeability and inflammation were also
studied mechanisms by Fang et al. [70]. The study interest
was focused on apoptosis by Yang et al. and Li et al
[64,73], autophagosomes by Fan et al. [71] and endoplasmic
reticulum stress by Li et al. [73] and their downstream
actions. Whereas by Uento et al. the recent study focused
on microRNA-analyses and contribution of vascular endo-
thelial growth factor (VEGF), growth/differentiation factor
15 (GDF15) and CD34-positive bone marrow cells (CD34
cells) [72].

Remote ischemic preconditioning

Following effects of RIPC in association with SCI were sug-
gested: heat shock proteins by Selimoglu et al. [74],
Cannabinoid-1 and Cannabinoid-2 by Su et al. and Jing
et al. [75,79], endocannabinoids by Su et al. [75], oxygen
free radicals and antioxidants [42,76,78,80-82] in several
articles, apoptosis by Haapanen et al. and Herajarvi et al
[42,78] and tight junction protein, endothelial cell markers
by Jing et al. [79]. Inflammatory markers, nitrate/nitrite lev-
els, activity of iNOS were studied mechanisms of RIPC by
Bashir et al. [81] together with diminished glutamate con-
centrations and suppressed N-methyl-D-aspartate receptor
2B subunit expression by Mukai et al. [82].

Combined conditioning

The studied markers and mechanisms included neuron spe-
cific enolase and nitric oxide by Gurcun et al. [84], oxygen
free radicals suggested by several groups: Gurcun et al. Jiang
et al. and Fukui et al. [84,86,88], amyloid precursor protein
by Jiang et al. [86] and apoptosis by Sapmaz et al. [87].
Fukui et al. focused on several mechanisms including
ERK/Akt(2), adenosine Al receptor, and mitochondrial ATP
sensitive potassium channel [88].

Priming

The suggested mechanisms of priming’s protective effects
included increase in perfusion via collateral circulation by
Vacanti et al. [89], stabilization of hemodynamics by Etz
et al. [20] and vascular remodeling by Zoli et al. and
Bischoff et al. [32,33]. Increased angiogenetic response was
suggested by Geisbiisch et al. and Lewis et al. [37,43],
whereas increased arteriogenetic stimulus was widely sug-
gested mechanism by several groups: von Aspern et al
Geisbiisch et al. and Honkanen et al. [36,37,43,90]. The

articles that reported the early protective window, suggested
that intraspinal compartment serves as an acute backup in
spinal cord protection studied by Kari et al. [91] or priming
could effect on post-translational modifications and inhibit-
ing steal phenomenon speculated by Honkanen et al. [90].

Discussion

This systematic review gathers current literature concerning
the topic of preparing the spinal cord for upcoming severe
ischemic insult with pretreatments defined as precondition-
ing or priming. In other organs, the method of precondi-
tioning is characterized by early and late protective
windows. In neural tissue, the early window lasting 30-
60min focuses on the posttranslational modifications,
whereas the late window of 24-72h targets gene expression
and protein synthesis [92]. In the spinal cord, protective
effects of ischemic preconditioning were observed both in
early and late settings. Whereas remote ischemic precondi-
tioning studies focused only on the early protective window
in the current review.

Despite the vast body of literature available on the topic
of preconditioning, no clear understanding of its mecha-
nisms and efficacy has been gained. In the spinal cord, the
early studies on heat shock proteins (HSP) reported mainly
positive results [48,49,68,69,73]. Heat shock proteins are
chaperons taking part in the process of protein folding. The
cellular distribution of HSPs was evaluated by Matsumoto
et al. their presence in the nucleus was detected in condi-
tioned animals suggesting participation in the mechanism of
preconditioning [49]. In contrary, Selimoglu et al. have
reported increased HSP expression in both preconditioned
and control animals [74]. In addition, Kyrou et al. found no
relationship between HSPs and B-catenin which is a protein
maintaining tissue architecture and cell polarity in adherent
junctions, and thus HSP lacks its regulatory role on B-cate-
nin during early ischemic preconditioning [69]. They con-
cluded that P-catenin showed increased levels, as well as
translocation between cytoplasm and nucleus suggesting its
role in Akt regulation resulting in antiapoptotic and cyto-
protective effects [69].

Preconditioning with modified balance between oxidative
stress and antioxidants such as catalase and superoxide dis-
mutase has also been excessively studied in different experi-
mental setups [42,63,76,78,80-82,84,86]. Dong et al
suggested positive relationship between initial oxidative
stress produced in RIPC and spinal cord protection via
upregulating antioxidant enzyme activity i.e. small amount
of reactive oxygen species (ROS) serves as a trigger for pro-
tective actions [76]. Additionally, it has been shown that
RIPC, in its early protective window, increased levels of
antioxidant regulator nuclear factor erythroid 2-related fac-
tor (Nrf2) expression and thus induced positive antioxidant
response to oxidative stress [78]. However, no Nrf2 expres-
sion was detected after the 24-h follow-up [42].
Interestingly, experimental studies of pharmacological pre-
conditioning of the spinal cord have also reported dimin-
ished oxidative stress [93,94].



