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One of the key observables in a gravitational wave power spectrum from a first order phase transition in
the early Universe is the mean bubble spacing, which depends on the rate of nucleation of bubbles of the
stable phase, as well as the bubble wall speed. When the bubbles expand as deflagrations, it is expected that
the heating of the fluid in front of the phase boundary suppresses the nucleation rate. We quantify the effect,
showing that it increases the mean bubble separation, and acts to enhance the gravitational wave signal by a

factor of up to order 10. The effect is largest for small wall speeds and strong transitions.

DOI: 10.1103/PhysRevD.106.023505

I. INTRODUCTION

An early Universe cosmological first-order phase tran-
sition [1] can lead to interesting physical consequences
such as matter-antimatter asymmetry [2], primordial mag-
netic fields [3,4] and the production of a stochastic back-
ground of gravitational waves [5,6] The power spectrum of
the gravitational waves contains information about the
thermodynamic and transport properties of the system at
the time of the phase transition. If the transition happened at
around the electroweak scale of 100 GeV, when the
Universe was about 10~!"' seconds old, the gravitational
waves could be observable at planned space-based detec-
tors like Laser Interferometer Space Antenna (LISA) [7,8],
and the principal thermodynamic and transport properties
could be measured over a wide region of the parameter
space [9].

The transformation of the metastable phase into the stable
one is described by cosmological homogeneous nucleation
theory [1,10] (see [11] for a review). Once the temperature
has fallen below the critical temperature of the transition 7',
quantum or thermal fluctuations produce small spherical
bubbles of the stable phase, which expand and merge, and
eventually the whole Universe is converted to its stable
phase. The peak of the bubble nucleation rate defines the
nucleation temperature 7', and the time taken to complete
the transition can be expressed as a transition rate 3. Part of
the potential energy of the supercooled metastable phase is
converted into bulk fluid motion, which sources gravita-
tional waves long after the transition is completed [12].
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The kinetic energy of the bulk fluid motion is controlled
by a fourth parameter @, which is essentially the ratio of
the potential energy difference to the thermal energy. It
quantifies the strength of the transition. The kinetic energy
of the bulk motion is also controlled by the equation of state
of the fluid, most importantly through the speeds of sound in
the two phases [13]. All quantities will be defined more
precisely below.

At the end of the transition, the density of bubble
nucleation sites n, defines a mean bubble spacing

R. =1/ n/3. If bubble nucleation continues undisturbed
in the metastable phase, and the bubbles expand at a
constant speed v,,, the mean bubble spacing is given by

R, = (87) v, /. (1)

However, if the bubbles expand as deflagrations [1,14—17],
the fluid ahead of the advancing bubble wall is heated, out to
the radius of a shock. In this region the nucleation rate is
reduced. Thus we expect fewer bubbles to be nucleated, and
the mean bubble spacing should increase. The effect acts to
increase the peak wavelength of the gravitational wave
power spectrum [18,19]. and also the peak power, which
scales as R, or R?, depending on the strength of the
transition [8].

The suppression of nucleation by the heating effect has
been noted before [20], where it was estimated that
nucleation was suppressed everywhere between the wall
and the shock. In this paper we quantify the effect more
precisely, for transitions with strength parameters up to
a ~ 1. We find that the increase in the mean bubble spacing
can increase the gravitational wave power by a factor of up
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to O(10), partially compensating the suppression due to the
interactions between bubbles [21].

II. BUBBLE NUCLEATION: STANDARD
CALCULATION

First, we discuss the formation of bubbles in the plasma
according to the standard treatment. We will suppose that
the transition rate is much faster than the Hubble rate H, so
that we can neglect cosmic expansion. The bubble nucle-
ation rate per unit volume has the form [10,17,22,23]

p(1) = poe ST, (2)

where S is the action for the appearance of a bubble, which
in a thermal transition is equal to the energy of a critical
bubble divided by the temperature. It is a function of time
through its dependence on the temperature 7'(¢). In the small
supercooling or “thin wall” approximation [10,23],

- e ¥

where 7' = T/T., T. is the critical temperature, and s is a
constant computable from the effective potential of the
theory. The nucleation rate is then zero precisely at the
critical temperature, and increases very rapidly below it.

