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One of the key observables in a gravitational wave power spectrum from a first order phase transition in
the early Universe is the mean bubble spacing, which depends on the rate of nucleation of bubbles of the
stable phase, as well as the bubble wall speed. When the bubbles expand as deflagrations, it is expected that
the heating of the fluid in front of the phase boundary suppresses the nucleation rate. We quantify the effect,
showing that it increases the mean bubble separation, and acts to enhance the gravitational wave signal by a
factor of up to order 10. The effect is largest for small wall speeds and strong transitions.
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I. INTRODUCTION

An early Universe cosmological first-order phase tran-
sition [1] can lead to interesting physical consequences
such as matter-antimatter asymmetry [2], primordial mag-
netic fields [3,4] and the production of a stochastic back-
ground of gravitational waves [5,6] The power spectrum of
the gravitational waves contains information about the
thermodynamic and transport properties of the system at
the time of the phase transition. If the transition happened at
around the electroweak scale of 100 GeV, when the
Universe was about 10−11 seconds old, the gravitational
waves could be observable at planned space-based detec-
tors like Laser Interferometer Space Antenna (LISA) [7,8],
and the principal thermodynamic and transport properties
could be measured over a wide region of the parameter
space [9].
The transformation of the metastable phase into the stable

one is described by cosmological homogeneous nucleation
theory [1,10] (see [11] for a review). Once the temperature
has fallen below the critical temperature of the transition Tc,
quantum or thermal fluctuations produce small spherical
bubbles of the stable phase, which expand and merge, and
eventually the whole Universe is converted to its stable
phase. The peak of the bubble nucleation rate defines the
nucleation temperature Tn, and the time taken to complete
the transition can be expressed as a transition rate β. Part of
the potential energy of the supercooled metastable phase is
converted into bulk fluid motion, which sources gravita-
tional waves long after the transition is completed [12].

The kinetic energy of the bulk fluid motion is controlled
by a fourth parameter α, which is essentially the ratio of
the potential energy difference to the thermal energy. It
quantifies the strength of the transition. The kinetic energy
of the bulk motion is also controlled by the equation of state
of the fluid, most importantly through the speeds of sound in
the two phases [13]. All quantities will be defined more
precisely below.
At the end of the transition, the density of bubble

nucleation sites n� defines a mean bubble spacing
R� ¼ 1=n1=3� . If bubble nucleation continues undisturbed
in the metastable phase, and the bubbles expand at a
constant speed vw, the mean bubble spacing is given by

R� ¼ ð8πÞ1=3vw=β: ð1Þ

However, if the bubbles expand as deflagrations [1,14–17],
the fluid ahead of the advancing bubble wall is heated, out to
the radius of a shock. In this region the nucleation rate is
reduced. Thus we expect fewer bubbles to be nucleated, and
the mean bubble spacing should increase. The effect acts to
increase the peak wavelength of the gravitational wave
power spectrum [18,19]. and also the peak power, which
scales as R� or R2�, depending on the strength of the
transition [8].
The suppression of nucleation by the heating effect has

been noted before [20], where it was estimated that
nucleation was suppressed everywhere between the wall
and the shock. In this paper we quantify the effect more
precisely, for transitions with strength parameters up to
α ≃ 1. We find that the increase in the mean bubble spacing
can increase the gravitational wave power by a factor of up
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to O(10), partially compensating the suppression due to the
interactions between bubbles [21].

II. BUBBLE NUCLEATION: STANDARD
CALCULATION

First, we discuss the formation of bubbles in the plasma
according to the standard treatment. We will suppose that
the transition rate is much faster than the Hubble rate H, so
that we can neglect cosmic expansion. The bubble nucle-
ation rate per unit volume has the form [10,17,22,23]

pðtÞ ¼ p0e−SðTðtÞÞ: ð2Þ

where S is the action for the appearance of a bubble, which
in a thermal transition is equal to the energy of a critical
bubble divided by the temperature. It is a function of time
through its dependence on the temperature TðtÞ. In the small
supercooling or “thin wall” approximation [10,23],

S ≃
s0

jð1 − T̂Þ�2 ; ð3Þ

where T̂ ¼ T=Tc, Tc is the critical temperature, and s0 is a
constant computable from the effective potential of the
theory. The nucleation rate is then zero precisely at the
critical temperature, and increases very rapidly below it.
Once a bubble has nucleated, it grows at a constant speed

vw, determined by the friction between the wall and the
plasma. The increasing population of growing bubbles
reduces the fraction of the Universe in the metastable phase.
Let V be the volume in the metastable phase, and Vs

the volume in the stable phase, out of a total volume V tot,
such that

V tot ¼ V þ Vs:

In the notation of Ref. [23],

h ¼ V=V tot ð4Þ

denotes the fraction of the Universe in the metastable
(high-temperature) phase. First, we consider the reduction
in the volume of the unbroken phase between times t and
tþ dt due to the growth of bubbles nucleated between
earlier times t0 and t0 þ dt0:

d2Vðt; t0Þ ¼ −dNbðt0Þ4πR2dR
VðtÞ
Vðt0Þ ; ð5Þ

where dNb is the number of bubbles nucleated in that time
interval, and R is the radius of those bubbles at time t. The
factor VðtÞ=Vðt0Þ takes into account the fact that only parts
of the bubbles growing into the unbroken phase will
change the volume of that phase.

