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Abstract: This work describes two new synthetic methods for the preparation of isoflavones following the Ni-
catalysed domino arylation reactions of the vast range of ortho-hydroxyarylenaminones utilising aromatic
bromides as well as carboxylic acids. The presented protocols tolerated significant variation of all coupling
partners and enabled synthesis of isoflavone library of twenty-three representatives. This is the first
communicated precedent where the mechanic energy was utilised in the synthesis of isoflavones following the
domino cyclisation mode.

Keywords: Isoflavones; Arylation; Catalysis; Mechanochemistry; Methodology

Introduction

Heterocyclic compounds play a key role in the
development of drugs, drug-like scaffolds and are
abundantly presented in a substantial portion of
marketed drugs. Chromone heterocyclic core can also
be found in biologically relevant natural products and
numerous biologically active compounds with a wide
spectrum of important activities.[1] Among all these,

one has to highlight the chromone containing anti-
bacterial agents, antifungal agents, anti-cancer agents,
antioxidants, anti-HIV compounds, anti-ulcer agents,
immunostimulants, biocides, wound healing agents,
anti-inflammatory drugs and immune stimulation
agents.[1] Chromone heterocycle system reflects the
properties of multiple pharmaceuticals, and its struc-
tural changes offer a prominent level of valuable
diversity in finding new therapeutics.[1] Isoflavonoids
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(3-arylchromones) in turn are drug-like scaffolds
which are widely applied in medicinal chemistry, life
science and food production.[1e,2]

Besides the medicinal applications chromone
framework showcases several ranges of reactivity
which renders its presence in numerous building-
blocks commonly used for the construction of many
other heterocycles. The chromone system is dynamic
and can easily enter various photofield reactions that
result in the formation of different compound classes.[3]
The γ-benzopyrone framework is also considered a
masked 1,3-CCC-dielectrophile and thus can enter
reactions with numerous nucleophiles, in particularly
following the ANRORC mechanism.[4]

The synthetic routes, currently known to build-up
the 3-arylchromone framework, can be divided into six
main tactics (Scheme 1). The first one is bolstered
upon (i) the range of C� C couplings between 3-
halogenchromones or chromone-3-carboxilyc acids
utilising the set of appropriate reagents, among those

are aryl boronic acids,[5] aryl tin and triaryl bismuth
regents,[6] aryl zinc bromide reagents[7] and aromatic
carboxylic acids.[8] Another way to obtain 3-arylchro-
mones is a C� C cross-coupling mode catalysed by
palladium following the reaction between arylboronic
acids and 3-diazo-2,3-dihydro-4H-1-benzopyran-4-
one.[9] The second important strategy is (ii) the
annulation of the γ-pyrone core by the essence of the
arylation/domino cyclization of ortho-hydroxyarylena-
minones utilising different arylation agents (aryldiazo-
nium salts, diaryliodonium salts and arenesulfonyl
chlorides following visible light-mediated protocols;
aryl boronic acids in the presence of iodide catalysed
by Pd salts).[10,11] The synthesis of 3-arylchromones can
also be carried out by (iii) the [4+2]-cyclization
reactions between salicylaldehyde and 1,2-CC-building
blocks.[12] Other cyclisation modes like (iv) [3+3]-
cyclization[13] and (v) [5+1]-cyclization,[14] are also
presented in the contemporary literature and often used
for the construction of the title heterocyclic system.
(vi) Intermolecular cyclisation of suitable linear prede-
cessors is another pathway to construct the isoflavone
heterocyclic cores.[15] Many of the tactics illustrated
here are methods that involve laborious procedures,
expensive and toxic reagents; in some cases, they exert
low tolerance to the essential functional groups and
possess insufficient atom and step economy.

