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ABSTRACT
Sun et al. [J. Chem. Phys. 144, 191101 (2016)] suggested that common density-functional approximations (DFAs) should exhibit large energy
errors for excited states as a necessary consequence of orbital nodality. Motivated by self-interaction corrected density-functional calculations
on many-electron systems, we continue their study with the exactly solvable 1s, 2p, and 3d states of 36 hydrogenic one-electron ions (H–Kr35+)
and demonstrate with self-consistent calculations that state-of-the-art DFAs indeed exhibit large errors for the 2p and 3d excited states.
We consider 56 functionals at the local density approximation (LDA), generalized gradient approximation (GGA) as well as meta-GGA
levels, and several hybrid functionals such as the recently proposed machine-learned DM21 local hybrid functional. The best non-hybrid
functional for the 1s ground state is revTPSS. As predicted by Sun et al., the 2p and 3d excited states are more difficult for DFAs, and LDA
functionals turn out to yield the most systematic accuracy for these states among non-hybrid functionals. The best performance for the
three states overall is observed with the BHandH global hybrid GGA functional, which contains 50% Hartree–Fock exchange and 50% LDA
exchange. The performance of DM21 is found to be inconsistent, yielding good accuracy for some states and systems and poor accuracy
for others. Based on these results, we recommend including a variety of one-electron cations in future training of machine-learned density
functionals.
© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0120515

I. INTRODUCTION

Density-functional theory1,2 (DFT) has become one of the
workhorses of computational chemistry, material science, and
related fields, as modern density-functional approximations (DFAs)
only require a reasonable amount of computational effort while pro-
viding a level of accuracy sufficient for semi-quantitative predictions
on a broad range of systems.3–5 Although hundreds of DFAs have
been proposed, thus forming the infamous zoo of DFAs,6 new DFAs
continue to be developed with the aim to find more universally appli-
cable DFAs that combine suitable levels of accuracy and numerical
effort.

New DFAs can be constructed along various strategies.5,7–9 The
traditional route to construct DFAs is to start from first principles
and to impose known limits and constraints; this is the way along
which many well-known functionals such as PBE,10 TPSS,11,12 and
SCAN13 have been constructed.

Semi-empirical fitting is another route for constructing DFAs.
Here, the general idea is to introduce flexibility in the functional
form by introducing several independent DFA components that
are weighted by parameters, which are optimized against some
training dataset. Classical examples of semi-empirically fitted
functionals include B3LYP,14 Becke’s 1997 functional15 (B97),
and several refinements thereof such as the HCTH [Hamprecht–
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Cohen–Tozer–Handy] functionals by Handy and co-workers,16,17 as
well as the Minnesota family of DFAs by Truhlar and co-workers18,19

that has been reviewed by Mardirossian and Head-Gordon.20

In reality, the classification of functionals into ones built
solely from first principles vs ones formed by semi-empirical fit-
ting is not always clear: for instance, the TPSS exchange func-
tional is parameterized to yield the exact energy for the hydrogen
atom’s exact ground state density,11,12 while the SCAN functional13

includes parameters that are fit to data on noble gases. Modern
semi-empirical functionals,21–26 in turn, typically employ a com-
bination of the two approaches by restricting the fits to known
constraints.

DFAs from either route are widely used, given their suitable
numerical accuracy and reasonable computational effort. However,
the functionals obtained from the two routes tend to exhibit differ-
ent behavior. For instance, while semi-empirical DFAs often deliver
excellent descriptions of the total energy, they may fail to repro-
duce electronic densities of the same quality: a famous article by
Medvedev et al.27 initiated an intense debate about this in the
literature;27–32 it was even pointed out that any general mathemati-
cal measure of density error is too arbitrary to be universally useful.33

DFAs built on physical first principles, in contrast, often yield steady
performance in a variety of applications, but may not achieve the
same level of accuracy as tailored functionals for specific types of
systems.

One of the most important limitations of present-day DFAs,
regardless of their design, is the self-interaction error (SIE): an
artificial interaction of the electrons with themselves. This error
is related to density delocalization error and the fractional elec-
tron problem,34,35 and leads to incorrect dissociation limits36 and
barrier heights,37 for instance. Recent avenues for circumventing
SIE in DFAs involve determining the electron density with another
method, such as Hartree–Fock38,39 or multiconfigurational wave
function theory.40,41 Other types of approaches have also been pro-
posed in the literature. To solve the self-interaction problem, Perdew
and Zunger42 (PZ) proposed an orbital-by-orbital self-interaction
correction (SIC),

E PZ = E KS −∑
iσ

Δiσ , (1)

where EKS is the Kohn–Sham (KS) energy functional,2 and the self-
interaction error (SIE) is defined by

Δiσ = EJ[niσ] + E xc[niσ]. (2)

Here, niσ is the electron density of the i-th occupied orbital
with spin σ, and EJ and Exc denote the Coulomb and exchange-
correlation energy functionals, respectively. The idea behind PZ-SIC
is that the self-interaction error defined by Eq. (2) vanishes for the
exact functional,42 and thereby, the Perdew–Zunger functional of
Eq. (1) is a better estimate for the total energy than the uncor-
rected Kohn–Sham DFA EKS; indeed, the PZ functional is exact for
one-electron systems such as the H+2 molecule with approximate
DFAs.