Nevertheless, according to Fukui et al. it is not the free
radicals, adenosine, mitochondrial ATP sensitive potassium
channel that play the primary role in preconditioning, but
phosphorylation of Akt2 which is one isoform of Akt and
thus potential promoter of neuronal survival as seen in cul-
tured neuronal cells. The study set-up focused on early win-
dow of IPC and thus phosphorylation of 43 proteins were
further analyzed to detect key enzymes, and thus an increase
in phosphorylation of Akt2 was detected by immunoblot-
ting [88].

The cell death processes, involving necrosis, apoptosis
and autophagy, and their role in neural tissue damage has
also been an important topic of research. Reduced apoptosis
was found in several studies in conditioned animals [64,87].
Activation of apoptosis signal-regulating kinase 1 (ASKI),
which has a role in the apoptotic signaling mechanisms, and
the protein 14-3-3, which regulates cell proliferation and
survival, cause binding together suppression of the ability of
ASK1 to induce apoptosis. Thus, Yang et al. showed that
IPC has protective effects against ASK1/14-3-3 dissociation-
induced spinal cord injuries [64]. Fan et al. showed that IPC
was associated with prolonged and enhanced post-ischemic
autophagic response. It has also been suggested that autoph-
agy could promote the survival of spinal neurons following
ischemia and therefore a molecular link between apoptosis
and autophagic cell death should be studied [71].

The most recent study of gene expression regulator
microRNA reported that IPC resulted in downregulation of
13 microRNAs, and downregulation of seven microRNAs
was even further confirmed by RIPC pretreatment.
Additionally, IPC increased VEGF levels by downregulating
microRNA-762, microRNA-3072-5p in CD34-positive bone
marrow cells [72].

In clinical perspective, remote ischemic preconditioning
provides feasibility with its easily applicable, low-cost, safety
features performed in anesthesia induction compared with
ischemic preconditioning requiring additional actions during
the surgery. Therefore, when relying on early protective
window of preconditioning no additional treatment days are
required. In recent systematic reviews and meta-analysis,
RIPC has not been proven to be efficient in association with
open surgical or endovascular abdominal aneurysm repair
when considering renal and cardioprotective perspectives or
perioperative survival rates [95,96]. To our knowledge, there
are no studies focusing on spinal cord preconditioning and
thoracoabdominal aortic procedures in clinical settings.

Spinal cord and collateral network priming aim to stimu-
late the collateral blood flow to spinal cord by means of per-
manent altering of its neighboring vasculature, however not
leading to ischemic tissue injury. A recent extensive review
by Simon et al. introduced different signaling pathways such
as phosphoinositide 3 kinase, the antiapoptotic kinase, the
endothelial nitric oxide synthase, the Erkl, the delta-like lig-
and, the jagged NOTCH and the midkine regulatory cyto-
kine in association with priming and its potential
underlying mechanism of arteriogenesis [22]. Their conclu-
sions of networks were extrapolated from lower limb ische-
mia studies i.e. occluding femoral artery, and thus no direct
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spinal cord priming studies were included [22]. After stress
stimulus several cascades are initiated, and these key path-
ways involve with coordination and remodeling of the col-
laterals, metabolism, apoptosis, cell survival, proliferation
and growth and inflammatory response [22]. The hints and
suggestions of arteriogenetic stimulus base on experimental
imaging and resin cast studies with segmental artery sacri-
fice showing increased density of intramuscular paraspinous
vessels, a shift of size distribution from small to larger arte-
rioles, parallel realignment of arterioles, dilatation of anter-
ior spinal artery (ASA) and proliferation of small collateral
vessels [15,21]. Recently, Lewis et al. reported that in a
microarray analysis and gene expression profiling study, sev-
eral modified cell-signaling cascades were detected in the
biopsies of paraspinal muscles after selective segmental
artery occlusion in a pig model [43].

Arteriogenesis and angiogenesis are the two mechanisms
of new blood vessel formation after embryonic phases shar-
ing some growth features, but also differing in many aspects
[97]. In spinal cord priming studies these two mechanisms
are speculated without clear consensus and detailed studies
[32,33,36,37,43,89,90]. Angiogenesis is characterized by a
formation of new blood vessels from preexisting capillaries
with local hypoxia/ischemia being the main initiator of the
process. Among the factors stimulating angiogenesis are vas-
cular endothelial growth factor, hypoxia inducible factor
(HIF-1), placental and fibroblast growth factor (PIGF and
FGF-2), angiopoietins and many others [97,98]. During
angiogenesis the steps of endothelial migration and prolifer-
ation, extracellular proteolysis, endothelial differentiation
and vascular wall remodeling are followed by [97]. In these
blood vessel tubes the wall structure, and adventitial stabiliz-
ing structures are undeveloped for example lacking smooth
muscle cells, hence these capillaries are not fully functioning
collateral arteries adapting to physiological changes in blood
supply. Their growth is characterized by intussusception or
sprouting i.e. an increase in their density and thus function-
ing via effective diffusion with short distances [97,98].
Noteworthy, the actions of angiogenesis take usually days
compared to days to weeks in arteriogenesis [97].