Therefore, there is an increasing need for synthetic
packages capable of meeting the existing challenges of
succinct preparation of isoflavones. A current trend in
contemporary organic chemistry suggests exploring
greener, cheaper, and more efficient methods through
which one can generate significant variations of
privileged organic molecules. We recently expanded
the pool of abbreviated tactics for the photoredox
preparation of isoflavones by two methods utilising
Eosin Y and Ru(bpy)3Cl2 catalysts respectively, based
on the arylation of ortho-hydroxyarylenaminones by
the aryldiazonium and diaryliodonium salts.[10a] Both
synthetic routes exhibit high yields and a good func-
tional group tolerance. As we continue to seek
strategies for preparation of isoflavone,[10] we hypothe-
sized that isoflavone framework can be assembled
following our synthetic scenario (Scheme 1). This
implied direct arylation of ortho-hydroxyarylenami-
nones by bromo compounds and carboxylic acids
under the green mechano-milling conditions
(Scheme 1). Our mechanistic hypothesis, that is illus-
trated in the Scheme 1, indicates that under the
transition metal catalysis the ortho-hydroxyarylenami-
none unit is expected to undergo the domino metal-
ation event by an appropriate transition metal com-
plexes forming the organometallic intermediate which
in turn can be further functionalised by an appropriate
arylation agent.

Scheme 1. General methods for synthesis of isoflavones and
our concept.
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Results and Discussion

In order to formulate optimum reaction conditions, we
selected two model reactions and performed a set of
trial experiments, as the starting point of this research
(Tables 1, S1). Namely, after the manipulation with
reaction parameters, among those are catalysts, ligands,
solvents, bases, etc., which resulted in nearly hundred

preliminary experiments (Some of the experiments are
illustrated in SI). We tested a diversity of copper,
rhodium, ruthenium, palladium and nickel salts (Ta-
ble 1, Entries 1–31, Table 2 and Scheme 2). We noticed
that some of the nickel and palladium salts in
combination with nitrogen-containing ligands
(Scheme S4, L1–L7) under mechano-milling condi-
tions facilitated the expected arylation reaction of

Table 1. Optimization of the reaction conditions.