Despite the simple logic used to construct the PZ-SIC func-
tional, the PZ-SIC method turns out to be quite complicated. The
introduction of the explicit orbital dependence in Eqs. (1) and (2)

breaks the unitary invariance of the energy functional,43 requiring
costly unitary optimization of the orbitals (see Ref. 44 for discus-
sion). Even though the resulting method is known to correct charge
transfer errors and barrier heights, it does not lead to improved
atomization energies with GGA and meta-GGA functionals in
general.45

Continued research has illuminated other important theoret-
ical aspects of PZ-SIC. First, the orbital dependence in Eqs. (1)
and (2) has been recently shown to require the use of complex-
valued orbitals for proper minimization, as real-valued orbitals
can be shown to correspond to high-order saddle points.46 When
complex-valued orbitals are employed, the total energy is lowered,
and PZ-SIC does lead to improved atomization energies for some
GGA functionals; however, more accurate atomization energies
can be obtained at significantly smaller cost with several standard
DFAs.47

Second, the orbital dependence in Eqs. (1) and (2) has also
been shown to lead to the existence of several local minima in
the orbital space.46 This problem has been recently shown to per-
sist also in a related SIC method48 based on the use of Fermi–
Löwdin orbitals (PZFLO-SIC), where various choices for the orbital
descriptors lead to distinct local electronic minima.49 The exis-
tence of such local minima is a significant and underappreciated
aspect of PZ-SIC and PZFLO-SIC calculations, as finding the true
ground state may require extensive sampling of the space of the
various possible localized electronic configurations or bonding
situations.

Despite their theoretical shortcomings, PZ-SIC and PZFLO-
SIC have been found useful in many applications,50–52 and we are
positive that several of the aforementioned issues in PZ-SIC and
PZFLO-SIC can be addressed by developments in the related the-
ories by changing the way the self-interaction correction is applied.
One possible way to achieve improved results would be to revisit
DFAs based on the requirements of SIC calculations.53 It is known
that present-day DFAs yield poor estimates for the noded elec-
tron densities that are involved in SIC calculations.54,55 Sun et al.54

demonstrated that the ground and excited state densities of the
hydrogen atom (as well as of H+2 , see below) lead to large relative
errors in the exchange-correlation energy compared to the exact val-
ues, but we are not aware of any self-consistent calculations on this
issue.

Following the recent discussion in the literature on the accuracy
of DFAs on the electron densities of small atoms and ions27–33 and
motivated by the obvious connection of one-electron errors (OEEs)
to the PZ-SIC and PZFLO-SIC methods, in this work, we will ana-
lyze the OEE of various functionals for the 1s ground state as well as
the 2p and 3d excited states of hydrogenic ions Z(Z−1)+, whose exact
energies are well known to be given in atomic units by

En = −Z2/2n2, (3)

where Z is the atomic number, n ≥ l + 1 is the principal quantum
number, and l is the angular momentum.

As mentioned above, calculations of ground and excited states
of the hydrogen atom and the 1σ g ground state and 1σu excited state
of H+2 have been discussed by Sun et al.54 with non-self-consistent
electron densities, while the 1s ground states of hydrogenic mononu-
clear cations as well as the 1σ ground states of hydrogenic diatomic
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cations have been discussed recently by Lonsdale and Goerigk56

using self-consistent calculations. The novel contribution of this
work is to address (highly) excited states with noded electron den-
sities of hydrogenic cations self-consistently. Importantly, similar
to the 1s ground state, the 2p and 3d excited states (as well as the
analogous higher excited states like 4 f ) are the lowest states of the
corresponding symmetry, and the ground-state Kohn–Sham scheme
is applicable to such excited states as well as shown by Gunnarsson
and Lundqvist.57

We pursue thorough density-functional investigations of the
1s, 2p, and 3d states of hydrogenic ions in benchmark-quality
Gaussian basis sets, especially suited for this purpose with a selec-
tion of 56 popular DFAs, including the recently developed, highly
sophisticated machine-learned DeepMind 21 (DM21) local hybrid
functional.58

The layout of this work is as follows. The computational details
are presented in Sec. II, and the results are given in Sec. III. A sum-
mary of our findings and an outlook for further investigations are
given in Sec. IV. Atomic units are used throughout, unless specified
otherwise.