Once a bubble has nucleated, it grows at a constant speed
vy, determined by the friction between the wall and the
plasma. The increasing population of growing bubbles
reduces the fraction of the Universe in the metastable phase.

Let V be the volume in the metastable phase, and V|
the volume in the stable phase, out of a total volume V,
such that

Ve =V + V.
In the notation of Ref. [23],
h = V/ Vtot (4)

denotes the fraction of the Universe in the metastable
(high-temperature) phase. First, we consider the reduction
in the volume of the unbroken phase between times ¢ and
t + dt due to the growth of bubbles nucleated between
earlier times ¢ and ¢ + dr'":

V(1)

d*V(t, 1) = —dNy (¢ )4zR*dR Vi) (5)

where dNy, is the number of bubbles nucleated in that time
interval, and R is the radius of those bubbles at time 7. The
factor V()/V(¢') takes into account the fact that only parts
of the bubbles growing into the unbroken phase will
change the volume of that phase.

The number of bubbles nucleated between ¢ and
! +dt is

dNy = p(£)V()dr', (6)

where p(#') is the bubble nucleation rate per unit volume,
and the factor V(#') accounts for the fact that bubbles
nucleate only in the metastable phase. Finally, we have

R=vuv,(t-17), dR = vdt, (7)
as the bubbles are assumed to grow with constant speed
after nucleation.

The nucleation probability is non-zero only below the
critical temperature 7., which is reached at time ¢, so the
change in the volume of the stable phase between ¢ and
t + dt is, in total,

av(r) = —UWV(t)dt/tdt’p(t’)47w\2v(t— 7?2 (8)

IC
Dividing by the total volume V,, we obtain a differential
equation for A, the fraction remaining in the metastable
phase:

dh ! / / 2 2

e —vyh(t) | di'p(?)dmvs(t—1)% 9)

Ie

It is straightforward to check that the solution to this

equation, with the boundary condition i(z) = 1 for 7 < ¢,
is

h(t) = exp (—43—” [ tdﬂp(ﬂ)va,<z—ﬂ)3>. (10)

A saddle-point approximation to the integral is possible.
We define the transition rate parameter

d
=—Inp(¢ 11
p dtnp()t/_, (11)
where 7, will be specified later, and write
p(1) = psef=t) (12)

where p; = pexp(—S(t;)). The integral can be performed
in the approximation f(z, — ;) — —oo, giving

h(r) = exp (=8zvyf~*pse). (13)
Choosing ¢, to be the time at which h(t;) = 1/e, we have
h(t) = exp (—el=11)). (14)

with
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8ﬂv§,ﬂ_4pf =1. (15)
The time tr is then found as the solution to
87vd 4 poeSr) = 1. (16)

Its value does not play an essential role in the following.
To calculate the number of bubbles, we integrate the
equation

o= ) (17)

or, in terms of the bubble density n, = Ny/ Vg

d}’lb ,
— = p(t')h(7). 18
e — plt)h(r) (18)
The final bubble density is then

ny = B°/8xnvy,. (19)

We define a mean bubble center spacing R, as

R, =ny'" = (82)'3(v,/P). (20)

Note that we have assumed that the bubble nucleation rate is
the same everywhere in the metastable phase. However, the
expanding bubble releases energy and heats up the fluid, as
well as setting it in motion. If this heating effect extends in
front of the bubble wall, as it does for deflagrations, we can
see from (3) that the nucleation rate will be reduced.’ In the
next section we review the calculation the temperature
profile around an expanding bubble.

III. HYDRODYNAMICS OF BUBBLE GROWTH
BY DEFLAGRATIONS

In order to calculate the suppression effect noted in the
previous section, we need to calculate the temperature
profile around an expanding bubble for deflagrations.

In the case of perfect fluid the plasma is locally in
equilibrium. Therefore, the energy momentum tensor of the
fluid can be written as:

T/ﬁv = wu,uy, = g,,P> (21)

where w is the enthalpy density and p is the pressure.
The four-velocity field of the plasma u* is related to its
three-velocity v by

\/(Il—’_—vlvj = (7.7v).

u' =

(22)

lTemperature fluctuations from other sources can also change
the nucleation rate [24].