entry reaction components frequency/
time

yield (%)
4a

1 CuF2 (0.1 equiv.), DABCO (1.3 equiv.), L1 (0.1 equiv.), r.t. 30 Hz/90 min 21
2 Cu(OTf)2 (0.1 equiv.), DABCO (1.3 equiv.), L1 (0.1 equiv.), r.t. 30 Hz/90 min 38
3 Cu(OTf)2 (0.1 equiv.), DABCO (1.3 equiv.), L2 (0.1 equiv.), r.t. 30 Hz/90 min 27
4 Cu(O2CCF3)2 (0.1 equiv.), DABCO (1.3 equiv.), L2 (0.1 equiv.), r.t. 30 Hz/90 min 29
5 Cu(OTf)2 (0.1 equiv.), DABCO (1.3 equiv.), L3 (0.1 equiv.), r.t. 30 Hz/90 min 17
6 Cu(OTf)2 (0.1 equiv.), DABCO (1.3 equiv.), L4 (0.1 equiv.), r.t. 30 Hz/90 min trace
7 Cu(OTf)2 (0.1 equiv.), DABCO (1.3 equiv.), L5 (0.1 equiv.), r.t. 30 Hz/90 min 0
8 Cu(OTf)2 (0.1 equiv.), DABCO (1.3 equiv.), L6 (0.1 equiv.), r.t. 30 Hz/90 min 0
9 Cu(OTf)2 (0.1 equiv.), DABCO (1.3 equiv.), r.t. 30 Hz/90 min 0
10 Rh(COD)2BF4 (0.1 equiv.), DABCO (1.3 equiv.), L3 (0.1 equiv.), r.t. 30 Hz/90 min 0
11 RuCl3 (0.1 equiv.), DABCO (1.3 equiv.), L2 (0.1 equiv.), r.t. 30 Hz/90 min 34
12 RuCl3 (0.1 equiv.), DABCO (1.3 equiv.), L5 (0.1 equiv.), r.t. 30 Hz/90 min 27
13 (CH3CN)4Pd(OTf)2 (0.1 equiv.), DABCO (1.3 equiv.), L2 (0.1 equiv.), r.t. 30 Hz/90 min 68
14 Ni(OTf)2 (0.1 equiv.), DABCO (1.3 equiv.), L2 (0.1 equiv.), r.t. 30 Hz/90 min 30
15 NiBr2 (0.1 equiv.), DABCO (1.3 equiv.), L2 (0.1 equiv.), r.t. 30 Hz/90 min 32
16 Ni(BF4)2 (0.1 equiv.), DABCO (1.3 equiv.), L1 (0.1 equiv.), r.t. 30 Hz/90 min 53
17 Ni(BF4)2 (0.1 equiv.), DABCO (1.3 equiv.), L2 (0.1 equiv.), r.t. 30 Hz/90 min 49
18 Ni(BF4)2 (0.1 equiv.), DABCO (1.3 equiv.), L3 (0.1 equiv.), r.t. 30 Hz/90 min 25
19 Ni(BF4)2 (0.1 equiv.), DABCO (1.3 equiv.), L4 (0.1 equiv.), r.t. 30 Hz/90 min 27
20 Ni(BF4)2 (0.1 equiv.), DABCO (1.3 equiv.), L5 (0.1 equiv.), r.t. 30 Hz/90 min 28
21 Ni(BF4)2 (0.1 equiv.), DABCO (1.3 equiv.), L6 (0.1 equiv.), r.t. 30 Hz/90 min trace
22 Ni(BF4)2 (0.1 equiv.), DABCO (1.3 equiv.), L7 (0.1 equiv.), r.t. 30 Hz/90 min 0
23 Ni(BF4)2 (0.1 equiv.), DABCO (1.3 equiv.), L8 (0.1 equiv.), r.t. 30 Hz/90 min 0
24 Ni(BF4)2 (0.1 equiv.), DABCO (1.3 equiv.), L9 (0.1 equiv.), r.t. 30 Hz/90 min 0
25 Ni(OTf)2 (0.1 equiv.), DABCO (1.3 equiv.), cucurbit[7]uril (0.1 equiv.), r.t. 30 Hz/90 min 77
26 NiCl2 (0.1 equiv.), DABCO (1.3 equiv.), cucurbit[7]uril (0.1 equiv.), r.t. 30 Hz/90 min 0
27 NiBr2 (0.1 equiv.), DABCO (1.3 equiv.), cucurbit[7]uril (0.1 equiv.), r.t. 30 Hz/90 min 59
28 Ni(BF4)2 (0.1 equiv.), DABCO (1.3 equiv.), cucurbit[7]uril (0.1 equiv.), r.t. 30 Hz/90 min 79
29 Ni(BF4)2 (0.1 equiv.), DABCO (1.3 equiv.), cucurbit[7]uril (0.05 equiv.), r.t. 30 Hz/90 min 80
30 Ni(BF4)2 (0.1 equiv.), DABCO (1.3equiv.), cucurbit[6]uril (0.05equiv.), r.t. 30 Hz/90min 82
31 (CH3CN)4Pd(OTf)2 (0.1 equiv.), DABCO (1.3 equiv.), cucurbit[6]uril (0.05 equiv.), r.t. 30 Hz/90 min 84