II. COMPUTATIONAL DETAILS
We only use free and open-source software (FOSS) in this

work, following the philosophy discussed in Ref. 59. PYSCF60 is
an electronic structure code for all-electron calculations by using
Gaussian-type orbitals (GTOs). As we are targeting one-electron
states of specific symmetry (s, p, or d states), following Gunnars-
son and Lundqvist,57 we truncate the basis set in all calculations to
contain functions only of the pursued symmetry: calculations on the
1s/2p/3d state only include the basis functions of the correspond-
ing symmetry (s, p, or d functions, respectively) from the chosen
parent basis set. This procedure has two important features: the 2p
and 3d excited states become the ground state in the reduced-basis
calculation, and the computational requirements are smaller since
fewer integrals need to be calculated in the reduced basis than in the
original basis set.

The one-electron guess—which is exact for one-electron sys-
tems and thereby is also expected to be accurate for calculations
employing DFAs as well—is used in all calculations.61 To ensure
that the SCF procedure converges to the global minimum instead
of a saddle point, the following procedure was used. First, a reg-
ular SCF calculation was performed with PYSCF with default set-
tings; direct inversion in the iterative subspace (DIIS) is used
to accelerate these calculations.62,63 Next, convergence to saddle
point solutions was checked: cases where the SCF converged to a
final energy higher than that of the initial guess were restarted,
with new calculations employing iterative diagonalization with level
shifting64 instead of DIIS to converge to the ground state. All calcu-
lations reported in this work are fully converged to a threshold of
1 × 10−7Eh.

For the GTO basis sets, we use the family of hydrogenic
Gaussian basis sets65 (HGBS-n) that have been designed for high-
accuracy calculations on atoms and small molecules. A special
feature of the HGBS basis sets is that the basis for atomic num-
ber Z is determined by a universal even-tempered basis set for
the ions Y (Y−1)+ for Y ∈ [1, Z], whereas augmented hydrogenic

Gaussian basis sets (AHGBS-n) add further functions for describ-
ing the Z = 0.5 one-electron ion.65 The parameter n controls the
relative precision of the hydrogenic Gaussian basis; (A)HGBS-n
reproduces the exact total energies of the one-electron ions to an
approximate relative accuracy of 10−n.65 The motivation of this
approach in Ref. 65 was that a many-electron atom experiences a
screened nuclear charge that can be rewritten in terms of a radially
dependent effective charge Zeff = Zeff(r) with the asymptotic lim-
its Zeff(0) = Z and either Zeff(∞) = Z∞ with the asymptotic limit
Z∞ = 0 for Hartree–Fock and DFT or Z∞ = 1 for the exact effective
potential.61

Another feature of the HGBS basis sets is that the functions of
various angular symmetries are determined independently of each
other, which facilitates the formation of polarized counterparts of
the basis sets that are essential for studying molecules and excited
states, as additional shells are added to the basis like lego blocks.65

Following Ref. 65, the basis set with p ≥ 1 polarization shells and
accuracy n is denoted as (A)HGBSPp-n. The definition of polariza-
tion shells varies by atom (see Ref. 65 for discussion); however, as we
only include the functions of the pursued symmetry in each calcula-
tion, the choice of the polarization level of the (A)HGBSPp-n basis
set does not matter as long as the original basis contains functions of
the highest targeted angular momentum for the targeted atom, that
is, d functions in this work.

For the reasons listed above, the hydrogenic Gaussian basis
sets of Ref. 65 are ideally suited for the present study—as will be
demonstrated in Sec. III by benchmarks with functions from the
polarization consistent (pc-n) basis sets66 and their augmented ver-
sions67 (aug-pc-n)—and, as will be discussed in Sec. III A, we will
take the exponents from the AHGBSP3-n basis sets in this work. All
basis sets were taken from the Basis Set Exchange.68

The LIBXC library9—which implements over 600 DFAs—is
used in PYSCF to evaluate the DFAs. The library provides access
to a vast variety of DFAs, of which 49 were chosen for this work;
see Table I for the complete list of investigated functionals. Our
selection includes functionals from the first to the fourth rung of
Jacob’s ladder,123 that is, local density approximations (LDAs), gen-
eralized gradient approximations (GGAs), meta-GGAs, as well as
global and range-separated hybrid functionals. In addition, we con-
sider six hybrids of rSCAN and r2SCAN with varying fractions
of Hartree–Fock exchange discussed in Ref. 120; these functionals
were defined in the PYSCF input files as weighted combinations of
r(2)SCAN exchange and Hartree–Fock exchange + 100% r(2)SCAN
correlation. The DM21 functional was also chosen for this study; we
use the original implementation in PYSCF of Kirkpatrick et al.58 This
brings up the total to 56 functionals for this study. An unpruned
(300,590) quadrature grid is used in all calculations, including
the non-local correlation component in B97M-V, ωB97M-V, and
LC-VV10.