Arteriogenesis is defined as rapid local recruitment of the
capillary bad leading to its differentiation into new collateral
arteries [97]. The main trigger of arteriogenesis is not ische-
mia but increased arterial shear stress in combination with
local inflammation (monocytes, lymphocytes, intracellular
adhesion molecules and other inflammatory agents)
[97,99,100]. The multifactorial process of arteriogenesis
involves activation of endothelium, attraction and invasion
of circulating cells, creation of inflammatory environment,
proliferation and remodeling phases, changes of basal mem-
brane and extracellular matrix resulting in replacement of
the old structures [97,100]. Notably, arteriogenesis depends
on the organ or vascular region involved, since metabolic
needs, oxygen availability, oxygen radicals and shear stress
have species-dependent differences [22,100]. In hind limb
artery occlusion studies of rabbits and rats the time span for
vascular remodeling has been suggested to occur in 7 days
and up to 3weeks. In neural tissue some capillary
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Keyfinding 1: Ischemic preconditioning and remote ischemic
preconditioning are regulated via several pathways in spinal cord
protection. There is no consensus achieved.

Il

Keyfinding 2: Priming is strongly suggested to be regulated via
arteriogenetic stimulus in spinal cord protection.

Y

arteriogenesis in priming.

Keyfinding 3: Future studies should focus on precise quantification of
the protective recruitment process in pretreatment methods i.e.

Figure 2. Summarized key findings of the systematic review.

proliferation occurs 5-7 days after ligation and doubling of
diameter in collateral arterioles is detected 30days later
[100]. In a rat model of triggering cerebral arteriogenesis 7-
14 days showed clear changes in cerebral collaterals via mag-
netic resonance imaging assessing blood flow and vessel
length and diameter in addition to immunohistochemistry
findings [101]. The cell types involved in arteriogenesis
derive from at least two signaling pathways: bone marrow-
derived cells for remodeling and another signaling pathway
causing endothelial and smooth muscle cells to enter the
cell cycle leading to proliferation [99].

For the first time endovascular priming, MISACE, was
reported in two clinical cases in 2014 [34]. With a cohort of
57 patients, Branzan et al. reported the results of MISACE as
a pretreatment strategy prior to endovascular aortic repair.
The retrospectively derived data reported zero paraplegia rate
in pre-treated patients. However, in 13 patients backpain was
observed after MISACE. This complication should be kept in
mind and interpreted as a sign of muscle ischemia [102]. The
suggested mechanisms of arteriogenetic stimulus should also
be clarified thoroughly. It is possible that in the near future,
the extent of triggered by MISACE arteriogenesis could be
evaluated via blood or cerebrospinal fluid samples in order to
insure adequate acquired spinal cord protection. In clinical
settings this could potentially optimize the pretreatment
strategy. Moreover, patients with known aortic aneurysms
under surveillance, not reaching the treatment threshold yet
could be primed in advance and thus be prepared for the
unfavorable emergent complication of dissection, thus, the
treatment profile of MISACE could be later extended to acute
settings too. Noteworthy pretreatment would cause extra
costs but since MISACE is easily applicable with local anes-
thesia and thus no recovery from general anesthesia is
required limiting its feasibility. Additionally, radiation
amounts can be kept reasonable with upfront planning.

Considering the heterogeneity and lack of standardization
of different species, study definitions including precondi-
tioning or priming protocol, discrepancies in spinal cord
ischemia definition, and study endpoints, no meta-analysis

could be performed setting limitations of the study. There
are studies settling time limits for induced irreversible spinal
cord ischemia in different species [32,103]. However, some
study protocols went beyond these limits when inducing
SCI, others used alternative models to produce paraplegia,
for example using endovascular stent grafts in the study of
Geisbiisch et al. [37]. One could suppose that these extreme
ischemia durations diminished the protective effects of pre-
treatments. On the other hand, possible different underlying
pathophysiology of the spinal cord ischemia in endovascular
and surgical repairs could be speculated effecting the results
[104]. Therefore, especially endovascular repair studies
should focus on gathering precise understanding of the
mechanisms in spinal cord ischemia in which pretreatment
strategies should target in future settings.

In conclusion, several underlying mechanisms in ische-
mic and remote ischemic preconditioning against the spinal
cord ischemia were studied focusing on different cellular
processes and lacking clear consensus. The main suggested
method for priming was arteriogenetic stimulus recruiting
the reservoir of collateral network and especially its paraspi-
nal compartments in the fight against permanent paraplegia.
Future studies should evaluate the mechanisms of arterioge-
netic stimulus with more precise quantification of the pro-
tective recruitment process (Figure 2). The first ongoing
prospective, controlled, randomized, multicenter, publicly
funded, clinical trial of minimally invasive staged segmental
artery coil embolization in aortic repair, shortly named
PAPAartis will define the role of the MISACE as priming
method in clinical practice [105].
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