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Non-thermalized dark matter is a cosmologically viable alternative to the widely studied weakly
interacting massive particle. We study the evolution of the dark matter phase-space distributions
arising from freeze-in and superWIMP production as well as the combination of both. Utilizing
our implementation in cLass, we investigate the cosmological imprints on the matter power
spectrum, constrained by Lyman-a forest observations. For the explicit example of a colored
t-channel mediator model, we explore the cosmologically allowed parameter space highlighting

the interplay of Lyman-« constraints with those from Big Bang Nucleosynthesis and the LHC.
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1. Introduction

Cosmological observations imply that the formation of structures in our Universe is dominantly
driven by dark matter (DM) making up 80% of the total matter content in our Universe [1].
Nevertheless, the microscopic properties of DM are still illusive. Despite substantial experimental
efforts, no clear hint for any non-gravitational interaction of DM with the standard model has been
found, thereby imposing strong constraints on the respective interaction strength.

A complementary path to constraining particle DM models is the study of the clustering
properties of matter. When DM is produced with a momentum distribution significantly different
to the one of cold DM, small-scale structures can be washed out by DM free-streaming causing a
cut-off in the matter power spectrum. This effect can be probed by Lyman-a forest observations
and has been interpreted in the canonical warm DM scenario [2—4], excluding masses below 5.3
keV [4] (or 1.9 keV under considerably more conservative assumptions [5]).

In this article, we summarize our recent results [6] re-interpreting Lyman-« constraints in
models of non-thermalised DM, i.e. in a scenario where DM couples so weakly to the standard
model that it never reaches thermal equilibrium with the primordial plasma. We consider freeze-in
production from renormalizable operators, namely decays and scatterings of bath particles [7-9],
as well as late decays of frozen-out mother particles, i.e. the superWIMP production [10, 11]. For
a dark sector containing DM and a (heavier) mediator particle, odd under a discrete Z,-symmetry,
both production mechanisms are present and can contribute to a similar amount.

In Sec. 2, we discuss Lyman-a constraints for a pure freeze-in and superWIMP scenario
refining earlier results obtained the literature [12—-16]. In Sec. 3, we consider the mixed freeze-
in/superWIMP scenario and apply our analysis to a simplified DM model with a colored #-channel
mediator improving on earlier results [17]. We conclude our discussion in Sec. 4.

2. Dark matter momentum distribution and Lyman-«a constraints

The impact of DM on structure formation depends on its momentum distribution f, (¢, p) as a
function of time, ¢, described by the Boltzmann equation,

dfy

5~ Gl ey

where C[ f, ] is the collision operator. For freeze-in and superWIMP production — both arising from
decays of the form B — Ay — the collision operator involves the very same interaction, but with
different assumptions regarding the momentum distribution of the mother particle B. For freeze-in,
B is assumed to be in thermal equilibrium with the thermal bath, while superWIMP production
denotes the late decay of B after it has chemically decoupled.

While the resulting relic density depends on the details of the B freeze-out, we can find approx-
imate analytic expressions for the n-th moments of the momentum distribution that characterize
their impact on structure formation. For freeze-in from decays and superWIMP production, we find

4 (5 2 m
(q")FL dec = ﬁr (5 + n) x 6" and (q")|sw = (ZRIS*W) o"r (5 + 1) , 2
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respectively. In eq. (2), I' is the mathematical Gamma function, g = p/T is the momentum mode
(where p is the absolute value of the spatial momentum and 7 the temperature), 6 parametrizes
the relative mass splitting, 6 = (mlzB — mi) / mlzg, and REW is the decay rate, I'p_, o, conveniently

MpTs_, 45
gev = Mnlaoay ’ 3)
my, 4r3g.(Tsw)

where Mpj is the Planck mass, and g.(Tsw) denotes the number of relativistic degrees of freedom

rescaled:

in the thermal bath contributing to the radiation energy density at the time of superWIMP decay.
As the scales considered by Lyman-« data lie in the non-linear regime of structure formation, a
derivation of DM constraints usually requires computationally expensive hydrodynamic simulations.
However, to good approximation, we can use the results obtained for warm DM and re-interpret
them considering the linear matter power spectrum which we obtain from a modified version of
crass [18, 19]. In [6], the analysis has been performed following three different strategies using
the velocity dispersion as done in [14], an analytical fit to the transfer function following [20, 21],
and using the area criterion [22, 23]. The three methods have led to compatible results. Here we
report the results we obtain using the latter method. To this end, we compute the integral over the
one-dimensional linear matter power spectrum (the area A) for the warm DM benchmark model

Ly-a

corresponding to the 95 % C.L. limit, m = 5.3 keV. Performing the same computation for the

WDM
test model and comparing the respective results leads to the constraints
1/3
«5 (T
15keV x 6 (ﬁgé ;;)) for freeze-in through decays,
my 2 -T e o @)
3.8keV x 6 (%) (REW) for superWIMP.