As the total energies scale as En ∝ Z2 according to Eq. (3), the
results will be analyzed in terms of absolute relative errors (AREs).
Hydrogenic estimates show that the approximated exchange-
correlation energy scales like Z in the large Z limit,124 meaning that
the relative errors should tend to zero like 1/Z. The ARE for a given
state of a given ion is given by

ARE = ∣(E calc − E ref)/E ref∣. (4)
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TABLE I. List of investigated functionals, including the publication year, the LIBXC identifier, the calculated MSEs for the 1s, 2p, and 3d states as well as the respective
OE. Tables containing functional rankings by error for the individual states as well as the OE can be found in the supplementary material (Tables S1–S4). The LIBXC identi-
fiers contain information about the functional; in addition to the rung of Jacob’s ladder: LDA, GGA, or meta-GGA (mGGA), hybrid (hyb) functionals are also identifiable from
the list.

MSE

Name Year LIBXC identifier 1s 2p 3d OE

ωB97M-V23 2016 HYB_MGGA_XC_WB97M_V 8.106 × 10−4 5.987 × 10−3 1.128 × 10−2 6.027 × 10−3

ωB97X-D69 2008 HYB_GGA_XC_WB97X_D 7.641 × 10−4 1.385 × 10−2 2.512 × 10−2 1.324 × 10−2

B3LYP14,70–73 1994 HYB_GGA_XC_B3LYP 7.203 × 10−4 1.055 × 10−2 2.464 × 10−2 1.197 × 10−2

B97-116 1998 HYB_GGA_XC_B97_1 3.756 × 10−4 1.108 × 10−2 2.436 × 10−2 1.194 × 10−2

B97M-V22 2015 MGGA_XC_B97M_V 2.466 × 10−4 5.258 × 10−3 1.491 × 10−2 6.804 × 10−3

BHandH73 1993 HYB_GGA_XC_BHANDH 5.122 × 10−3 2.822 × 10−3 4.341 × 10−4 2.793 × 10−3

BLOC74,75 2013 MGGA_X_BLOC, MGGA_C_REVTPSS 2.046 × 10−5 1.094 × 10−2 2.320 × 10−2 1.139 × 10−2

BLYP70–72 1988 GGA_X_B88, GGA_C_LYP 5.790 × 10−4 1.209 × 10−2 2.857 × 10−2 1.374 × 10−2

BLYP3576,77 2011 HYB_GGA_XC_BLYP35 3.902 × 10−4 7.824 × 10−3 1.837 × 10−2 8.861 × 10−3

BOP70,78 1999 GGA_X_B88, GGA_C_OP_B88 5.789 × 10−4 1.209 × 10−2 2.857 × 10−2 1.374 × 10−2

CAM-B3LYP79 2004 HYB_GGA_XC_CAM_B3LYP 8.286 × 10−4 7.569 × 10−3 1.617 × 10−2 8.188 × 10−3

CAM-QTP0080 2014 HYB_GGA_XC_CAM_QTP_00 4.572 × 10−4 4.187 × 10−3 8.300 × 10−3 4.315 × 10−3

CAM-QTP0181 2016 HYB_GGA_XC_CAM_QTP_01 1.339 × 10−3 4.961 × 10−3 9.542 × 10−3 5.281 × 10−3

CAM-QTP0282 2018 HYB_GGA_XC_CAM_QTP_02 1.714 × 10−3 3.302 × 10−3 6.680 × 10−3 3.899 × 10−3

CHACHIYO83,84 2015 LDA_X,LDA_C_CHACHIYO 7.711 × 10−3 3.476 × 10−3 1.155 × 10−2 7.579 × 10−3

DM2158 2021 Uses PYSCF implementation 2.126 × 10−3 5.435 × 10−3 1.226 × 10−2 6.606 × 10−3
instead of LIBXC