The energy density, e, the enthalpy density w, the entropy
density s are related to the pressure as follows:

ap ap
=T— - =T— =—. 2
e=Top=pr w=Top  s=g (23
Evidently, w = e + p. The motion of the fluid is governed
by conservation of energy-momentum:

HTE, = 0. (24)

The fluid around an expanding spherical bubble at time
since nucleation At and radial distance r can be described
by the purely radial fluid 3-velocity v(r, At) and enthalpy
w(r, At). The partial differential equations can be solved
numerically [15], and it is observed that the fluid quickly
settles down to a self-similar solution, depending only on a
coordinate & = r/At. In this self-similar form, the fluid
equations become

dv  2v(1 —0?) (? -1

e &(1-év) Lf_1> ’ >
d 1 d
d—?-w(l%—c—g)yzud—;. (26)

Here, ¢ = dp/de is the speed of sound and

_c-v
C1-¢&v

p (27)

is the fluid velocity at £ in a frame that is moving outward at
speed ¢.

We now discuss the boundary conditions at the bubble
wall. The plasma is in the stable phase behind the wall, and
in the metastable phase in front. We denote quantities
evaluated just behind the wall with a subscript —, and in
front with a subscript +, and quantities in the frame moving
with the wall with a tilde.

In the frame moving with the wall, conservation of
energy density and momentum density imply

w7t py = wopt +po, (28)
wi PRl = w_plD, (29)

These equations may be rearranged to give

- 1 i1
v, = —
Tl 4a [\ 2 60

0 12 2 1
+4/(= 2+ Za, —=|, (30
\/(2+65_> +ad +3a, 3}, (30)

where
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_ 40, -0
3wy

, (31)

ay

and @ = (e — 3p)/4. In a deflagration, the fluid exits from
the wall with the smaller of the wall speed and the sound
speed in the stable phase,

U_ = min(vy, ¢s(T_)). (32)

These equations can be straightforwardly solved
numerically, once the speed of sound is known as a
function of enthalpy density. In practice one wishes to
apply the boundary condition at large radii, where v =0
and T =T,, the bubble nucleation temperature. This
means that one must “shoot” for this value from an initial
guess for a,. The amount of energy available to be
released by the transition is conveniently parametrized by

— HS(TT]) , (33>

3 walth)
where the subscripts m and s denote quantities evaluated in
the metastable and stable phases.

In this paper we use the simplest possible equation of
state, the bag model, in which

Pm = €+ anT?, ps = a,T*. (34)
In this model ¢ = 1/3 and w o T*.

Figure 1 shows plots of temperature profile variation
with respect to & for different wall speeds (£ = 0.4, 0.7) and
for a, =0.2. The plots were produced by integrating
the Egs. (25) and (26) in parametric form (see [17]), with
5000 points distributed over the parameter range, and an
absolute tolerance of 107° in the shooting parameter a.

The upper plot shows the typical form of a subsonic
deflagration and the lower one shows a supersonic defla-
gration (or hybrid) [25]. In each case there is a region of
heated fluid, which is moving radially outward, bounded on
the outside by a shock, which moves at a speed wvg,
calculable from the solution to the fluid equations v(&)
and energy-momentum conservation (see, e.g., [17]. The
resulting equation gives the position of the shock as the
solution to the equation

3¢ -1
o) =2

Between the bubble wall and the shock the bubble
nucleation rate will be suppressed.

Figure 2 shows the maximum of the ratio of the temper-
ature difference AT = T — T, to the nucleation temperature
T, as contour lines in the plane of wall speed v, and
transition strength «,, for a range of »,, = 0.01-0.99 and
a, = 0.005-1.0. We also show AT/T, with blue shading,
and use it in later figures to give an qualitative indication of

(35)

§
o
=]
S

030 035 040 045 050 0.55  0.60
U

0.4

0.3}

0.2}

AT(€)/T,

0.50 0.55 0.60 0.65 0.70 0.75 0.80

FIG. 1. Variation of temperature with respect to radial similarity
variable £ = r/t in the frame of the bubble center for different
wall velocities, v, = 0.4, leading to a deflagration (top) and
vy, = 0.7 leading to a hybrid (bottom), and phase transition
strength parameter a, = 0.25. The plots show the typical profiles
for a deflagrations which are subsonic (top) and supersonic
(bottom).