Reactions in solution
32 Ni(BF4)2 (0.1 equiv.), DABCO (1.3 equiv.), cucurbit[6]uril (0.05 equiv.), dichloromethane,

reflux.
—/24 h 0

33 Ni(BF4)2 (0.1 equiv.), DABCO (1.3 equiv.), cucurbit[6]uril (0.05 equiv.), CH3CN, reflux. —/24 h 0
34 Ni(BF4)2 (0.1 equiv.), DABCO (1.3 equiv.), cucurbit[6]uril (0.05 equiv.), 1,4-dioxane, reflux. —/24 h 0
35 Ni(BF4)2 (0.1 equiv.), DABCO (1.3 equiv.), cucurbit[6]uril (0.05 equiv.), DMF, 80 °C. —/24 h 0
36 Ni(BF4)2 (0.1 equiv.), DABCO (1.3 equiv.), cucurbit[6]uril (0.05 equiv.), DMF, 110 °C. —/24 h 17
37 Ni(BF4)2 (0.1 equiv.), DABCO (1.3 equiv.), cucurbit[6]uril (0.05 equiv.), DMA, 90 °C. —/24 h 35
38 Ni(BF4)2 (0.1 equiv.), DABCO (1.3 equiv.), cucurbit[6]uril (0.05 equiv.), DMA, 130 °C. —/24 h 23
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model ortho-hydroxyarylenaminone by corresponding
aryl bromide and thus the formation of the desired
model isoflavone 4a (Table 1, Entries 13, 16, 17).

We identified the nitrogen-containing ligands
(Scheme S5, L1, L2) which visibly contributed to the
efficiency of this synthetic protocol. Unexpectedly,
when we switched our attention to cucurbit[n]urils[16] –
supramolecular entities capable to encapsulate small
molecules, we observed an increase of the overall
yields (Table 1, Entries 25–31). In the case of other
supramolecular compounds[17] like calix[4]arene (L8)
calix[5]arene (L9) the title reaction experienced a
failure. The best outcome for the direct Ni-catalysed
arylation of the model ortho-hydroxyarylenaminone by
corresponding bromo compound was seen when we
took ortho-hydroxyarylenaminone (1.0 mmol,
1.0 equiv.), bromo compound (1.3 equiv.) using Ni-
(BF4)2 (0.1 equiv.) as catalyst and as base DABCO
(1.4 equiv.); addition of cucurbit[6]uril (0.05 equiv.)
permitted to increase visibly the efficiency of this
reaction. These conditions allowed for the preparation
of the model compound 4a in 82% yield (Table 1,

Entry 30). Of note, cucurbit[7]uril (Table 1, Entries 28,
29), that due to its larger inner void we considered
more a molecular container, appeared similarly opera-
tional as cucurbit[6]uril and gave the model compound
in 80% yield (Table 1, Entry 29). The same conditions
with Pd(OTf)2 and cucurbit[6]uril delivered the model
compound in 84% yield (Table 1, Entry 31). However,
for the scope and limitation studies we opted for the
less costly cucurbit[6]uril and a corresponding nickel
salt. When we started the search of the optimum
reaction conditions for the second synthetic protocol,
the starting point was the conditions that had already
been developed; further we manipulated with additives
(Table S1, Entries 1–8). We also noted that additives as
well as base play a significant role in both synthetic
schemes. It is obvious that according to the expected
mechanism the aryl part of the carboxylic acid should
be allocated onto the Ni-nuclei, this reaction should
proceed via the decarboxylation. Thus, we considered
copper salts as an additive to promote this trans-
formation (Table S1, Entries 2–8). Finally, applying
1.3 equiv. of DABCO, 1.4 equiv. of CuO, and

Table 2. Optimization of the reaction conditions.

