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We formulate dynamical phase transitions in subsystems embedded in larger quantum systems. Introducing the
entanglement echo as an overlap of the initial and instantaneous entanglement ground states, we show its analytic
structure after a quench provides natural definition of dynamical phase transitions in the subsystem. These
transitions come in two varieties: the entanglement-type transitions and the bulk-type Loschmidt transitions.
The entanglement-type transitions arise from periodic reorganization of quantum correlations between the sub-
system and its environment, manifesting in instantaneous entanglement ground state degeneracies. Furthermore,
the entanglement echo distinguishes the direction of the quench, resolves spatially distinct dynamical phase
transitions for nonuniform quenches, and give rise to sharply defined transitions for mixed initial states. We
propose an experimental probe to identify entanglement-type transitions through temporal changes in subsystem
fluctuations.

DOI: 10.1103/PhysRevResearch.3.L042027

Introduction. The rapidly growing field of dynamical quan-
tum phase transitions aims to uncover general principles in
nonequilibrium many-body dynamics and explore the paral-
lels between dynamics and critical phenomena [1–8]. While
there is no direct relation between far-from-equilibrium dy-
namics and equilibrium phases of matter, recent efforts have
revealed a wealth of connections between them [9]. Moreover,
in the modern age of quantum simulation and synthetic de-
signer systems, theoretical predictions are directly stimulating
new experimental directions [10–17]. Unifying themes across
various subfields, dynamical phase transitions have an extraor-
dinarily wide appeal in current research.

In the present work, we develop the theory of dynamical
phase transitions of subsystems of larger many-body sys-
tems following a sudden quench, schematically illustrated
in Fig. 1(a). In the diagnostics of quantum correlations in
many-body systems, the entanglement spectrum has become
an invaluable tool [18,19]. Recently, it has also found ap-
plications in far-from-equilibrium systems [20–28]. Here we
consider a bipartite system and introduce the entanglement
echo E (t ) = 〈λ0(0)|λ0(t )〉 as an overlap of the initial and
instantaneous ground states |λ0〉 of the entanglement Hamilto-
nian of a subsystem. We show that a vanishing entanglement
echo at time tc provides a natural definition of dynamical
phase transitions in a subsystem. The entanglement echo con-
tains essential information on quantum correlations that is not
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captured by the much-studied Loschmidt echo [1] and signals
novel observable properties.

By solving dynamical entanglement transitions in one-
dimensional (1D) and two-dimensional (2D) topological
lattice models, we demonstrate substantial conceptual ad-
vances in the theory of dynamical phase transitions. Most
importantly, (i) the zeros of the entanglement echo exhibit
two types of dynamical criticality as depicted in Fig. 1(b), the
usual Loschmidt-type bulk transitions and the entanglement-
type transitions which indicate periodic redistribution of
quantum correlations between the subsystems and have no
closed system analogy, (ii) inhomogeneous systems or macro-
scopically nonuniform quenches give rise to distinct robust
spatially resolved dynamical phase transitions as illustrated
in Fig. 1(c), and (iii) the entanglement-type transition can be
probed by monitoring the temporal behavior of subsystem
fluctuations [Fig. 1(d)] which also gives rise to oscillating
entanglement entropy. In addition, the entanglement echo pro-
vides a natural framework to study entanglement transitions of
systems in mixed states and nonunitary evolution.

Entanglement echo. To formulate a subsystem’s dynamical
phase transitions, we consider a bipartioning of a time-
evolving system into two subsystems A and B. The properties
of the subsystem A is encoded in the reduced density matrix
ρA(t ) = TrBρ(t ) = ∑

i λi(t )|λi(t )〉〈λi(t )|, obtained by tracing
out the degrees of freedom corresponding to the subsystem
B from the full density matrix ρ (representing a pure or
mixed state). The reduced density matrix can be parametrized
by the entanglement Hamiltonian HE defined by ρA = e−HE