GAM85 2015 GGA_X_GAM, GGA_C_GAM 2.584 × 10−3 1.561 × 10−2 3.650 × 10−2 1.823 × 10−2

HCTH-9316 1998 GGA_XC_HCTH_93 9.252 × 10−4 1.642 × 10−2 3.689 × 10−2 1.808 × 10−2

HSE0386,87 2003 HYB_GGA_XC_HSE03 1.116 × 10−3 1.150 × 10−2 2.453 × 10−2 1.238 × 10−2

HSE0686–88 2006 HYB_GGA_XC_HSE06 6.659 × 10−4 8.785 × 10−3 2.052 × 10−2 9.989 × 10−3

HSE1289 2012 HYB_GGA_XC_HSE12 6.187 × 10−4 8.201 × 10−3 1.911 × 10−2 9.309 × 10−3

LC-QTP82 2018 HYB_GGA_XC_LC_QTP 2.276 × 10−3 3.818 × 10−3 7.590 × 10−3 4.561 × 10−3

LC-VV1090 2010 HYB_GGA_XC_LC_VV10 1.089 × 10−3 6.905 × 10−3 1.166 × 10−2 6.553 × 10−3

LRC-ωPBE91 2009 HYB_GGA_XC_LRC_WPBE 1.121 × 10−3 9.294 × 10−3 1.668 × 10−2 9.033 × 10−3

M06-L92,93 2006 MGGA_X_M06_L, MGGA_C_M06_L 9.242 × 10−4 1.521 × 10−2 3.368 × 10−2 1.660 × 10−2

M11-L94 2012 MGGA_X_M11_L, MGGA_C_M11_L 2.320 × 10−3 1.876 × 10−2 4.593 × 10−2 2.234 × 10−2

MN12-L95 2012 MGGA_X_MN12_L, MGGA_C_MN12_L 1.541 × 10−3 5.796 × 10−3 2.036 × 10−2 9.234 × 10−3

MN1596 2016 HYB_MGGA_X_MN15, 2.532 × 10−4 9.867 × 10−3 2.133 × 10−2 1.048 × 10−2
MGGA_C_MN15

MN15-L97 2016 MGGA_X_MN15_L, MGGA_C_MN15_L 2.118 × 10−3 4.673 × 10−3 1.327 × 10−2 6.689 × 10−3

MS098–100 2012 MGGA_X_MS0, GGA_C_REGTPSS 5.973 × 10−4 1.121 × 10−2 2.233 × 10−2 1.138 × 10−2

MS199–101 2013 MGGA_X_MS1, GGA_C_REGTPSS 6.013 × 10−4 1.161 × 10−2 2.346 × 10−2 1.189 × 10−2

MS299–101 2013 MGGA_X_MS2, GGA_C_REGTPSS 6.039 × 10−4 1.193 × 10−2 2.432 × 10−2 1.229 × 10−2

OLYP71,102 2009 GGA_X_OPTX, GGA_C_LYP 3.934 × 10−4 1.309 × 10−2 2.971 × 10−2 1.440 × 10−2

PBE10,103 1996 GGA_X_PBE, GGA_C_PBE 9.196 × 10−4 1.096 × 10−2 2.538 × 10−2 1.242 × 10−2

PBEsol104 2007 GGA_X_PBE_SOL, GGA_C_PBE_SOL 3.799 × 10−3 6.918 × 10−3 2.010 × 10−2 1.027 × 10−2

PKZB105 1999 MGGA_X_PKZB, MGGA_C_PKZB 9.408 × 10−4 1.038 × 10−2 2.470 × 10−2 1.201 × 10−2

PW91106–108 1992 GGA_X_PW91, GGA_C_PW91 7.771 × 10−4 1.086 × 10−2 2.449 × 10−2 1.204 × 10−2

QTP17109 2018 HYB_GGA_XC_QTP17 3.060 × 10−3 1.483 × 10−3 4.612 × 10−3 3.051 × 10−3

RPBE10,103,110 1999 GGA_X_RPBE, GGA_C_PBE 4.576 × 10−4 1.346 × 10−2 2.932 × 10−2 1.441 × 10−2

SPW9283,111 1992 LDA_X,LDA_C_PW_MOD 7.702 × 10−3 3.392 × 10−3 1.138 × 10−2 7.490 × 10−3

SVWN83,112,113 1980 LDA_X, LDA_C_VWN 7.707 × 10−3 3.390 × 10−3 1.138 × 10−2 7.492 × 10−3
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TABLE I. (Continued.)

MSE

Name Year LIBXC identifier 1s 2p 3d OE

TASK111,114 2019 MGGA_X_TASK, LDA_C_PW 2.523 × 10−3 1.463 × 10−2 2.698 × 10−2 1.471 × 10−2

TM115 2016 MGGA_X_TM, MGGA_C_TM 2.972 × 10−5 1.035 × 10−2 2.240 × 10−2 1.093 × 10−2

TPSS11,12 2003 MGGA_X_TPSS, MGGA_C_TPSS 2.046 × 10−5 1.094 × 10−2 2.318 × 10−2 1.138 × 10−2

TPSSh116 2003 HYB_MGGA_XC_TPSSH 1.640 × 10−5 9.835 × 10−3 2.080 × 10−2 1.022 × 10−2

XLYP117 2004 GGA_XC_XLYP 1.369 × 10−4 1.217 × 10−2 2.792 × 10−2 1.341 × 10−2

r2SCAN118,119 2020 MGGA_X_R2SCAN, MGGA_C_R2SCAN 1.495 × 10−5 8.087 × 10−3 1.617 × 10−2 8.091 × 10−3

r2SCAN0120 2022 Custom-defined in PYSCF 8.173 × 10−6 6.051 × 10−3 1.204 × 10−2 6.035 × 10−3

r2SCAN50120 2022 Custom-defined in PYSCF 3.504 × 10−6 4.025 × 10−3 7.975 × 10−3 4.001 × 10−3

r2SCANh120 2022 Custom-defined in PYSCF 1.198 × 10−5 7.271 × 10−3 1.451 × 10−2 7.266 × 10−3