entry reaction components frequency/
time

yield
(%) 4a

1 Ni(BF4)2 (0.1 equiv.), DABCO (1.3 equiv.), cucurbit[6]uril (0.05 equiv.), r.t. 30 Hz/
90 min

0

2 Ni(BF4)2 (0.1 equiv.), DABCO (1.3 equiv.), CuI (1.4 equiv.), ZrO2 (1.0 equiv.), cucurbit[6]uril
(0.05 equiv.), r.t.

30 Hz/
90 min

0

3 Ni(BF4)2 (0.1 equiv.), DABCO (1.3 equiv.), CuSO4 (1.4 equiv.), ZrO2 (1.0 equiv.), cucurbit[6]uril
(0.05 equiv.), r.t.

30 Hz/
90 min

27

4 Ni(BF4)2 (0.1 equiv.), DABCO (1.3 equiv.), CuCl2 (1.4 equiv.), ZrO2 (1.0 equiv.), cucurbit[6]uril
(0.05 equiv.), r.t.

30 Hz/
90 min

21

5 Ni(BF4)2 (0.1 equiv.), DABCO (1.3 equiv.), CuBr2 (1.4 equiv.), ZrO2 (1.0 equiv.), cucurbit[6]uril
(0.05 equiv.), r.t.

30 Hz/
90 min

59

6 Ni(BF4)2 (0.1 equiv.), DABCO (1.3equiv.), CuO (1.4equiv.), ZrO2 (1.0equiv.), cucurbit[6]uril
(0.05equiv.), r.t.

30 Hz/
90min

80

7 Ni(BF4)2 (0.1 equiv.), DABCO (1.3 equiv.), CuO (1.4 equiv.), ZrO2 (1.0 equiv.), cucurbit[7]uril
(0.05 equiv.), r.t.

30 Hz/
90 min

81

8 Ni(BF4)2 (0.1 equiv.), DABCO (1.3 equiv.), CuO (1.4 equiv.), cucurbit[6]uril (0.05 equiv.), r.t. 30 Hz/
90 min

0

Reactions in solution
9 Ni(BF4)2 (0.1 equiv.), DABCO (1.3 equiv.), CuO (1.4 equiv.), ZrO2 (1.0 equiv.), cucurbit[6]uril

(0.05 equiv.), CH3CN, reflux.
—/24 h 0

10 Ni(BF4)2 (0.1 equiv.), DABCO (1.3 equiv.), CuO (1.4 equiv.), ZrO2 (1.0 equiv.), cucurbit[6]uril
(0.05 equiv.), 1,4-dioxane, reflux.

—/24 h 0

11 Ni(BF4)2 (0.1 equiv.), DABCO (1.3 equiv.), CuO (1.4 equiv.), ZrO2 (1.0 equiv.), cucurbit[6]uril
(0.05 equiv.), DMF, 110 °C.

—/24 h 21

12 Ni(BF4)2 (0.1 equiv.), DABCO (1.3 equiv.), CuO (1.4 equiv.), ZrO2 (1.0 equiv.), cucurbit[6]uril
(0.05 equiv.), DMA, 100 °C.

—/24 h 33
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Scheme 2. Scope of the isoflavones synthesis.
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1.0 equiv. of ZrO2 which is responsible for the high
yield of the corresponding isoflavone (Table S1,
Entry 8). Overall, as for the arylation of ortho-
hydroxyarylenaminones by carboxylic acids the best
outcome of the model reaction was observed when we
utilised Ni(BF4)2 (0.1 equiv.) as a catalyst and DABCO
(1.3 equiv.) as a base, cucurbit[6]uril (0.05 equiv.) as a
presumptive ligand with CuO (1.4 equiv.) as a reagent
for decarboxylative oxidation and ZrO2 (1.0 equiv.) as
an additive (Table S1, Entry 7). Absence of the
zirconium oxide led to the failure of the title reaction
(Table S1, Entry 8). This reaction requires 1.3 excess
of the corresponding acid. The model isoflavone was
obtained under these reaction conditions in 80% yield.
In both cases with the mentioned reaction composi-
tions the model reactions relinquished to finish in
90 minutes at room temperature. It is noteworthy that
the wet conditions (the reactions were performed in
numerous organic solvents) were not operational in the
case of both synthetic protocols and did not deliver
any product. The reactions in a solution for both
protocols experienced a failure.