0.0 0.2 0.4 0.6 0.8 1.0
Uy

FIG. 2. Contours of the maximum fractional temperature
difference around a deflagration, as a function of wall speed
v,, and strength parameter at the nucleation temperature «,. The
blue shading also shows the maximum fractional temperature
difference, for use in other figures. For larger values of v,
deflagrations are replaced by detonations and there is no effect.
For larger values of «a,, there is no hydrodynamic solution at
fixed v,,. Both regions are grayed out.

023505-4



THERMAL SUPPRESSION OF BUBBLE NUCLEATION AT FIRST- ...

PHYS. REV. D 106, 023505 (2022)

the accuracy of the calculations, from light (more accurate)
to dark blue (less accurate). For large «,, and low v,, there
are no solutions to the fluid equations; for large v,, at fixed
a, the solution changes to a detonation, where the wall
moves ahead of the shock, and the nucleation suppression
effect disappears.

A. Small wall speed limit

In the limit of small wall speed, the fluid velocity
should be small (v(§) < &), and a simple approximation
to the solution to the fluid equations is known. The
approximation is

vy 6 =&
1)(5) = Umaxg_zcz _ 1}2 ) (36)

where v (vy,a) is the maximum fluid speed in the
bubble center frame, reached just outside the wall. For
small @ and v, not too close to the sound speed [11,16],

VUmax = 3an Vy

. 37
1 —303 (37)

This gives an analytic form for the enthalpy,

N 11
W(&) = w, exp 2(1 +Cs)mvmax E_C_ (38)

where w, is the enthalpy density at £ > ¢, the enthalpy
density at the nucleation temperature.

Because w o T*, we have for small enthalpy differences
Aw/w = 4AT/T. Hence

AT 1 2 11
— ~2(1 2 w =
r= a0 (5
3a, vy 11
~~ "1 2y W (__
2 U aasaay (5 cs>
v3 1
~6a T3 <§—\/§> (39)

This relation is useful in the low velocity region
when v < 0.05.

IV. POSITION-DEPENDENT BUBBLE
NUCLEATION

In this section, we take into account the dependence of
the bubble nucleation rate on the temperature. The temper-
ature is raised closer to the critical temperature in front of a
deflagration, and so we expect the nucleation rate to be
suppressed around the expanding bubble.

The bubble nucleation rate per unit volume is now space-
dependent as well as time dependent, due to the dependence
of the bubble appearance action on the temperature:

p(r'.x) = poe=SU'¥). (40)
Let us write
T(¢,x) =T(¢) + AT(¢,x), (41)

where T is the undisturbed temperature outside the shock
surrounding each bubble. Hence

p(l‘/, X) — p(t/)e—AS(ﬂ,x) (42)

The rate of bubble nucleation over the remaining volume
remaining in the metastable phase V' = V(¢) is

dN,
o= [ (), 43)
dt v

Hence

% = p(r) <V’ - // dx(1 - e‘AS)>, (44)

where we have rearranged the equation to bring out a term
which acts to reduce the effective volume of the metastable
phase. Let us give the correction term the symbol

AVsyeff = [// d3x(1 - e_AS). (45)

We can regard this quantity as an increase in the effective
volume of the stable phase, where no bubbles can nucleate.

Let us first consider a single bubble nucleated at time ¢,
with radius R = v, (¢ — #;). We can then write

AVs,eff = stv (46)
where
3 [y, _AS
f== &dE(1 — ™) (47)

is a constant factor giving the relative increase in the
effective volume of the bubble, vy, is the speed of the shock
which surrounds the bubble, and the volume in the stable
phase inside the bubble is V= 4xv3,(f —t,)3/3. The
effective volume in the stable phase is then

Vs,eff = (1 +f)vs (48)

The change in the bubble appearance action AS can be
expressed in terms of the transition rate parameter
p = —0S/ot,

Ase B AT B
or ™" = orar

_pAT
AT =5 (49)
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We neglect higher orders in AT /T, which means that in the
region of (v, a,) plane where AT /T ~ 1, our calculations
can be expected to receive large corrections. These cor-
rections will depend on the second and higher derivatives of
the action with respect to the logarithm of the temperature,
parameters which are not part of the standard description of
phase transitions. We leave more precise studies for future
work, indicating where corrections are likely to be more
important by the density of the blue shading in the
(vy, ) plane.
With this approximation in mind, we may write

A

where = f/H, T, is the nucleation temperature, and
AT (&) = T(§) — T,. We can rewrite the factor in terms of
an effective wall speed vy,

PRI/ dg (50)

3
Ue
o (51)

w

I+ f=

Veff / Ush, ﬁ =

Veff / Ush,

We plot the ratio v/ vy, on the top row of Fig. 3. We see
that for fast (v,, 2 ¢,) bubble walls in strong (a, = 0.3) and
rapid (# = 100) transitions, the estimate vy =~ vy, is rea-
sonably accurate. However, for slower walls in weak and
slow transitions, the approximation fails.