rSCAN121 2019 MGGA_X_RSCAN, MGGA_C_RSCAN 1.495 × 10−5 8.087 × 10−3 1.617 × 10−2 8.091 × 10−3

rSCAN0120 2022 Custom-defined in PYSCF 8.173 × 10−6 6.051 × 10−3 1.204 × 10−2 6.034 × 10−3

rSCAN50120 2022 Custom-defined in PYSCF 3.504 × 10−6 4.025 × 10−3 7.975 × 10−3 4.001 × 10−3

rSCANh120 2022 Custom-defined in PYSCF 1.198 × 10−5 7.271 × 10−3 1.451 × 10−2 7.266 × 10−3

revPBE10,103,122 1998 GGA_X_PBE_R, GGA_C_PBE 4.572 × 10−4 1.358 × 10−2 2.995 × 10−2 1.466 × 10−2

revTPSS99,100 2009 MGGA_X_REVTPSS, 1.302 × 10−5 1.040 × 10−2 2.186 × 10−2 1.076 × 10−2
MGGA_C_REVTPSS

The information in the AREs is analyzed with two more error met-
rics. The mean state error (MSE) measures the overall functional
error over all ions by averaging the ARE over all ions,

MSE = 1/N ions

N ions

∑
i

AREi. (5)

The overall error (OE) for a functional is obtained by further
averaging the MSE over all considered states (1s, 2p, and 3d),

OE = 1/N states

N states

∑
i

MSEi. (6)

III. RESULTS
A. Basis set convergence

Before pursuing density-functional calculations, we analyze the
basis set truncation errors (BSTEs) for the one-electron cations in
the polarization consistent and hydrogenic Gaussian basis sets. We
aim for a mean BSTE smaller than 5 × 10−5Eh for the whole bench-
mark set ranging from H0 to Kr35+ to ensure that our results are
converged close to the complete basis set limit.

Unrestricted Hartree–Fock (UHF) is exact for one-electron sys-
tems and thereby gives the exact energy E UHF

n in the studied basis;
therefore, the difference between E UHF/basis

n and the exact analytical
energy [Eq. (3)],

Δ basis
n = E UHF/basis

n − En ≥ 0, (7)

is a variational measure of the BSTE for the state with given n of the
studied hydrogenic ions.

The calculated mean BSTEs for a variety of polarization con-
sistent and hydrogenic Gaussian basis sets are shown in Fig. 1;
additional results can be found in the supplementary material.
Unsurprisingly, uncontracting the (aug-)pc-n basis sets—yielding
the unc-(aug-)pc-n basis sets—results in a noticeable decrease in the
BSTE, because the contractions were determined in Ref. 66 with the
BLYP functional70–72 that suffers from SIE for the 1s state, while
the p and d functions in the basis set describe either polarization
effects or the occupied p or d orbitals in the screened neutral atom.
Although the large uncontracted polarization consistent basis sets
exhibit satisfactory performance for the 1s state, they result in much
larger errors for the 2p and 3d states; this error is again caused
by the p and d orbitals in the neutral atom being screened by the
core electrons, which results in the lack of tight p and d basis func-
tions that are necessary for the 2p and 3d states of the one-electron
ions.

In contrast, the primitive (not contracted) hydrogenic Gaus-
sian basis sets of Ref. 65 show uniform accuracy for the 1s, 2p,
and 3d states, and as can be observed in Fig. 1, the targeted mean
BSTE threshold is roughly achieved already with the AHGBSP3-7
basis set. The AHGBSP3-9 basis sets yield errors below the desired
threshold for all states and is, therefore, chosen for all the remaining
calculations of this study.

Although this analysis was limited to Hartree–Fock calcula-
tions, we note that the basis set requirements of Hartree–Fock
and DFT are known to be similar.125 Furthermore, reliable ref-
erence energies for DFAs can be obtained with fully numeri-
cal methods,126–128 and exploratory calculations presented in the
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FIG. 1. Mean basis set truncation error
(ME) in Eh at UHF level of theory for
the 1s ground state and the 2p and 3d
excited states, respectively. The refer-
ence values are calculated with Eq. (3),
and the aimed accuracy threshold
5 × 10−5Eh is shown with the dashed
horizontal line.

supplementary material confirm that the BSTEs in the AHGBSP3-9
basis are also small for DFAs.

B. OEE cation benchmark
1. Exploratory analysis

We begin the analysis with a graphical study of the results
of the SPW92, PBEsol, revTPSS, MN15-L, BHandH, and DM21
functionals in Fig. 2. This limited set of functionals contains LDA,
GGA, and meta-GGA functionals from first principles (SPW92,
PBEsol, and revTPSS, respectively), semiempirical functionals
(MN15-L and DM21), as well as hybrid functionals (BHandH and
DM21).