To our delight, the diverse set of aryl bromides and
benzyl bromides (Scheme S1) as well as aromatic and
benzyl carboxylic acids (Scheme S3) were reactive
within these synthetic protocols and afforded a library
of twenty-three chromone derivatives. The developed
protocols exhibited functional group compatibility and
a broad substrate scope with respect to both counter-
parts. Such functional groups on the phenyl framework
as Me, CF3, OMe, OPh, OCF3, Br, F and 2-naphtyl as
well as several benzyls including 2-methylen-pyridine
showed tolerance for the title synthetic protocols. Of
note, we also tested the behaviour of the corresponding
iodides (Scheme S4) within the frames of the first
protocol; for aryl iodides the titled protocol was
operational enabling the preparation of the compounds
4b, 4f, 4j, 4o, albeit in lower yields. In the case of the
used benzyl iodides, we observed no significant drop
of the yields (4 t–4v). It is important to highlight the
high efficiency of these synthetic methodologies
enabling the preparation of the final products in 58–
93% yields. These two synthetic protocols not only
showed a tolerance towards a broad range of functional
groups but were also scalable to 10 mmol quantities
and enabled the preparation of three representatives in
gram quantities. Unfortunately, several heterocyclic
reagents we attempted to introduce into this protocol
experienced a failure. In turn, in the case of the
cinnamyl bromides and cinnamic acids, we did not
observe the formation of the desired products.

Density functional theory calculations are per-
formed to gain mechanistic insight into the reaction.
The mechanism starts with the coordination of ortho-
hydroxyarylenaminones with Ni(BF4)2 to generate
vdW1. In the starting Ni(BF4)2, each BF4 has two
fluorine atoms interacting with the metal center (the

geometry around Ni is square planar). When ortho-
hydroxyarylenaminones binds with the metal center, it
causes the interaction of one BF4 unit to break apart
partially. In the resultant complex vdW1, olefin carbon
is coordinating with the metal atom on one side
whereas the other side of the Ni atom, is occupied by
two fluorine atoms of a BF4 ligand. The energy
released in this step is 27.28 kcalmol� 1. Next, cycliza-
tion takes place in vdW1 when oxygen atom attacks
on an olefinic carbon with concomitant loss of BF4
anion ligand from the metal center. The activation
barrier for this cyclization is 40.26 kcalmol� 1. Ni atom
polarizes the C=C bond for nucleophilic attack but the
barrier is still high probably due to two main reasons
(a) a ligand is lost from the metal center (b) the
attacking nucleophile (OH) gets positive charge as a
result of the attack. The O� C bond distance in the
transition state is 1.47 Å. The transition state is late in
nature where the geometry of the transition state is
resembling more to the product than the reactant. Such
a reaction is expected to be endothermic according to
Hammond postulate. Indeed, this is the case, where the
energy of the reaction is 39.44 kcalmol� 1. The Int1
(product of the cyclization step) is then converted to
Int2 when phenyl bromide interacts with the metal
center. This interaction takes places through bromine
atom of phenyl bromide with the Ni atom. The Int2 is
marginally lower in energy than Int1 (by
0.68 kcalmol� 1). A transition state for oxidative
addition of phenyl bromide on nickel atom through
concerted mode is located at a barrier of
7.42 kcalmol� 1 from Int2. The C� Br bond is elongated
to 2.11 Å from 1.95 Å in Int2. The C� Ni and Br� Ni
bond lengths in the TS2 are 2.17 and 2.30 Å. The
oxidative additions step is exothermic by 2 kcalmol� 1.
The next step involves the migration of NMe2 group
from the from the freshly formed ring to the metal
center (Ni) but before entering this step, a slight
reorientation of the ligands around the metal center is
observed to generate Int4 from Int3. In turn, the
structure Int4 is 3.90 kcalmol� 1 higher in energy than
Int3.