The number of bubbles nucleated between t0 and
t0 þ dt0 is

dNb ¼ pðt0ÞVðt0Þdt0; ð6Þ

where pðt0Þ is the bubble nucleation rate per unit volume,
and the factor Vðt0Þ accounts for the fact that bubbles
nucleate only in the metastable phase. Finally, we have

R ¼ vwðt − t0Þ; dR ¼ vwdt; ð7Þ

as the bubbles are assumed to grow with constant speed
after nucleation.
The nucleation probability is non-zero only below the

critical temperature Tc, which is reached at time tc, so the
change in the volume of the stable phase between t and
tþ dt is, in total,

dVðtÞ ¼ −vwVðtÞdt
Z

t

tc

dt0pðt0Þ4πv2wðt − t0Þ2: ð8Þ

Dividing by the total volume V tot, we obtain a differential
equation for h, the fraction remaining in the metastable
phase:

dh
dt

¼ −vwhðtÞ
Z

t

tc

dt0pðt0Þ4πv2wðt − t0Þ2: ð9Þ

It is straightforward to check that the solution to this
equation, with the boundary condition hðtÞ ¼ 1 for t < tc,
is

hðtÞ ¼ exp

�
−
4π

3

Z
t

tc

dt0pðt0Þv3wðt − t0Þ3
�
: ð10Þ

A saddle-point approximation to the integral is possible.
We define the transition rate parameter

β ¼ d
dt

lnpðtÞj
tf
; ð11Þ

where tf will be specified later, and write

pðtÞ ≃ pfeβðt−tfÞ ð12Þ

where pf ¼ p0 expð−SðtfÞÞ. The integral can be performed
in the approximation βðtc − tfÞ → −∞, giving

hðtÞ ¼ exp ð−8πv3wβ−4pfeβtÞ: ð13Þ

Choosing tf to be the time at which hðtfÞ ¼ 1=e, we have

hðtÞ ¼ exp ð−eβðt−tfÞÞ: ð14Þ

with
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8πv3wβ−4pf ¼ 1: ð15Þ

The time tf is then found as the solution to

8πv3wβ−4p0e−SðtfÞ ¼ 1: ð16Þ

Its value does not play an essential role in the following.
To calculate the number of bubbles, we integrate the

equation

dNb

dt0
¼ pðt0ÞVðt0Þ; ð17Þ

or, in terms of the bubble density nb ¼ Nb=V tot,

dnb
dt0

¼ pðt0Þhðt0Þ: ð18Þ

The final bubble density is then

nb ¼ β3=8πv3w: ð19Þ
We define a mean bubble center spacing R� as

R� ¼ n−1=3b ¼ ð8πÞ1=3ðvw=βÞ: ð20Þ

Note that we have assumed that the bubble nucleation rate is
the same everywhere in the metastable phase. However, the
expanding bubble releases energy and heats up the fluid, as
well as setting it in motion. If this heating effect extends in
front of the bubble wall, as it does for deflagrations, we can
see from (3) that the nucleation rate will be reduced.1 In the
next section we review the calculation the temperature
profile around an expanding bubble.

III. HYDRODYNAMICS OF BUBBLE GROWTH
BY DEFLAGRATIONS

In order to calculate the suppression effect noted in the
previous section, we need to calculate the temperature
profile around an expanding bubble for deflagrations.
In the case of perfect fluid the plasma is locally in

equilibrium. Therefore, the energy momentum tensor of the
fluid can be written as:

Tf
μν ¼ wuμuν − gμνp; ð21Þ

where w is the enthalpy density and p is the pressure.
The four-velocity field of the plasma uμ is related to its
three-velocity v by

uμ ¼ ð1; vÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ¼ ðγ; γvÞ: ð22Þ

The energy density, e, the enthalpy density w, the entropy
density s are related to the pressure as follows:

e≡ T
∂p
∂T

− p; w≡ T
∂p
∂T

; s≡ ∂p
∂T

: ð23Þ

Evidently, w ¼ eþ p. The motion of the fluid is governed
by conservation of energy-momentum:

∂
μTf

μν ¼ 0: ð24Þ

The fluid around an expanding spherical bubble at time
since nucleation Δt and radial distance r can be described
by the purely radial fluid 3-velocity vðr;ΔtÞ and enthalpy
wðr;ΔtÞ. The partial differential equations can be solved
numerically [15], and it is observed that the fluid quickly
settles down to a self-similar solution, depending only on a
coordinate ξ ¼ r=Δt. In this self-similar form, the fluid
equations become

dv
dξ

¼ 2vð1 − v2Þ
ξð1 − ξvÞ

�
μ2

c2s
− 1

�−1
; ð25Þ

dw
dξ

¼ w

�
1þ 1

c2s

�
γ2μ

dv
dξ

: ð26Þ

Here, c2s ¼ dp=de is the speed of sound and

μ ¼ ξ − v
1 − ξv

: ð27Þ

is the fluid velocity at ξ in a frame that is moving outward at
speed ξ.
We now discuss the boundary conditions at the bubble

wall. The plasma is in the stable phase behind the wall, and
in the metastable phase in front. We denote quantities
evaluated just behind the wall with a subscript −, and in
front with a subscriptþ, and quantities in the frame moving
with the wall with a tilde.
In the frame moving with the wall, conservation of

energy density and momentum density imply

wþγ̃2þ þ pþ ¼ w−γ̃
2
− þ p−; ð28Þ

wþγ̃2þṽþ ¼ w−γ̃
2
−ṽ−; ð29Þ

These equations may be rearranged to give

ṽþ ¼ 1

1þ αþ

��
ṽ−
2
þ 1

6ṽ−

�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ṽ−
2
þ 1

6ṽ−

�
2

þ α2þ þ 2

3
αþ −

1

3

s �
; ð30Þ

where
1Temperature fluctuations from other sources can also change

the nucleation rate [24].
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αþ ¼ 4

3

θþ − θ−
wþ

; ð31Þ

and θ ¼ ðe − 3pÞ=4. In a deflagration, the fluid exits from
the wall with the smaller of the wall speed and the sound
speed in the stable phase,

ṽ− ¼ minðvw; csðT−ÞÞ: ð32Þ
These equations can be straightforwardly solved

numerically, once the speed of sound is known as a
function of enthalpy density. In practice one wishes to
apply the boundary condition at large radii, where v ¼ 0
and T ¼ Tn, the bubble nucleation temperature. This
means that one must “shoot” for this value from an initial
guess for αþ. The amount of energy available to be
released by the transition is conveniently parametrized by

αn ¼
4

3

θmðTnÞ − θsðTnÞ
wmðtnÞ

; ð33Þ

where the subscripts m and s denote quantities evaluated in
the metastable and stable phases.
In this paper we use the simplest possible equation of

state, the bag model, in which

pm ¼ ϵþ amT4; ps ¼ asT4: ð34Þ

In this model c2s ¼ 1=3 and w ∝ T4.
Figure 1 shows plots of temperature profile variation

with respect to ξ for different wall speeds (ξ ¼ 0.4, 0.7) and
for αn ¼ 0.2. The plots were produced by integrating
the Eqs. (25) and (26) in parametric form (see [17]), with
5000 points distributed over the parameter range, and an
absolute tolerance of 10−6 in the shooting parameter αþ.
The upper plot shows the typical form of a subsonic

deflagration and the lower one shows a supersonic defla-
gration (or hybrid) [25]. In each case there is a region of
heated fluid, which is moving radially outward, bounded on
the outside by a shock, which moves at a speed vsh
calculable from the solution to the fluid equations vðξÞ
and energy-momentum conservation (see, e.g., [17]. The
resulting equation gives the position of the shock as the
solution to the equation

vðξÞ ¼ 3ξ2 − 1

2ξ
: ð35Þ

Between the bubble wall and the shock the bubble
nucleation rate will be suppressed.
Figure 2 shows the maximum of the ratio of the temper-

ature difference ΔT ¼ T − Tn to the nucleation temperature
Tn as contour lines in the plane of wall speed vw and
transition strength αn, for a range of vw ¼ 0.01–0.99 and
αn ¼ 0.005–1.0. We also show ΔT=Tn with blue shading,
and use it in later figures to give an qualitative indication of

FIG. 1. Variation of temperature with respect to radial similarity
variable ξ ¼ r=t in the frame of the bubble center for different
wall velocities, vw ¼ 0.4, leading to a deflagration (top) and
vw ¼ 0.7 leading to a hybrid (bottom), and phase transition
strength parameter αn ¼ 0.25. The plots show the typical profiles
for a deflagrations which are subsonic (top) and supersonic
(bottom).

FIG. 2. Contours of the maximum fractional temperature
difference around a deflagration, as a function of wall speed
vw and strength parameter at the nucleation temperature αn. The
blue shading also shows the maximum fractional temperature
difference, for use in other figures. For larger values of vw,
deflagrations are replaced by detonations and there is no effect.
For larger values of αn, there is no hydrodynamic solution at
fixed vw. Both regions are grayed out.

MUDHAHIR AL AJMI and MARK HINDMARSH PHYS. REV. D 106, 023505 (2022)

023505-4



the accuracy of the calculations, from light (more accurate)
to dark blue (less accurate). For large αn and low vw there
are no solutions to the fluid equations; for large vw at fixed
αn the solution changes to a detonation, where the wall
moves ahead of the shock, and the nucleation suppression
effect disappears.