As will be discussed in Sec. III B 2, revTPSS is the most accurate
meta-GGA functional for the 1s state. In Fig. 2, revTPSS is outper-
formed by DM21 only for He+; otherwise, revTPSS affords much
lower errors than the five other functionals in the figure. In contrast,
the performance of DM21 is inconsistent. DM21 has lower errors for
light ions than for heavy ions, but the curve is kinked for the light
ions. DM21’s curve becomes smooth for heavy ions, but DM21 is
also less accurate for heavy ions. MN15-L also shows a kinky behav-
ior with lower errors for light ions; these non-systematic features of
DM21 and MN15-L can be tentatively explained by their semiem-
pirical character; the curves for the first principles functionals are
smoother.

The functional errors for the 2p state are shown in Fig. 2(b).
The performance for the 2p state is strikingly different compared to
the 1s state shown in Fig. 2(a). The plots for the 2p state in Fig. 2(b)
show more structure and curve crossings. The behavior of DM21
is qualitatively different from that of the other functionals: DM21
shows large relative errors for light atoms and lower relative errors
for heavy atoms, while most of the other functionals shown behave
similarly to each other. The only other exceptions to this are the
SPW92 and MN15-L functionals that show dips at Z ≃ 3 and Z ≃ 4,
respectively; the two functionals are thus oddly more accurate for
some values of Z than others.

The errors for the 3d state are shown in Fig. 2(c). BHandH
has small errors for all ions for the 3d state. The behavior of DM21
and MN15-L again differs qualitatively from the other functionals.
Although DM21 shows less variation for the 3d state than for the
2p state, MN15-L does the opposite: MN15-L has large errors for
light ions and becomes nearly as accurate as BHandH for Z ≃ 22;
however, the relative error increases again for heavier ions.

2. Full analysis
The MSEs and OE for all studied functionals are shown in

Table I. Although Table I contains all of the data used in the present
analysis, additional tables showing the rankings of the functionals in
terms of the errors for the 1s, 2p, and 3d states as well as in terms of
the overall error can be found in the supplementary material.

Clearly, the performance of all LDAs is practically identical.
This suggests that the functional error for LDAs is limited by the
simple functional form. Although LDAs show larger errors than
GGAs and meta-GGAs for the 1s state, they perform better than
GGAs and meta-GGAs for the 2p and 3d states.

PBEsol104 is the GGA that yields the smallest errors for the
2p and 3d states, as well as the smallest overall error. The XLYP
GGA has a lower error than PBEsol for the 1s state. Although XLYP
and even PBEsol are better for 1s states than any LDA, they have
higher OEs than any LDA because of their considerably poorer per-
formance for the 2p and 3d states. Analogous findings apply also to
all other studied GGAs.

The best meta-GGA for the 1s state is revTPSS,99,100 closely
followed by rSCAN121 and r2SCAN118 (see Table I or the supple-
mentary material). The best meta-GGA in terms of overall error is
MN15-L.97

Hybrid functionals have better accuracy as they contain some
Hartree–Fock exchange that is free of self-interaction. The best
hybrid GGA functionals in terms of overall error are BHandH73

and QTP17.109 BHandH has low MSEs for all states and has the
best overall performance, which can be understood by its compo-
sition of 50% of Hartree–Fock exchange and 50% LDA exchange
+ 100% Lee–Yang–Parr correlation. QTP17 has the second-best per-
formance for all states; it, too, contains a mixture of Hartree–Fock
(62%) and LDA exchange (38%).

The best functionals of each rung in terms of overall error are
SPW92, PBEsol, MN15-L, and BHandH. The corresponding error
distributions are summarized in comparison to DM21 in Fig. 3.
Interestingly, the performance of the DM21 functional appears
similar to that of MN15-L.

Following Medvedev et al.,27 the calculated OE for all function-
als and ions is plotted against the publication year in Fig. 4. As is
clear from this plot, the improvement in one-electron error is not
fully systematic and features a significant amount of spread and
some notable outliers such as M11-L, GAM, and TASK. However,
in the recent decade, hybrid functionals have become better overall.
As an example, the various QTP functionals dominate the bottom
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FIG. 2. Functional errors for the 1s, 2p,
and 3d states for the SPW92, PBEsol,
revTPSS, MN15-L, BHandH, and DM21
functionals.

right of the figure; these functionals are closely related in functional
form and contain high amounts of Hartree–Fock exchange, which
decreases the one-electron error. Unsurprisingly, hybrid functionals
based on rSCAN and r2SCAN perform well, and the functionals with
large fractions of Hartree–Fock exchange share the bottom right of
the figure with the QTP functionals.

3. Comparison to literature data

The study of Lonsdale and Goerigk56 employed an uncon-
tracted aug-cc-pVQZ basis set129,130 with the following nucleus-
dependent quadrature grids for the study of 1s states of hydrogenic
cations: (45,770) for H and He, (50,770) for Li–Ne, (55,770) for

FIG. 3. MSEs and OEs for the best func-
tional of each rung of Jacob’s ladder of
all the investigated functionals.
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FIG. 4. The overall functional error (OE) for various types of functionals plotted as a function of the publication year. Yearly averages are shown as solid lines as a guide to
the eye.