Now let us consider the situation with many bubbles. We
label the bubbles by i =1,...,N,, and define a radial
coordinate for each bubble r;. Before bubbles start over-
lapping, the effective volume in regions where bubble
nucleation has stopped is

scff - §

Mo 47
=5 vl — 1) (52)
i=1

v3,(f —t;)

(+1)

Conversely, the effective volume remaining where bubble
nucleation can take place is

chf = Vtot - Vs,cff- (53)

B =100 Vest/Vsh, B = 1000

10°

107!
= =
3 3
1072
0.0
10° 10° 10°
_ 107U Rl _ 107t
5 & e
102} 102 102}
00 02 04 06 08 1.0 00 02 06 08 1.0 00 02 04 06 08 1.0
Uy Uy Uy
FIG. 3. Top: contour plots of v/ vy, Where v is the expansion speed of the spherical shell inside which further bubble nucleation is

effectively suppressed, and vy, is the speed of the shock. For larger 3, bubble nucleation is suppressed almost everywhere inside the
shock, for a wide range of wall speeds v,, and transition strengths a,. Bottom: contour plots of 4., the fractional volume occupied by the

metastable phase at which bubble nucleation effectively stops, for values of the transition rate relative to the Hubble rate § =

10, 100,

1000 (left to right). As j increases the effect of nucleation suppression gets larger, due to the increasing sensitivity of the bubble
nucleation rate to the temperature. In both rows, the blue shading shows the size of the maximum relative temperature change in the

shell, with the same intensity map as in Fig. 2.
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The rate of change of the fraction in the metastable phase is
then modified to

dh h Vet
a_ _,
dt R 74

t

/ ' p(Amd (=12 (54)
tC

We take the ratio V;/V to be that from a single bubble,

Veff _ Vtot - Vs,eff ~ (1 + f)h _f
\%4 \%4 N h '

(55)

This approximation neglects regions outside the shells of
radius v (' — ¢;) but inside vy, (7 — 1;), where the temper-
ature in overlapping fluid shells has also reached a high
enough value to suppress nucleation. This extra volume
where nucleation is suppressed will give a small positive
correction to V.

an _
dr

c

We are also neglecting interactions between the shell of
one bubble and the wall of a neighboring one, which tend to
slow down the expansion of the wall [21]. We discuss this
effect in the conclusions section.

We see that bubbles stop nucleating once / drops below

f
h, =——
S vgﬁ

so that A, is the fractional volume at which the symmetric
phase is reheated enough to prevent further bubble nucle-
ation. We plot %, as a function of »,, and a,,, for three values
of j, in the bottom row of Fig. 3.

Hence the equation for the fraction of the universe
remaining in the metastable phase 4 becomes

—vyh(t)(1 4 f) [tdt/p(t') [1 - hh" }4@%«0— )?0(h(t') — hy), (57)

()

which upon integration with respect to ¢ becomes an integral equation,

dr

h(t) = exp (-wau — )" /; dr p(r) [1 _ } (t—7)0(h - hx)>. (58)

h(t")

With the approximation for the nucleation rate per unit volume (12), and defining a dimensionless time variable 7 = ft,

we can rewrite Eq. (58) as

h(z) = exp [—é(l — ) / 47 e (1 _ > (= 7)%0(h - hx)} (59)

Te

h(7’)

where we have used p, = p*/87v3,. We see that the equation for / derived in the absence of the suppression effect (9) is
recovered in the limit o, — 0. We assume that 7, — 7, > 1, and hence that the solution depends very weakly on 7.

We solve this equation for a given h, by iteration:

1 T
R+ (7) = exp [—8(1—@)—'/ dr’ef‘ff(l—

Te

starting with the solution at f = 0,
hO) (1) = exp (—e” 7). (61)

The iteration converges very quickly and we stop after 5
iterations. The relative difference between the last two
iterations depends on £, and 7 but is no greater than 0.01.