A. Small wall speed limit

In the limit of small wall speed, the fluid velocity
should be small ðvðξÞ ≪ ξÞ, and a simple approximation
to the solution to the fluid equations is known. The
approximation is

vðξÞ ¼ vmax
v2w
ξ2

c2s − ξ2

c2s − v2w
; ð36Þ

where vmaxðvw; αÞ is the maximum fluid speed in the
bubble center frame, reached just outside the wall. For
small α and vw not too close to the sound speed [11,16],

vmax ≃ 3αnvw
1

1 − 3v2w
: ð37Þ

This gives an analytic form for the enthalpy,

wðξÞ ≃ wn exp

�
2ð1þ c2s Þ

v2w
c2s − v2w

vmax

�
1

ξ
−

1

cs

��
ð38Þ

where wn is the enthalpy density at ξ ≥ cs, the enthalpy
density at the nucleation temperature.
Because w ∝ T4, we have for small enthalpy differences

Δw=w ¼ 4ΔT=T. Hence

ΔT
Tn

≃
1

2
ð1þ c2s Þ

v2w
c2s − v2w

vmax

�
1

ξ
−

1

cs

�

≃
3αn
2

ð1þ c2s Þ
v3w

c2s ð1 − 3v2wÞ2
�
1

ξ
−

1

cs

�

≃ 6αn
v3w

ð1 − 3v2wÞ2
�
1

ξ
−

ffiffiffi
3

p �
ð39Þ

This relation is useful in the low velocity region
when v ≲ 0.05.

IV. POSITION-DEPENDENT BUBBLE
NUCLEATION

In this section, we take into account the dependence of
the bubble nucleation rate on the temperature. The temper-
ature is raised closer to the critical temperature in front of a
deflagration, and so we expect the nucleation rate to be
suppressed around the expanding bubble.
The bubble nucleation rate per unit volume is now space-

dependent as well as time dependent, due to the dependence
of the bubble appearance action on the temperature:

pðt0;xÞ ¼ p0e−Sðt
0;xÞ: ð40Þ

Let us write

Tðt0;xÞ ¼ T̄ðt0Þ þ ΔTðt0;xÞ; ð41Þ

where T̄ is the undisturbed temperature outside the shock
surrounding each bubble. Hence

pðt0;xÞ ¼ pðt0Þe−ΔSðt0;xÞ ð42Þ

The rate of bubble nucleation over the remaining volume
remaining in the metastable phase V 0 ≡ Vðt0Þ is

dNb

dt0
¼

Z
V 0
d3xpðt0;xÞ; ð43Þ

Hence

dNb

dt0
¼ pðt0Þ

�
V 0 −

Z
V 0
d3xð1 − e−ΔSÞ

�
; ð44Þ

where we have rearranged the equation to bring out a term
which acts to reduce the effective volume of the metastable
phase. Let us give the correction term the symbol

ΔVs;eff ¼
Z
V 0
d3xð1 − e−ΔSÞ: ð45Þ

We can regard this quantity as an increase in the effective
volume of the stable phase, where no bubbles can nucleate.
Let us first consider a single bubble nucleated at time t1,

with radius R ¼ vwðt0 − t1Þ. We can then write

ΔVs;eff ¼ Vsf; ð46Þ

where

f ¼ 3

v3w

Z
vsh

vw

ξ2dξð1 − e−ΔSÞ ð47Þ

is a constant factor giving the relative increase in the
effective volume of the bubble, vsh is the speed of the shock
which surrounds the bubble, and the volume in the stable
phase inside the bubble is Vs ¼ 4πv3wðt0 − t1Þ3=3. The
effective volume in the stable phase is then

Vs;eff ¼ ð1þ fÞVs: ð48Þ

The change in the bubble appearance action ΔS can be
expressed in terms of the transition rate parameter
β ¼ −∂S=∂t,

ΔS ≃
∂S
∂T

ΔT ¼ ∂S
∂t

∂t
∂T

ΔT ¼ β

H
ΔT
T

: ð49Þ
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We neglect higher orders in ΔT=T, which means that in the
region of ðvw; αnÞ plane where ΔT=T ∼ 1, our calculations
can be expected to receive large corrections. These cor-
rections will depend on the second and higher derivatives of
the action with respect to the logarithm of the temperature,
parameters which are not part of the standard description of
phase transitions. We leave more precise studies for future
work, indicating where corrections are likely to be more
important by the density of the blue shading in the
ðvw; αnÞ plane.
With this approximation in mind, we may write

f ¼ 3

v3w

Z
vsh

vw

ξ2ð1 − e−β̃ΔTðξÞ=TnÞdξ ð50Þ

where β̃ ¼ β=H, Tn is the nucleation temperature, and
ΔTðξÞ ¼ TðξÞ − Tn. We can rewrite the factor in terms of
an effective wall speed veff ,