Na–Ar, and (60,770) for K–Kr. However, it appears that K and Ca
were excluded from Ref. 56 (see Figs. 3 and 10 in Ref. 56).

Our trends and absolute values for the MSE for the 1s state
are in satisfactory agreement for the subset of functionals studied
in both works, although we did identify basis set incompleteness
issues in some results of Ref. 56 as discussed in the supplementary
material. The largest basis set incompleteness effects are observed
for the M11-L and M06-L Minnesota functionals, which are known
to converge remarkably slowly to the basis set limit.131

Lonsdale and Goerigk56 only studied one LDA functional
(SVWN); we considered more LDAs and found them to have sim-
ilar performance. Lonsdale and Goerigk56 found OLYP to be the
best GGA functional for the 1s state; we also considered XLYP
and found it to yield a considerably lower MSE for the 1s state
than OLYP. Lonsdale and Goerigk56 included a broader set of
hybrid functionals separating global, range-separated hybrids and
double hybrids; however, our main motivation is the connection
to self-interaction corrected methods where hybrid functionals are
typically not used. We found rSCAN50/r2SCAN50 to be the best
hybrid functional for the 1s state, while Lonsdale and Goerigk56

determined TPSSh and SCAN0 to be the best hybrids. All rSCAN-
and r2SCAN-based hybrid functionals, i.e., rSCANh/r2SCANh,
rSCAN0/r2SCAN0, rSCAN50/r2SCAN50, and TPSSh, have a good
performance for the 1s state. The revTPSS functional is found in our
work as well by Lonsdale and Goerigk56 to be the best non-hybrid
meta-GGA functional for the 1s state.

IV. SUMMARY AND DISCUSSION
We used exactly solvable hydrogenic cations in their 1s ground

state and 2p and 3d excited states to determine the self-consistent
one-electron error for 56 density functionals including the novel
DM21 of Kirkpatrick et al.,58 employing the methodology of
Gunnarsson and Lundqvist57 for the excited state calculations. In
accordance with an earlier finding by Sun et al.54 apparently based
on non-self-consistent calculations for the hydrogen atom and

molecule and one LDA functional, we find for 36 hydrogenic cations
that all LDAs perform better for the excited 2p and 3d states than
any of the tested GGAs and meta-GGAs. The performance of vari-
ous LDAs appears to be almost identical since the calculated errors
are nearly indistinguishable, suggesting that the errors are limited
by the simple functional form used in LDAs. Sun et al.54 pointed out
that larger errors for excited states are a necessary consequence of
orbital nodality.

The revTPSS functional is the best-performing meta-GGA for
the 1s state, tightly followed by the rSCAN and r2SCAN functionals.
MN15-L shows a better overall performance than LDAs for all states;
however, the performance of MN15-L is non-systematic like that of
DM21.

Hybrid functionals like BHandH and QTP17 have the best
overall performance as they explicitly include some fraction of
Hartree–Fock exchange. Moreover, both BHandH and QTP17 are
mixtures of Hartree–Fock and LDA exchange, leading to good
observed accuracy.

DM21 turns out to be only close to exact for the 1s state
OEE from H0 to B4+ (see Fig. 2). For He+ to B4+, DM21 also
shows good performance for 2p and 3d states. However, over the
whole range of investigated species H0 to Kr35+, DM21 exhibits
various trend changes and overall inconsistent performance. Thus,
one might improve the next generation of the DM21 functional
by including more one-electron cations in the training sets for
various elements in the periodic table. This might increase the con-
sistency of promising properties of such kind of machine-learned
functionals.

We found PBEsol to be the most accurate GGA functional
for the 2p and 3d states. PBEsol is also the most accurate GGA
functional overall. These findings are interesting to contrast with
that of Lehtola, Jónsson, and Jónsson,47 who showed that PBEsol
is one of the few functionals whose accuracy improves when
PZ-SIC is applied with complex orbitals. Therefore, the develop-
ment of novel DFAs with reduced one-electron error could be useful
for PZ-SIC calculations, as the reduced one-electron errors [Eq. (2)]
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would affect the numerics of the PZ correction [Eq. (1)] and might
alleviate well-known issues with PZ-SIC and PZFLO-SIC discussed
in Sec. I.

Note added in proof After the acceptance of this paper, we
became aware of a preprint by Lonsdale and Goerigk [132] that
includes discussion on excited states of hydrogenic cations.

SUPPLEMENTARY MATERIAL

See supplementary material for exploratory finite element stud-
ies of basis set truncation errors in density-functional calculations.
Sorted rankings of the functionals by errors for the 1s, 2p, and 3d
states as well as the overall error. Bar plots of the errors for all studied
functionals. Comparison of the 1s data to the study of Lonsdale and
Goerigk56 with additional basis set incompleteness studies. Tables of
the calculated total energies for the 1s, 2p, and 3d states for all studied
functionals.
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