For f> 1, h, can be close to unity, i.e., bubble
nucleation can effectively stop almost immediately. This
can happen for large /3.

h(a?zr,)) (r=7)0(h - hx)} (60)

The fact that the iteration converges very fast motivates a
simple approximation,

h(t) ~

{ o (62)

M (z),

Hence, for 7z > 7,
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The integral can be performed by expanding the expo-
nential (see Appendix), leading to the following equation:

h(r) ~exp (—é(l —hy)™! /TX dr'e” 7 (1 — hxee#ﬂf )z — T’)3>, (63)
f
_9p (1+c) [of, &
B (= A G CRD

h(t) ~exp <—% (AoAT> +32,A7% + 61,AT + 6/13)> (64)

where e, = exp(z — 7;) and

A_l_l—hzm—kl (65)

To second order in m,

(66)

At this order of approximation, e, can be solved exactly in
terms of A, through

h(Tx) = hy = exp (_ex/IB)? (67)
leading to the quadratic equation
he 1
-2 —e? Inh, =0. 68
T 16 T ex TN (68)

For h, — 0 we can neglect O(%,) terms and the solution is
e, = —Inh,, with

1
h(t) ~ exp (8 Inhy(A7? + 3A7> + 6A7 + 6)) . (69)

For h, — 1, the second terms in the equation for 1, become
important. Writing 4, = 1 — ¢, we have

1

€~ —1Inhy, JarT

ey €, Aa=1— (70)

Figure 4 shows plots of A(z) with different values of &,
obtained with the iterative method outlined above. It can be
seem that for increasing A, the transition takes longer, as a
result of the reduced number density of bubbles nucleated.
In the lower panel In(—In(h)) is plotted, along with the
approximation derived above.

In the limit »,, — 0, the velocity in the fluid shell is small
everywhere, and the approximate solution (39) can be used
to estimate f. Substituting Eq. (39) in Eq. (50) yields

_3ap (1+¢c2) (v

2 (2vy — 3c¢y)
R A S_C§> (72)

Cs

where we have used the fact that the shock speed is
approximately ¢, for deflagrations with low fluid speeds.
This expression helps check numerical solutions at low v.

V. DISTANCE BETWEEN BUBBLES

In this section we will derive the equation for the distance
between bubbles, for which we need to calculate the bubble
number density.

To calculate the number of bubbles, we convert Eq. (44)

into an equation the bubble density n, = Ny/V
— he=01
1.00 — hy =03
\ — he=05
. 0.75 —— hy=07
= \ — =09
= 0.50 \\\
0.25
0.00
—6 —4 -2 0 2 4
T—=Tf
4... —
= 21—
& -
=
.E O.: Seldedeldeded
| —
R e T
—4
—6 —4 —2 0 2 4

FIG. 4. Plots of h(z), where & is the fraction of the universe in
the metastable phase, for several values of the threshold fraction
where nucleation stops #,. Solid lines are the numerical solution
to Eq. (63), dashed lines (lower figure) are the approximation
Eq. (64). Dotted lines give the threshold values —In .
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dmy _

70— p()[(1 -+ 1)h(r) - 1) (73)

The density of bubbles is, on integrating (73),

m =125 [ POWO-ha (9

where t, is the time at which nucleation stops, i.e.,
where h = h,.
Introducing the function

I(hy) = 1_1h [*er—r,-<h(f)—hx)df (75)

we have that

no() = B~ psl () = m 'Ly (h). (76)
where n](30) = 8zv3,° is the bubble density in the absence
of nucleation suppression. In general, we expect
0 < I,(hy) < 1. This function represents the reduction in
the mean bubble density by the suppression of the
nucleation in advance of the bubbles wall. Clearly,
1,(0) = 1. We plot the bubble nucleation rate from the
numerical solutions, and the analytic approximation,
in Fig. 5.

We recall that the mean bubble center spacing is defined
as R, =n, '3 Hence, the mean bubble center spacing is
increased by a factor

R, -1/3
7= ). (77)

where R, (0) = (87)'/3v,,/pB is the mean spacing in the
absence of nucleation suppression. Normalized this way,
we have A(0) = 1.