1þ f ¼ v3eff
v3w

: ð51Þ

We plot the ratio veff=vsh on the top row of Fig. 3. We see
that for fast (vw ≳ cs) bubble walls in strong (αn ≳ 0.3) and
rapid (β̃ ≳ 100) transitions, the estimate veff ≃ vsh is rea-
sonably accurate. However, for slower walls in weak and
slow transitions, the approximation fails.
Now let us consider the situation with many bubbles. We

label the bubbles by i ¼ 1;…; Nb, and define a radial
coordinate for each bubble ri. Before bubbles start over-
lapping, the effective volume in regions where bubble
nucleation has stopped is

Vs;eff ¼
XNb

i¼1

4π

3
v3wðt0 − tiÞ3ð1þ fÞ

¼
XNb

i¼1

4π

3
v3effðt0 − tiÞ3: ð52Þ

Conversely, the effective volume remaining where bubble
nucleation can take place is

Veff ¼ V tot − Vs;eff : ð53Þ

FIG. 3. Top: contour plots of veff=vsh, where veff is the expansion speed of the spherical shell inside which further bubble nucleation is
effectively suppressed, and vsh is the speed of the shock. For larger β, bubble nucleation is suppressed almost everywhere inside the
shock, for a wide range of wall speeds vw and transition strengths αn. Bottom: contour plots of hx, the fractional volume occupied by the
metastable phase at which bubble nucleation effectively stops, for values of the transition rate relative to the Hubble rate β̃ ¼ 10, 100,
1000 (left to right). As β̃ increases the effect of nucleation suppression gets larger, due to the increasing sensitivity of the bubble
nucleation rate to the temperature. In both rows, the blue shading shows the size of the maximum relative temperature change in the
shell, with the same intensity map as in Fig. 2.
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The rate of change of the fraction in the metastable phase is
then modified to

dh
dt

¼ −vwh
Veff

V

Z
t

tc

dt0pðt0Þ4πv2wðt − t0Þ2: ð54Þ

We take the ratio Veff=V to be that from a single bubble,

Veff

V
¼ V tot − Vs;eff

V
≃
ð1þ fÞh − f

h
: ð55Þ

This approximation neglects regions outside the shells of
radius veffðt0 − tiÞ but inside vshðt0 − tiÞ, where the temper-
ature in overlapping fluid shells has also reached a high
enough value to suppress nucleation. This extra volume
where nucleation is suppressed will give a small positive
correction to veff .

We are also neglecting interactions between the shell of
one bubble and the wall of a neighboring one, which tend to
slow down the expansion of the wall [21]. We discuss this
effect in the conclusions section.
We see that bubbles stop nucleating once h drops below

hx ¼
f

1þ f
¼ 1 −

v3w
v3eff

; ð56Þ

so that hx is the fractional volume at which the symmetric
phase is reheated enough to prevent further bubble nucle-
ation. We plot hx as a function of vw and αn, for three values
of β̃, in the bottom row of Fig. 3.
Hence the equation for the fraction of the universe

remaining in the metastable phase h becomes

dh
dt

¼ −vwhðtÞð1þ fÞ
Z

t

tc

dt0pðt0Þ
�
1 −

hx
hðt0Þ

�
4πv2wðt − t0Þ2θðhðt0Þ − hxÞ; ð57Þ

which upon integration with respect to t becomes an integral equation,

hðtÞ ¼ exp

�
−
4π

3
v3wð1 − hxÞ−1

Z
t

tc

dt0pðt0Þ
�
1 −

hx
hðt0Þ

�
ðt − t0Þ3θðh − hxÞ

�
: ð58Þ

With the approximation for the nucleation rate per unit volume (12), and defining a dimensionless time variable τ ¼ βt,
we can rewrite Eq. (58) as

hðτÞ ¼ exp

�
−
1

6
ð1 − hxÞ−1

Z
τ

τc

dτ0eτ0−τf
�
1 −

hx
hðτ0Þ

�
ðτ − τ0Þ3θðh − hxÞ

�
ð59Þ

where we have used pf ¼ β4=8πv3w. We see that the equation for h derived in the absence of the suppression effect (9) is
recovered in the limit hx → 0. We assume that τf − τc ≫ 1, and hence that the solution depends very weakly on τc.
We solve this equation for a given hx by iteration:

hðaþ1ÞðτÞ ¼ exp

�
−
1

6
ð1 − hxÞ−1

Z
τ

τc

dτ0eτ0−τf
�
1 −

hx
hðaÞðτ0Þ

�
ðτ − τ0Þ3θðh − hxÞ

�
ð60Þ

starting with the solution at f ¼ 0,

hð0ÞðtÞ ¼ exp ð−eτ0−τfÞ: ð61Þ

The iteration converges very quickly and we stop after 5
iterations. The relative difference between the last two
iterations depends on hx and τ but is no greater than 0.01.
For f ≫ 1, hx can be close to unity, i.e., bubble

nucleation can effectively stop almost immediately. This
can happen for large β̃.