The migration of NMe2 group from carbon to metal
center has an activation barrier of 41.93 kcalmol� 1
(From Int4). The C� N and M� N bond distances are
2.55 and 1.85 Å respectively. The barrier is quite high
which is mainly due to the significant breakage of
C� N bond in the transition state. The C� N bond
distance in the transition state is 2.55 Å. Moreover,
with the breakage of the C� N bond, the vicinal C� M
bond is also affected significantly. Both these factors
lead to increase in the kinetic barrier for this migration.
This migration is slightly endothermic by
0.51 kcalmol� 1. In the subsequent step, a hydrogen
atom from the carbon metal center is shifted to the
amine moiety which results in regeneration of the
double bond. A transition state for this proton shift is
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located at a barrier of 7.50 kcalmol� 1 from Int6.
Moreover, the product of the reaction (Int7) lies about
4.43 kcalmol� 1 lower in energy than Int6. The C� H
and N� H distances in TS4 are 1.23 and 1.53 Å,
respectively. These two steps (involving TS3 and TS4)
can theoretically take place in a single step where
NMe2 and H can simultaneously leave the vicinal
carbons (through a four membered transition state) in
the form of NMe2H but all attempts to locate such
transition state experienced a failure. It has been
previously shown that such transition states generally
have very high kinetic demand (>50 kcalmol� 1).
Therefore, it is believed that this two-step process is
kinetically favorable as compared to a single step
elimination of NMe2H.

The last step in this cycle is reductive elimination.
The reductive elimination step requires proper place-
ment of the leaving groups. Int 7 generated from the
last step undergoes a reorientation of ligands to
generate Int8. Formation of Int8 from Int7 is
thermodynamically favorable by 2.46 kcalmol� 1. A
transition state for the reductive elimination is located
at a barrier of 1.10 kcalmol� 1 from Int8. The kinetic
barrier for the reductive elimination is quite low
because the leaving groups are well oriented in close
proximity of each other, and there is little movement
for these groups to eliminate. The concerted transition
state for reductive elimination regenerated Ni2+ from
Ni4+.[18] The C� C bond forming during this step has a
bond length of 2.27 Å in the transition state whereas
the C� Ni bond lengths (being broken) are 1.94 Å each.
The reductive elimination step has high exothermicity;

the energy of reaction for this step is
� 45.18 kcalmol� 1 (Figure 1).

The synthesis of isoflavones via the arylation by
carboxylic acids most probably proceeds the similar
pathway, that is presented in the Scheme 3. The only
difference is that the first step in this cascade involves
copper oxide which promotes the oxidative decarbox-
ylation. Copper is a metal of choice for the many
decarboxylation reactions.[19] Of note, not all known
cases of decarboxylation demand elevated temper-
atures, there are examples decarboxylation reactions
occurring under photoredox as well as mechano-mill-
ing conditions at room temperature.[20]

Conclusion
Finally, in order to exclude the possible participation
of the chromone as an intermediate in both scenarios,
the chromone 8 was reacted with 1-bromo-4-fluoro-
benzene and 4-fluorobenzoic acid under the developed
optimum reaction conditions (Scheme 4a,b). The title
reactions experienced a failure.

In summary, we successfully developed for the first
time the direct mechanochemical Ni-catalysed aryla-
tion of ortho-hydroxyarylenaminones by utilising
bromo compounds and carboxylic acids. These new
strategies allowed for the efficient and concise prepara-
tion of many structurally diverse isoflavones. We
performed an in-depth study of the application range
of the strategies developed and extended the substitu-
tion schemes of chromone derivatives and substituted
aryl moieties. We also compared the advantages of
both approaches in terms of efficiency and scalability.