Here, g.s(Tsw) denote the relativistic degrees of freedom contributing to the entropy density.

An advantage of the area criterion is its applicability to the mixed scenario where similar
contributions stem from the freeze-in and superWIMP production. We consider this case in the
next section.

3. Application to a simplified model

For an application of the analysis described above, we consider a simplified #-channel mediator
DM model. It supplements the standard model with a Majorana fermion, y, and a colored scalar
mediator, 7, with gauge quantum numbers identical to the right-handed top quark. An imposed
Z, symmetry stabilizes the DM candidate y for m, < m;. The interactions are described by the
Lagrangian

1 -

Lin = D72 + 4,77 —2 y + hee. )

where D, is the covariant derivative and ¢ the top quark Dirac field. The masses m,, m; and the
coupling A, are considered to be free model parameters.

We assume that the model explains the measured relic density, Q, h?[p1(4,) + Q, h?|sw(d,) =
0.12, allowing us to compute the required A, for every mass point, see [6] for further details.
The allowed parameter space is shown in Fig. 1. While LHC searches for long-lived particles
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Figure 1: Cosmologically viable parameter space of the considered #-channel mediator model. Left: Projec-
tion onto the plane spanned by m, and Am = my — m,.. The green contours denote decades of the coupling
A, . For parameter points to the right of the black, thick line, DM is overabundant regardless of the coupling,
i.e. no solution can be found. Right: Projection onto the m, -1, -plane. The cyan contours denote decades of
m,, /GeV. (To reduce clutter we only display every second line.) Note that the scale of the abscissa has been
reversed allowing for a better comparison. In both panels, the black, long-dashed curves denote contours
of equal superWIMP (SW) contribution to the total relic density. The gray dotted lines denote contours of
equal decay length. Our constraints from the Lyman-a observations (Ly-a) are shown in purple, while BBN
bounds [24] are displayed in red. Constraints from LHC searches for displaced vertices (DV) [25, 26] and
R-hadrons [27] are shown in royal blue and aqua blue, respectively, see [6] for further details.

and bounds from Big Bang Nucleosynthesis (BBN) exclude the parameter space towards small
mediator masses, Lyman-a constraints corner the parameter space towards small DM masses,
small couplings and large mediator masses. In the latter region, the freeze-in and superWIMP
contribution are of similar size (see long-dashed contours). The respective momentum distribution
and transfer functions are shown in Fig. 2. Considering m, = 50keV, we choose mediator masses
around the Lyman-« exclusion limit. They are characterized by different relative contributions from
freeze-in and superWIMP production. These contributions give rise to the first and second bump
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Figure 2: Momentum distribution (left panel) in the mixed freeze-in/superWIMP scenario for different
relative freeze-in contributions and their respective transfer functions (right panel). The color code represents
the relative difference of the respective area A, to the one for cold DM, 6A, =1 - A, /Acpwm.
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in the momentum distribution, respectively. The transfer function for sizable admixtures show
considerable deviations in shape from the warm DM case shown as the dashed curve.

4. Conclusion

Lyman-a forest observations are an interesting probe of the DM momentum distribution
and, hence, may provide insights into the underlying DM genesis mechanism. We reinterpreted
warm DM bounds for non-thermalized DM, i.e. DM produced via the freeze-in and superWIMP
mechanism or an admixture of both. To do so, we employed the area criterion considering the
integral over the one-dimensional linear matter power spectra as a measure. For the computation of
linear matter power spectra we employed a modified version of cLass. We obtained approximate
analytic expressions for the pure scenarios while demonstrating the mixed freeze-in/superWIMP
scenario in a numerical example. To this end, we presented an application to a top-philic #-channel
mediator model. Its cosmologically viable parameter space is cornered from all sides by LHC and
BBN bounds (towards small mediator masses) and by Lyman-a constraints (towards small DM
masses, small DM couplings and large mediator masses). In the region of similar contributions
form both production mechanisms, the linear power spectrum significantly deviates in shape from
the one of the canonical warm DM scenario motivating further studies beyond the area criterion,
such as a dedicated analysis using a full Lyman-« likelihood.
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