The fact that the iteration converges very fast motivates a
simple approximation,

hðτÞ ≃
�
hð0ÞðτÞ; τ ≤ τx

hð1ÞðτÞ; τ > τx
ð62Þ

Hence, for τ > τx,
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hðτÞ ≃ exp

�
−
1

6
ð1 − hxÞ−1

Z
τx

τc

dτ0eτ0−τfð1 − hxee
τ0−τf Þðτ − τ0Þ3

�
; ð63Þ

The integral can be performed by expanding the expo-
nential (see Appendix), leading to the following equation:

hðτÞ≃ exp
�
−
ex
6
ðλ0Δτ3þ 3λ1Δτ2þ 6λ2Δτþ 6λ3Þ

�
ð64Þ

where ex ≡ expðτx − τfÞ and

λa ¼ 1 −
hx

1 − hx

X∞
m¼1

emx
ðmþ 1Þa ð65Þ

To second order in m,

λa ≃ 1 −
hx

1 − hx

ex
2aþ1

ð66Þ

At this order of approximation, ex can be solved exactly in
terms of hx through

hðτxÞ≡ hx ¼ exp ð−exλ3Þ; ð67Þ

leading to the quadratic equation

−
hx

1 − hx

1

16
e2x þ ex þ ln hx ¼ 0: ð68Þ

For hx → 0 we can neglect OðhxÞ terms and the solution is
ex ¼ − ln hx, with

hðτÞ ≃ exp

�
1

6
ln hxðΔτ3 þ 3Δτ2 þ 6Δτ þ 6Þ

�
: ð69Þ

For hx → 1, the second terms in the equation for λa become
important. Writing hx ¼ 1 − ϵ, we have

ex ≃ ϵ; ϵ ≃ − ln hx; λa ≃ 1 −
1

2aþ1
: ð70Þ

Figure 4 shows plots of hðτÞ with different values of hx,
obtained with the iterative method outlined above. It can be
seem that for increasing hx, the transition takes longer, as a
result of the reduced number density of bubbles nucleated.
In the lower panel lnð− lnðhÞÞ is plotted, along with the
approximation derived above.
In the limit vw → 0, the velocity in the fluid shell is small

everywhere, and the approximate solution (39) can be used
to estimate f. Substituting Eq. (39) in Eq. (50) yields

f ¼ 9αβ̃

2c2s

ð1þ c2s Þ
ð1 − 3v2wÞ2

Z
cs

vw

�
ξ −

ξ2

cs

�
dξ; ð71Þ

¼ 3αβ̃

4c2s

ð1þ c2s Þ
ð1 − 3v2wÞ2

�
v2wð2vw − 3csÞ

cs
− c2s

�
ð72Þ

where we have used the fact that the shock speed is
approximately cs for deflagrations with low fluid speeds.
This expression helps check numerical solutions at low vw.

V. DISTANCE BETWEEN BUBBLES

In this section wewill derive the equation for the distance
between bubbles, for which we need to calculate the bubble
number density.
To calculate the number of bubbles, we convert Eq. (44)

into an equation the bubble density nb ¼ Nb=V tot,

FIG. 4. Plots of hðτÞ, where h is the fraction of the universe in
the metastable phase, for several values of the threshold fraction
where nucleation stops hx. Solid lines are the numerical solution
to Eq. (63), dashed lines (lower figure) are the approximation
Eq. (64). Dotted lines give the threshold values − ln hx.
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dnb
dt

¼ pðtÞ½ð1þ fÞhðtÞ − f�: ð73Þ

The density of bubbles is, on integrating (73),

nb ¼
1

1 − hx

Z
tx

tc

pðtÞðhðtÞ − hxÞdt; ð74Þ

where tx is the time at which nucleation stops, i.e.,
where h ¼ hx.
Introducing the function

IhðhxÞ ¼
1

1 − hx

Z
τx

τc

eτ−τfðhðτÞ − hxÞdτ ð75Þ

we have that

nbðhxÞ ¼ β−1pfIhðhxÞ ¼ nð0Þb IhðhxÞ; ð76Þ

where nð0Þb ¼ 8πv3wβ3 is the bubble density in the absence
of nucleation suppression. In general, we expect
0 < IhðhxÞ < 1. This function represents the reduction in
the mean bubble density by the suppression of the
nucleation in advance of the bubbles wall. Clearly,
Ihð0Þ ¼ 1. We plot the bubble nucleation rate from the
numerical solutions, and the analytic approximation,
in Fig. 5.
We recall that the mean bubble center spacing is defined

as R� ¼ n−1=3b . Hence, the mean bubble center spacing is
increased by a factor

ΛðhxÞ≡ R�
R�ð0Þ

¼ I−1=3h ðhxÞ; ð77Þ

where R�ð0Þ ¼ ð8πÞ1=3vw=β is the mean spacing in the
absence of nucleation suppression. Normalized this way,
we have Λð0Þ ¼ 1.