Figure 1. Energy profile of Ni (II) catalyzed coupling of ortho-hydroxyarylenaminones with aryl-bromide.
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Experimental Section
General: Commercially available starting materials, reagents,
catalysts, anhydrous and degassed solvents were used without
further purification. Flash column chromatography was per-
formed with Merck Silica gel 60 (230–400 mesh). The solvents
for column chromatography were distilled before the use. Thin
layer chromatography was carried out using Merck TLC Silica
gel 60 F254 and visualized by short-wavelength ultraviolet light
or by treatment with potassium permanganate (KMnO4) stain.
1H, 13C and 19F NMR spectra were recorded on a Bruker 250,
400 and 500 MHz at 20 °C. All 1H NMR spectra are reported in
parts per million (ppm) downfield of TMS and were measured
relative to the signals for CHCl3 (7.26 ppm) and DMSO
(2.50 ppm). All 13C{1H} NMR spectra were reported in ppm
relative to residual CHCl3 (77.00 ppm) or DMSO (39.70 ppm)
and were obtained with 1H decoupling. Coupling constants, J,
are reported in Hertz (Hz). Gas chromatographic analyses was
performed on Gas Chromatograph Mass Spectrometer GCMS-
QP2010 Ultra instrument. Mechanochemical synthesis was
performed using the Retsch MM400 mill using the standard kit.
Liquid chemicals were dosed using gas tight micro syringes.
Isolation of obtained compounds was achieved by column
chromatography on Silica gel. All commercially available
compounds were purchased from appropriate vendors.

General procedure for the synthesis of isoflavones 4by the
reaction of ortho-hydroxyarylenaminones 1and bromides 2.
In a dry box, to 5 mL grinding vessel (made of stainless)
equipped with two balls (made of stainless, diameter: 5 mm)
was placed consequently ortho-hydroxyarylenaminone
(1.0 mmol, 1.0 equiv.), Ni(BF4)2 (23 mg, 0.1 mmol, 0.1 equiv.),
DABCO (146 mg, 1.3 mmol, 1.3 equiv.), cucurbit[6]uril
(50 mg, 0.05 mmol, 0.05 equiv.); then an appropriate bromo

substrate (1.3 mmol, 1.3 equiv.) was added and the reaction
vessel was properly capped. Finally, the reaction vessel was
installed on the mill and subjected to milling at 30 Hz for
90 minutes. After completion of the reaction, the content of the
vessel was generously treated with distilled water, filtrated and
finally properly dried in vacuum. The resulted crude was
directly subjected to gradient flash chromatography on silica gel
to isolate the desired chromone derivative.

The gram scale synthesis was performed on 10 mmol of the
starting ortho-hydroxyarylenaminone in 25 mL grinding vessel
using two 10 mm balls.

The arylation by corresponding iodo-compounds was achieved
following the same procedure.

General procedure for the synthesis of isoflavones 4by the
reaction of ortho-hydroxyarylenaminones 1and carboxylic
acids 3. In a dry box, to 5 mL grinding vessel (made of
stainless) equipped with two balls (made of stainless, diameter:
5 mm) was placed consequently ortho-hydroxyarylenaminone
(1.0 mmol, 1.0 equiv.), Ni(BF4)2 (23 mg, 0.1 mmol, 0.1 equiv.),
CuO (111 mg, 1.4 mmol, 1.4 equiv.), ZrO2 (122 mg, 1.0 mmol,
1.0 equiv.), DABCO (146 mg, 1.3 mmol, 1.3 equiv.),
cucurbit[6]uril (50 mg, 0.05 mmol, 0.05 equiv.); then an
appropriate carboxylic acid (1.3 mmol, 1.3 equiv.) was added
and the reaction vessel was properly capped. Finally, the
reaction vessel was installed on the mill and subjected to
milling at 30 Hz for 90 minutes. After completion of the
reaction, the content of the vessel was generously treated with
distilled water, filtrated and finally properly dried in vacuum.
The resulted crude was directly subjected to gradient flash
chromatography on silica gel to isolate the desired chromone
derivative.

The gram scale synthesis was performed on 10 mmol of the
starting ortho-hydroxyarylenaminone in 25 mL grinding vessel
using two 10 mm balls.
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Scheme 3. Proposed reaction mechanism for carboxylic acids.

Scheme 4. Control experiments.
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