Z ,
where Z ensures the normalization TrA ρA = 1. The dom-
inant contribution to ρA comes from the state |λ0〉 with
the largest eigenvalue λ0, corresponding to the ground state
of the entanglement Hamiltonian. The entanglement ground
state calculated for a many-body ground state typically
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FIG. 1. (a) Dynamics of subsystem A embedded in a larger
system (seen here for 1D and 2D geometries) display singular
features after a sudden quench through a critical point. (b) Entan-
glement echo E (t ) resolves two types of dynamical criticality: an
entanglement-type transition (top) and a bulk-type transition (bot-
tom). (c) Entanglement echo can spatially resolve several dynamical
transitions for a single quench configuration (solid and dashed lines).
(d) Entanglement-type transitions can be probed by monitoring
temporal change in the subsystem observables such as number of
particles.

encodes universal information about the phase, such as topol-
ogy and low-lying excitations. The significance of the entan-
glement ground state points to its potential importance also in
far-from-equilibrium systems. Thus, we define the entangle-
ment echo by

E (t ) = 〈λ0(0)|λ0(t )〉, (1)

which measures the overlap between the initial and instanta-
neous entanglement ground states during temporal evolution.
If the entanglement ground state is degenerate in the thermo-
dynamic limit, the echo can be defined as the overlap with the
degenerate subspaces.

As depicted in Fig. 1(a), we consider quench protocols
where at t = 0 the state of the whole system is prepared
to a known initial state, such as the ground state or finite-
temperature state of a prequench Hamiltonian. Then, the
Hamiltonian of the system is instantaneously modified to the
postquench form. Analogous to the Loschmidt echo L(t ) =
〈�(0)|�(t )〉, the vanishing of which defines dynamical phase
transitions for the full system, we define dynamical phase
transitions for a subsystem in terms of the entanglement echo.
We regard the subsystem A as undergoing a dynamical phase
transition at time tc if the entanglement echo vanishes E (tc) =
0. It is convenient to define the entanglement rate function
�(t ) = − ln |E (t )|2/�A, where �A is the characteristic size of
the subsystem A. Dynamical phase transitions are clearly seen
in the nonanalytic behavior of �(t ).

Here we describe two methods of calculating the entan-
glement echo. In the case of pure initial states and unitary
evolution, the state of the system can be expanded |�(t )〉 =∑

μν Mμν (t )|ψA
μ〉|ψB

ν 〉, where |ψA
μ〉, |ψB

ν 〉 form a complete
basis of each subsystem. The singular-value decomposition
of matrix Mμν (t ) leads to the Schmidt decomposition of a

state as

|�(t )〉 =
∑

i

λi(t )1/2|λi(t )〉∣∣λB
i (t )

〉
, (2)

where the sum contains at most min(dim A, dim B) terms [29].
The entanglement ground state at time t can be readily read
off from (2), allowing a direct evaluation of the entanglement
echo (1).

For noninteracting fermions, the evaluation of the entan-
glement echo simplifies. Pioneered by Peschel [30,31], the
entanglement spectrum for free fermions in a Gaussian state
can be obtained from the correlation matrix Cσσ ′

lm = 〈ĉ†
lσ ĉmσ ′ 〉,

where fermion operators ĉmσ annihilate particles with spin σ

and l, m label positions in the subsystem A. The eigenstates
|ξi〉 and eigenvalues ξi ∈ [0, 1] of the correlation matrix can
be regarded as the eigenstates and occupation probabilities of
a single-particle entanglement Hamiltonian. To evaluate the
entanglement echo, we first need to compute the dynamical
correlation matrix Cσσ ′

lm (t ) = 〈ĉ†
lσ (t )ĉmσ ′ (t )〉 and diagonalize

it. The value ξ = 1
2 marks the Fermi level of the entangle-

ment Hamiltonian, so the entanglement ground state |λ0(t )〉
is a Slater determinant constructed from the states satisfying
1
2 � ξ (t ) � 1. In the second-quantized notation, it can be ex-
pressed as |λ0(t )〉 = ∏

ξi (t )� 1
2

ĉ†
ξi (t )|0〉. Then, the entanglement

echo E (t ) = 〈λ0(0)|λ0(t )〉 becomes

E (t ) = det 〈ξi(0)|ξ j (t )〉, (3)

where the single-particle states satisfy ξi(0), ξ j (t ) � 1
2 . This

formula applies to zero- as well as to finite-temperature pre-
quench states.