The integral can be performed with hðτÞ in its approxi-
mate form, leading to

IhðhxÞ ¼ 1þ hx ln hx
1 − hx

: ð78Þ

Figure 6 shows the bubble spacing enlargement factor
ΛðhxÞ, computed from the numerical solutions for hðτÞ,
along with the analytic approximation calculated from (78).
As hx increases ΛðhxÞ increases demonstrating that
Figure 7 (top row) shows contour plots of ΛðhxÞ in the

plane of wall speed vw and transition strength parameter αn,
for β̃ ¼ 10, 100, 1000. The detonation region and hydro-
dynamically inaccessible values are grayed out.

VI. GRAVITATIONAL WAVE POWER

The gravitational wave power spectrum produced by a
first order phase transition is, in a large region of parameter
space, dominated by acoustic production [12,17,19,26] (see
also [8,11,27,28] for reviews). The total gravitational wave
power is, provided that the mean bubble size is much less
than the Hubble length,

Ωgw ¼ 3K2ðvw; αÞðHnτvÞðHnR�ÞΩ̃gw; ð79Þ

whereK is the fraction of the energy of the fluid in the form
of kinetic energy, Hn is the Hubble rate at nucleation
(assumed to be the same as the Hubble rate at the end of the
transition), τv is the effective lifetime of the source, and
Ω̃gw ≃ 10−2 is a dimensionless parameter characterising the
efficiency of gravitational wave production.
The effective source lifetime is the shorter of the Hubble

time and the shock appearance timescale τsh ¼ R�=
ffiffiffiffi
K

p
:

once shocks appear, the kinetic energy is dissipated in a
time of order a few τsh. An investigation of how a shear
stress source is diluted by expansion [26,29] shows that to a

FIG. 5. The universe-averaged dimensionless bubble nuclea-
tion rate where ñb ¼ nb=n

ð0Þ
b , the rate is given by (73), and the

reference bubble density is nð0Þb ¼ β3=8πv3w for the same values of
hx as Fig. 4.

FIG. 6. Bubble spacing enhancement factor Λ as a function of
the fractional volume of the universe occupied by the metastable
phase at which bubble nucleation stops, hx. The blue line uses the
numerical solution and the dashed line uses the analytic approxi-
mation. As hx → 1, bubble nucleation stops earlier, and the
bubbles that are nucleated grow to larger sizes.
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first approximation, in which the source is constant and
shuts off after time τsh,

Hnτv ≃
�
1 −

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2x

p
�
: ð80Þ

For convenience we define

J ¼ HnR�Hnτv ¼ r�

�
1 −

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2x

p
�
; ð81Þ

where r� ¼ HnR� and x ¼ r�=
ffiffiffiffi
K

p
. Recalling the definition

of the bubble spacing enhancement factorΛ, the GW power
is also enhanced by a factor

Egwðvw; α; β̃Þ ¼ Λ
�
1 −

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2Λr�ð0Þ=K1=2

p �
: ð82Þ

where the Hubble-scaled mean bubble spacing without
nucleation suppression is [23]

r�ð0Þ ¼ R�ð0ÞHn: ð83Þ

In Fig. 7 (bottom row) we show contour plots of the
GW enhancement factor Egw for our standard values
β=Hn ¼ 10, 100, 1000. The kinetic energy fraction K has

been evaluated using the single-bubble kinetic energy
fraction

K ¼ 3

v3wen

Z
dξξ2wγ2v2; ð84Þ

where v and w are the solution to Eqs. (25), (25), and en is
the energy density outside the expanding fluid shell. The
kinetic energy density is calculated from the numerical
solutions, integrated using the trapezium rule.

VII. CONCLUSIONS

In this paper we have studied the suppression of bubble
nucleation in cosmological phase transitions proceeding by
deflagrations. In a deflagration, some of the energy released
by the transition goes into heating up the fluid in front of
the bubble wall which, as a result, suppresses further bubble
nucleation. In a detonation, on the other hand, the bubble
wall is ahead of the shell of excess thermal energy, and the
effect is absent.
We find that nucleation stops when a certain fraction

of the volume in the metastable phase has been converted.
The fraction can easily be computed from the solution of the
relativistic hydrodynamic equations, in an expansion in
the relative temperature fluctuation ΔT=Tn. We solve the

FIG. 7. Top: contour plots of the bubble size enhancement factorΛ ratio in the plane of wall speed vw and transition strength parameter
αn, for ratios of the transition rate to Hubble rate β̃ ¼ 10, 100, 1000 (left to right). Contour plots of GW enhancement factor Egw for
different temperatures in the plane of αn and ξw. As β̃ (the transition rate) increases the EgwÞ increases. In both rows, the blue shading
shows the size of the maximum relative temperature change in the shell, with the same intensity map as in Fig. 2.