0.4 :
— =00
S A
031 he = 0.3 / \
& — =05
"@ X
502 — m=07 A7\
= — =09 \
-2 0 2 4
T—Tf

FIG. 5. The universe-averaged dimensionless bubble nuclea-

tion rate where 7i;, = n;/ n1(70) , the rate is given by (73), and the

reference bubble density is n,§°>

hy as Fig. 4.

= /3 /8nv}, for the same values of

6

54

FIG. 6. Bubble spacing enhancement factor A as a function of
the fractional volume of the universe occupied by the metastable
phase at which bubble nucleation stops, /. The blue line uses the
numerical solution and the dashed line uses the analytic approxi-
mation. As h, — 1, bubble nucleation stops earlier, and the
bubbles that are nucleated grow to larger sizes.

The integral can be performed with %(7) in its approxi-
mate form, leading to
hyIn hy
1—h

Iy(hy) =1+ (78)

Figure 6 shows the bubble spacing enlargement factor
A(hy), computed from the numerical solutions for A(z),
along with the analytic approximation calculated from (78).
As h, increases A(hy) increases demonstrating that
Figure 7 (top row) shows contour plots of A(k,) in the
plane of wall speed v,, and transition strength parameter a,,,
for # = 10, 100, 1000. The detonation region and hydro-
dynamically inaccessible values are grayed out.

VI. GRAVITATIONAL WAVE POWER

The gravitational wave power spectrum produced by a
first order phase transition is, in a large region of parameter
space, dominated by acoustic production [12,17,19,26] (see
also [8,11,27,28] for reviews). The total gravitational wave
power is, provided that the mean bubble size is much less
than the Hubble length,

Quyy = 3K?(vy, @) (Hyty) (H,R,)Qyyy. (79)

where K is the fraction of the energy of the fluid in the form
of kinetic energy, H, is the Hubble rate at nucleation
(assumed to be the same as the Hubble rate at the end of the
transition), z, is the effective lifetime of the source, and
fzgw ~ 1072 is a dimensionless parameter characterising the
efficiency of gravitational wave production.

The effective source lifetime is the shorter of the Hubble
time and the shock appearance timescale 7y, = R, /VK:
once shocks appear, the kinetic energy is dissipated in a
time of order a few 7. An investigation of how a shear
stress source is diluted by expansion [26,29] shows that to a
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FIG.7. Top: contour plots of the bubble size enhancement factor A ratio in the plane of wall speed v, and transition strength parameter
a,,, for ratios of the transition rate to Hubble rate g = 10, 100, 1000 (left to right). Contour plots of GW enhancement factor E,, for
different temperatures in the plane of «, and &,,. As ﬁ (the transition rate) increases the ng) increases. In both rows, the blue shading
shows the size of the maximum relative temperature change in the shell, with the same intensity map as in Fig. 2.

first approximation, in which the source is constant and
shuts off after time 7g,,

Hyz, = <1 - ﬁ) (80)

For convenience we define

V14 2x

where r, = H R, and x = r,/ VK. Recalling the definition
of the bubble spacing enhancement factor A, the GW power
is also enhanced by a factor

1
J=H,RHyz,=r, (1 - > &0

~ 1
Eenlvwa.P) = A<1 1+ 2Ar*(0)/1<1/2>' (82)

where the Hubble-scaled mean bubble spacing without
nucleation suppression is [23]

r.(0) = R.(0)H,. (83)

In Fig. 7 (bottom row) we show contour plots of the
GW enhancement factor E,, for our standard values
p/H, = 10, 100, 1000. The kinetic energy fraction K has

been evaluated using the single-bubble kinetic energy
fraction

K =

3
5, /dcfézwyzvz, (84)

vW[l

where v and w are the solution to Egs. (25), (25), and e, is
the energy density outside the expanding fluid shell. The
kinetic energy density is calculated from the numerical
solutions, integrated using the trapezium rule.

VII. CONCLUSIONS

In this paper we have studied the suppression of bubble
nucleation in cosmological phase transitions proceeding by
deflagrations. In a deflagration, some of the energy released
by the transition goes into heating up the fluid in front of
the bubble wall which, as a result, suppresses further bubble
nucleation. In a detonation, on the other hand, the bubble
wall is ahead of the shell of excess thermal energy, and the
effect is absent.