Dynamical entanglement transitions in 1D and 2D. Now
we demonstrate dynamical entanglement phase transitions in
solvable two-band Fermi systems. Our analysis applies to
arbitrary spatial dimensions but we focus on 1D and 2D
topological lattice models. We consider pre- and postquench
Hamiltonians of the form

Hi/ f =
∑

l,m

ĉ†
l

[
d i/ f

lm · σ
]
ĉm, (4)

where σ = (I, σx, σy, σz ) is a vector of Pauli matrices and
the set of matrices d i/ f = (di/ f

0 , di/ f
x , di/ f

y , di/ f
z ) determine the

specific form of pre- (Hi ) and post- (H f ) quench Hamil-
tonians. The spinor operator ĉ†

l = (ĉ†
l↑, ĉ†

l↓) creates fermions
at site l . For translationally invariant systems and quenches,
matrices d i/ f become diagonal in an n-dimensional quasi-
momentum space. With a minor modification, which extends
spinors ĉ to the Nambu space, model (4) also describes
quenches in topological superconductors and solvable spin
chains [1,32,33] and spin liquids [34]. In Sec. I of the Supple-
mental Material (SM) [35], we have derived the expression for
the dynamic correlation matrix for the model (4) for spatially
dependent parameters and quench protocols in zero and finite-
temperature initial states.

We first consider a 1D topological insulator defined by
d(k) = (0, sin k, 0, m − cos k). This model belongs to the
Altland-Zirnbauer class BDI [36,37] and exhibits a non-
trivial phase for |m| < 1 and trivial phase for |m| > 1. In
Figs. 2(a) and 2(b) we have illustrated the dynamical phase
transitions when the system is quenched through the critical
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FIG. 2. (a) Entanglement echo rate of a 1D system (top) for quench m = 1.5 → m = 0.3 and the system size L = 100 (total), LA = 30
(subsystem). The jump singularities, which arise from the crossing of the entanglement spectrum (bottom), do not coincide with the cusps
singularities of the Loschmidt echo of the full system. (b) Same as (a) but for the opposite quench m = 0.3 → m = 1.5. The two echoes
agree (apart from finite size effects which vanish in the thermodynamic limit). (c) Momentum-resolved entanglement echo rate (top) for
Chern insulator quench m = 0.5 → m = −0.5 and the system size L = 100 (total), LA = 30 (subsystem). The jump singularities correspond
to ky values for which the entanglement spectrum (bottom) exhibits temporal gap closings at tc. (d) Same as (c) but for the opposite quench
m = −0.5 → m = 0.5.

point m = 1. The entanglement echo distinguishes whether
the quench is performed from the trivial to the topologi-
cal phase or vice versa. In the former case, which we dub
as an entanglement-type transition, the entanglement echo
displays periodic jump discontinuities as shown in Fig. 2(a).
The entanglement spectrum reveals that the jumps arise from
stroboscopic level crossing signaling an instantaneous entan-
glement ground state degeneracy. In the latter case [Fig. 2(b)],
which we call a bulk-type transition, the entanglement echo
exhibits cusps and agrees with the Loschmidt rate function.
The main difference between the two types of transition is
that the entanglement ground state degeneracy is oscillating
and present only at critical times for the entanglement-type
transitions. In contrast, the degeneracy remains static for bulk-
type transitions for timescales comparable to the critical time,
which is manifested in Fig. 2(b) (bottom) by the static states
pinned to the midgap. The fact that the midgap states appear
frozen in the topological-to-trivial quench follows from the
fact that they represent edge states that are localized to the
different ends of the system. The degeneracy of the midgap
states present in the topologically nontrivial initial state can
be lifted only after the information of the quench has had
time to propagate through the system [25]. The propagation
velocity obeys a Lieb-Robinson-type bound, so the timescale
for which the midgap states remain frozen diverges when
the subsystem becomes thermodynamically large. The bulk-
and entanglement-type transitions are mutually exclusive in
the sense that the same subsystem can exhibit either one (or
neither) but not both simultaneously. The oscillating entangle-
ment ground state degeneracy modifies a bulk-type transition
to an entanglement-type transition.