MUDHAHIR AL AJMI and MARK HINDMARSH PHYS. REV. D 106, 023505 (2022)

023505-10



equations for a fluid with a bag model equation of state, and
compute the first order effect. This is sufficient for transition
strengths below around 0.3, and wall speeds below the
sound speed.
The suppression of nucleation results in a lower number

of bubbles per unit volume, and therefore a larger mean
distance between their centers. The effect results in a larger
intensity of gravitational waves from the transition.
The region of higher temperature extends outward to a

leading shock, which travels faster than the sound speed.
For this reason it has sometimes been estimated that the
region extends out to the shock speed vsh [20] or the sound
speed (an estimate of the shock speed) [8]. Here we have
shown that the effect is more complicated. The suppression
can be expressed as the effective speed veff of expanding
spherical volumes inside which nucleation stops, with
vw<veff<vsh. We show that this approximation veff≃vsh
works well for fast walls in strong and rapid transitions, but
not otherwise.
The more rapid the phase transition, as measured by

the parameter β̃, the more sensitive the system is to the
suppression effect. This is because β̃ is equal to the
logarithmic derivative of the nucleation probability with
respect to the temperature. Increasing the phase transition
strength parameter αn also increases the effect, as one
would expect from the larger release of thermal energy. The
effect also increases with decreasing wall speed vw, as the
heated volume is larger relative to the bubble size.
For example, for (vw, αn, β̃) = (0.1, 3 × 10−2, 1000), the

ratio veff=vsh ≃ 0.4, and bubbles stop nucleating when only
5% of the universe has been converted to the stable phase.
This has the effect of increasing the mean bubble spacing
by a factor 4, and the gravitational wave intensity by a
factor 5. We show the magnitude of both effects, as
functions of vw and αn, in contour plots in Fig. 7.
Our results are derived from a numerical solution to an

integral equation for the fraction remaining in the meta-
stable phase as a function of time, hðtÞ. We have also shown
that good numerical approximations exist, and that the
suppression factors can be calculated from the solution of
the relativistic hydrodynamic equations.
A further effect to consider for precise calculations of the

gravitational wave power spectrum is the altered collision
time distribution [17]. In the standard calculation with
exponentially growing nucleation rate per unit volume of
metastable phase, the distribution of times between a
segment of wall being nucleated, and colliding with another
segment of wall, is distributed exponentially. If all bubbles
are nucleated simultaneously, the distribution is a power
times an exponential. As hx is reduced from 1 to 0, we are
effectively interpolating between these two situations, and
we therefore expect the shape of the gravitational wave
power spectrum to interpolate between the exponential and
simultaneous [17] as well.

Finally, in this paper we have assumed that the walls
expand with a constant speed throughout the transition. On
the other hand, when a bubble wall encounters the heated
region surrounding another bubble, the pressure difference
across it will be reduced, and the wall will slow down [21].
If the nucleation has effectively stopped by the time the
bubble walls start to slow, the number of bubbles nucleated
per unit volume, and hence the mean bubble spacing R�,
will not be affected. The effect of the walls slowing will
therefore be smaller for larger hx, and hence larger β̃. We
therefore expect the slowing of the walls to be important
only for lower values of β̃. We will explore the effect in
more detail elsewhere.
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APPENDIX: DETAILED CALCULATION OF hx

We study the integral in the exponent of Eq. (63),

LðτÞ ¼
Z

τx

τc

dτ0eτ0−τfð1 − hxee
τ0−τf Þðτ − τ0Þ3: ðA1Þ

By expanding the first exponential, and writing ex ≡ eτ
0−τf

we have

LðτÞ ¼ eτx−τf
Z

τx

τc

dτ0eτ0−τx
�
1 − hx

X∞
m¼0

emx
m!

emðτ0−τxÞ
�

× ðΔτ þ τx − τ0Þ3; ðA2Þ

where Δτ ¼ τ − τx. As the integrals are dominated by their
upper limits, it is a good approximation to take τc → −∞,
leading us to consider

KmðτÞ ¼
Z

τx

−∞
dτ0eðmþ1Þðτ0−τxÞðΔτ þ τx − τ0Þ3

¼ k0mΔτ3 þ 3k1mΔτ2 þ 3k2mΔτ þ k3m; ðA3Þ

where

kam ¼ a!
ðmþ 1Þa : ðA4Þ

Hence
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LðτÞ ¼ ð1 − hxÞ
X∞
m¼0

Amðk0mΔτ3 þ 3k1mΔτ2 þ 3k2mΔτ þ k3mÞ

where

Am ¼
� 1; m ¼ 0;

− hx
1−hx

emðτx−τf Þ
m!

; m > 0.
ðA5Þ

Finally, we write

hðτÞ≃ exp

�
−
ex
6
ðλ0Δτ3þ3λ1Δτ2þ6λ2Δτþ6λ3Þ

�
; ðA6Þ

where

λa ¼ 1 −
hx

1 − hx

X∞
m¼1

emx
ðmþ 1Þa : ðA7Þ
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