We find that nucleation stops when a certain fraction
of the volume in the metastable phase has been converted.
The fraction can easily be computed from the solution of the
relativistic hydrodynamic equations, in an expansion in
the relative temperature fluctuation AT/T,. We solve the
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equations for a fluid with a bag model equation of state, and
compute the first order effect. This is sufficient for transition
strengths below around 0.3, and wall speeds below the
sound speed.

The suppression of nucleation results in a lower number
of bubbles per unit volume, and therefore a larger mean
distance between their centers. The effect results in a larger
intensity of gravitational waves from the transition.

The region of higher temperature extends outward to a
leading shock, which travels faster than the sound speed.
For this reason it has sometimes been estimated that the
region extends out to the shock speed vy, [20] or the sound
speed (an estimate of the shock speed) [8]. Here we have
shown that the effect is more complicated. The suppression
can be expressed as the effective speed vy of expanding
spherical volumes inside which nucleation stops, with
Vy <Vepr <Vg,. We show that this approximation vy vy,
works well for fast walls in strong and rapid transitions, but
not otherwise.

The more rapid the phase transition, as measured by
the parameter f, the more sensitive the system is to the
suppression effect. This is because j is equal to the
logarithmic derivative of the nucleation probability with
respect to the temperature. Increasing the phase transition
strength parameter a, also increases the effect, as one
would expect from the larger release of thermal energy. The
effect also increases with decreasing wall speed v,,, as the
heated volume is larger relative to the bubble size.

For example, for (v, a,, ,B) =(0.1, 3 x 1072, 1000), the
ratio ve/ v, =~ 0.4, and bubbles stop nucleating when only
5% of the universe has been converted to the stable phase.
This has the effect of increasing the mean bubble spacing
by a factor 4, and the gravitational wave intensity by a
factor 5. We show the magnitude of both effects, as
functions of v, and a,, in contour plots in Fig. 7.

Our results are derived from a numerical solution to an
integral equation for the fraction remaining in the meta-
stable phase as a function of time, 4(). We have also shown
that good numerical approximations exist, and that the
suppression factors can be calculated from the solution of
the relativistic hydrodynamic equations.

A further effect to consider for precise calculations of the
gravitational wave power spectrum is the altered collision
time distribution [17]. In the standard calculation with
exponentially growing nucleation rate per unit volume of
metastable phase, the distribution of times between a
segment of wall being nucleated, and colliding with another
segment of wall, is distributed exponentially. If all bubbles
are nucleated simultaneously, the distribution is a power
times an exponential. As A, is reduced from 1 to 0, we are
effectively interpolating between these two situations, and
we therefore expect the shape of the gravitational wave
power spectrum to interpolate between the exponential and
simultaneous [17] as well.

Finally, in this paper we have assumed that the walls
expand with a constant speed throughout the transition. On
the other hand, when a bubble wall encounters the heated
region surrounding another bubble, the pressure difference
across it will be reduced, and the wall will slow down [21].
If the nucleation has effectively stopped by the time the
bubble walls start to slow, the number of bubbles nucleated
per unit volume, and hence the mean bubble spacing R,,
will not be affected. The effect of the walls slowing will
therefore be smaller for larger &, and hence larger 5. We
therefore expect the slowing of the walls to be important
only for lower values of . We will explore the effect in
more detail elsewhere.
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APPENDIX: DETAILED CALCULATION OF #h,
We study the integral in the exponent of Eq. (63),

L(z) = / " dre?= (1 —het -7 (Al)

c

By expanding the first exponential, and writing e, = e =%
we have

0T o 7—1, . ﬁ (7—14)
L(r)=e f[{ di'e <1—hxzm!em

m=0

X (At + 1, —7)°, (A2)

where A7 = 7 — 7,. As the integrals are dominated by their

upper limits, it is a good approximation to take 7, — —oo,
leading us to consider

K,(t)= /TK dr' e %) (Ar 4 7, — /)3

= kYA + 3k}, A? + 3k, AT + k3, (A3)
where
al
ks, = m (A4)
Hence
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L(r) = (1= h) > A, (KOAT + 3k}, A7 + 3k3,A7 + &3,

m=0

where

Finally, we write

h(z) ~exp <—e—6*(aom3 +30,A72 +6/12Ar—|—6/13)>, (A6)

where

hy & e
_1—hxz(m+1)a'

m=1
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