As shown in Sec. V of the SM [35], the stroboscopic
entanglement ground state degeneracies persist also to finite-
temperature initial states. In contrast to the Loschmidt echo,
which does not offer a straightforward generalization with
sharply defined transitions at finite temperatures [38–42], the
entanglement-type transitions remain well defined. The inter-
ferometric phase approach proposed in [38,40] gives rise to
nonanalytic behavior at finite temperatures but is not sensi-
tive to entanglement properties captured by the entanglement
echo. While the entanglement echo for the bulk-type transi-
tions reduce to the Loschmidt echo of the total system, as
seen in Fig. 2(a) and discussed in Sec. III of the SM [35], the

analytic structure and the critical times of entanglement-type
transitions do not coincide with the Loschmidt transitions.
The entanglement echo quantifies a temporal reorganization
of quantum correlations between the two subsystems and
captures essential information not contained in the Loschmidt
echo. When the subsystem size approaches the full system
size, naturally, the entanglement-type transition becomes a
bulk-type transition. Assuming periodic boundary conditions
of the full system, the crossover from a jump to cusp singu-
larity happens approximately when the length of the segment
that does not belong to the subsystem is comparable to the
characteristic penetration depth of the edge modes of the
postquench Hamiltonian.

Two-dimensional systems exhibit similar bulk- and
entanglement-type transitions as 1D systems. By consider-
ing the geometry shown in Fig. 1(a), the subsystem A can
be chosen as a segment in the x direction so that the per-
pendicular momentum ky remains a good quantum number.
The reduced density matrix decouples to blocks labeled by
ky, and the entanglement echo can be decomposed from
the echoes of each block as E (t ) = ∏

ky
E (ky, t ). The ky-

resolved partial echoes can be obtained by diagonalizing the
momentum-resolved correlation matrix derived in Sec. I of
the SM [35]. After obtaining the eigenfunctions |ξi(ky, t )〉, the
partial echoes can be calculated by applying Eq. (3). In fact,
quench dynamics are conveniently analyzed in terms of partial
echoes E (ky, t ). Here we consider Chern insulators defined by
d(k) = (0, sin kx, sin ky, m − cos kx − cos ky), which exhibits
three distinct topological phases with Chern numbers C = −1
(when −2 < m < 0), C = 1 (0 < m < 2), and C = 0 (when
|m| > 2). As in the 1D case, when the system is quenched
through a critical point, the entanglement echo shows nonan-
alytic behavior which depends on the direction of the quench.
In addition, the entanglement echo rate function may exhibit
either a cusp or jump singularity depending on ky. This is illus-
trated in Figs. 2(c) and 2(d) for transitions between C = ±1
phases. At times when the rate function shows a jump singu-
larity for specific ky values, the instantaneous entanglement
spectrum exhibits temporal gap closing for the corresponding
ky. Also, the momentum for which the gap closing takes place
changes when the direction of the quench is inverted. Thus,
the entanglement echo in both 1D and 2D systems reveals
two distinct dynamical phase transitions and, in contrast to
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FIG. 3. Top: Spatially varying prequench (solid) and postquench
(dashed) configurations for the 1D model with periodic boundary
conditions. The initial configuration consists of regions with μ1 =
1.5 and μ2 = 0.3, while the postquench parameters have μ3 = 0.5
and μ4 = 1.7. Bottom: Resulting distinct transitions displayed in
subsystems A (red) and B (blue).

the Loschmidt echo, makes a qualitative distinction in which
direction the critical point is crossed.

Spatially varying quenches. The Loschmidt echo charac-
terizes dynamics of the system as a whole and, as such,
is incapable of providing spatially resolved information.
However, the entanglement echo reveals novel dynamical
criticality in macroscopically inhomogeneous systems or spa-
tially varying quenches. In fact, a single quench can give rise
to several spatially resolved dynamical phase transitions char-
acterized by different timescales. In Fig. 3 we have illustrated
a quench in the 1D system, where the pre- and postquench
configurations vary in space. The subsystem A experiences a
quench from a trivial to topological phase while subsystem
B experiences the opposite quench. The entanglement echo
reveals that, indeed, the different parts of the system exhibit
distinct sharply defined dynamical phase transitions. Not only
are their critical times different, but the nonanalytic structure
shows that the transition in A is of entanglement type and
the transition in B is of bulk type. Since it takes a finite
time for information to propagate through the system [25],
the short-time behavior giving rise to early dynamical phase
transitions is sensitive only to local quench properties. Thus,
a system which exhibits several distinct equilibrium critical
points can display multiple spatially resolved dynamical phase
transitions in a single quench. As mentioned above in the case
of spatially homogeneous systems, each subsystem can be
well defined as either bulk or entanglement type as long as
the topological phase of the subsystem is unambiguous, as in
Fig. 3.

Observable consequences. The entanglement-type tran-
sitions arise from instantaneous degeneracies of the en-
tanglement ground state which persist to finite-temperature
initial states. It is natural to wonder what the observable

FIG. 4. Subsystem particle number variance and entanglement
entropy (inset) after a quench. (a) corresponds to the entanglement-
type transition in Figs. 1(a) and 1(b) to the bulk-type transition in
Fig. 1(b).

consequences of this are, especially in contrast to the
Loschmidt-type criticality. Far from equilibrium, the states
in the entanglement spectrum are not in simple correspon-
dence with the physical edge modes, thus preventing the most
direct experimental probes. Here we devise a method to probe
and distinguish the entanglement-type transitions by moni-
toring the temporal changes in subsystem fluctuations. The
stroboscopic degeneracy of two entanglement ground states
is expected to lead to enhanced fluctuations for observables
which have different expectation values in the two states.
Indeed, we demonstrate this by considering the number of par-
ticles in the subsystem A in a setup depicted in Fig. 1(d). The
particle number operator is N̂A = ∑

i∈A,α=↑,↓ ĉ†
iα ĉiα , where the

summation is over the lattice sites in A and spin. As shown in
Sec. IV of the SM [35], the time-dependent variance of the
particle number is given by

Var NA(t ) =
∑

i

[
ξi(t ) − ξ 2

i (t )
]
, (5)

where ξi(t ) are the eigenvalues of the correlation matrix. In
a translation-invariant system, the first term is a constant
fixed by the average density; however, the second term should
reflect the pronounced oscillations of midgap states charac-
terizing the entanglement-type transitions shown in Fig. 2(a).
As seen in Fig. 4(a), the particle number variance indeed
oscillates with periodicity of the critical times. In addition
to oscillations, it shows a linear trend due to mixing of the
two subsystems. The onset time of the linear growth de-
pends on the depth of a quench while the oscillation period
reflects the periodicity of critical times. The pronounced os-
cillations, which are visible even for small subsystems down
to approximately ten sites, persist to finite-temperature initial
states and provide an experimental signal that distinguishes
entanglement-type transitions from Loschmidt transitions
seen in Fig. 4(b) and trivial quenches shown in Sec. V in
the SM. Moreover, as illustrated in Fig. 4, particle num-
ber fluctuations essentially reflect the behavior of the von
Neumann entropy S(t ) = −∑

i[ξi ln ξi + (1 − ξi ) ln(1 − ξi )]
[43]. The difference in entropy oscillations [44] depending
on the direction of the quench is naturally explained by the
existence of the two types of subsystem transitions discussed
in our work. Since the above discussed mechanism of the sub-
system fluctuations follows from the oscillating entanglement
ground state degeneracy, it applies to generic observables and
entanglement-type dynamical phase transitions. In particular,
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the particle number oscillations in the entanglement-type
transitions discussed above are robust in the presence
of moderate interactions that do not destroy topological
states.

Conclusion and outlook. In this work we formulated dy-
namical phase transitions for a subsystem of a many-body
system by introducing the entanglement echo. The entan-
glement echo provides an appropriate generalization of the
Loschmidt echo, giving rise to several conceptual advances as
well as new observable predictions discussed in our work. In
the present work, we studied dynamical criticality resulting

from a zero- and finite-temperature initial state undergoing
unitary time evolution after a quench. Since the entanglement
echo is formulated in terms of the reduced density matrix, it
can be straightforwardly employed to study mixed states and
nonunitary time evolution. In the future, it will be interesting
to study subsystem dynamics in systems subjected to mea-
surements, the effects of measurements on quench dynamics
[45], and possible measurement-induced dynamical entangle-
ment phase transitions [46–48].
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