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Several biobanks, including UK Biobank (UKBB), are gen-
erating large-scale sequencing data. An existing method, 
SAIGE-GENE, performs well when testing variants with minor 
allele frequency (MAF) ≤ 1%, but inflation is observed in vari-
ance component set-based tests when restricting to variants 
with MAF ≤ 0.1% or 0.01%. Here, we propose SAIGE-GENE+ 
with greatly improved type I error control and computational 
efficiency to facilitate rare variant tests in large-scale data. 
We further show that incorporating multiple MAF cutoffs and 
functional annotations can improve power and thus uncover 
new gene–phenotype associations. In the analysis of UKBB 
whole exome sequencing data for 30 quantitative and 141 
binary traits, SAIGE-GENE+ identified 551 gene–phenotype 
associations.

UKBB recently released whole exome sequencing (WES) data1, 
allowing study of rare variant associations for complex pheno-
types. However, best practices remain unclear for rare variant 
tests in large-scale biobanks. A common practice is to test all rare 
(MAF ≤ 1%) loss-of-function (LoF) and missense variants, but 
this approach can lose power if associations are enriched in very 
rare variants or certain functional annotations. To improve power, 
researchers can restrict tests to rarer variants, such as variants with 
MAF ≤ 0.1% or MAF ≤ 0.01%. Another approach is to incorporate 
functional annotations. To incorporate multiple MAF cutoffs and 
functional annotations, multiple tests are needed for each gene or 
region, and results need to be combined using minimum P value or 
Cauchy combination method2,3.

Currently, SAIGE-GENE4 is the only method developed to 
conduct variance component set-based tests, such as SKAT5 and 
SKAT-O6, for unbalanced case–control phenotypes in biobank-scale 
data. For example, in our evaluation, the most recent set-based 
test, STAAR2, cannot control for type I error rates in the presence 
of case–control imbalance (Extended Data Fig. 1). Burden tests 
(such as implemented in REGENIE2 (ref. 7)) collapse multiple rare 
variants into a single variant, allowing the use of well-developed 
single-variant tests. However, Burden tests can have low power 
compared with SKAT and SKAT-O6. This was confirmed in our 
simulation studies (Extended Data Fig. 2). In analyses of UKBB 
WES data from 160,000 white British individuals (from the release 

with 200,000 individuals), we found that SAIGE-GENE performed 
well when testing variants with MAF ≤ 1% (Fig. 1a), but inflation 
was observed in SKAT and SKAT-O in SAIGE-GENE when restrict-
ing to variants with MAF ≤ 0.1% or 0.01% if the case–control ratios 
were more unbalanced than 1:30 (Fig. 1a and Extended Data Fig. 3). 
Our type I error simulation studies (Supplementary Note; Methods) 
also showed the same inflation (Extended Data Fig. 4), suggesting 
that SKAT and SKAT-O in SAIGE-GENE can suffer from inflated 
type I error rates when restricted to variants with very low MAF.

In addition, computation cost is not low enough to test for mul-
tiple variant sets. For example, to test the largest gene (TTN) with 
16,227 variants in the UKBB WES data with three maximum MAF 
cutoffs (1%, 0.1% and 0.01%) and three annotations (LoF only, 
LoF+missense and LoF+missense+synonymous), SAIGE-GENE 
required 164 CPU hours and 65 gigabytes (GB) of memory 
(Supplementary Table 1).

To address these issues, we propose SAIGE-GENE+. Although 
SAIGE-GENE uses various approaches to account for case–con-
trol imbalance, it cannot fully address the imbalance and sparsity 
in the data (Fig. 1a and Extended Data Fig. 4a). To reduce the data 
sparsity due to ultra-rare variants, before testing each variant set, 
SAIGE-GENE+ collapses variants with MAC ≤ 10 and then tests 
the collapsed variant together with all other variants with MAC > 10 
(Extended Data Fig. 5; Methods). Collapsing has been commonly 
used for ultra-rare variants8,9 by assuming those variants have the 
same direction of effects on phenotypes. We observed that the infla-
tion is substantially reduced and all tests have well controlled type I 
errors in both simulated (Extended Data Fig. 4b) and UKBB WES 
analyses (Fig. 1b) for four exemplary phenotypes with case-control 
ratios from 1:32 to 1:267. The genomic control inflation factors also 
became closer to 1 (Extended Data Fig. 3).

Collapsing ultra-rare variants in SAIGE-GENE+ decreases the 
number of variants (Extended Data Fig. 6), leading to reduced 
computation time and memory usage (Fig. 2a, Supplementary  
Table 1 and Extended Data Fig. 7). To further reduce the compu-
tational cost, SAIGE-GENE+ extensively uses C++ with sparse 
matrix libraries, reads genotypes for all genetic markers in a set  
only once, and conducts multiple association tests corresponding 
to different MAF cutoffs and annotations (Supplementary Note).  
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The computation time of SAIGE-GENE+ for performing all 
Burden, SKAT and SKAT-O tests was 1,407 times lower (9,851 min 
versus 7 min) and the memory usage dropped from 65 GB to 2.1 GB 
compared with SAIGE-GENE for testing association of the larg-
est gene TTN (16,227 LoF+missense+synonymous variants) with 
basal metabolic rate (Supplementary Table 1). To perform SKAT-O 
tests for 18,372 genes in randomly selected 150,000 samples with 
three MAF cutoffs (1%, 0.1% and 0.01%) and three variant annota-
tions (LoF only, LoF+missense and LoF+missense+synonymous), 
SAIGE-GENE+ required 78.6 CPU hours (18.8 CPU hours for fit-
ting the null mixed model using a full genetic relationship matrix 

(GRM) as Step 1 and 59.8 CPU hours for association tests as Step 
2) and 4.8 GB memory (4.8 GB for Step 1 and 2 GB for Step 2) 
(Supplementary Tables 2 and 3 and Extended Data Fig. 8). In addi-
tion, when a sparse GRM instead of a full GRM was used in Step 
1, the time and memory usage dropped dramatically (<1 min and 
0.61 GB) (Supplementary Table 2, Supplementary Note, Extended 
Data Fig. 9 and Supplementary Figs. 1 and 2) and treating covari-
ates as offset leads to a further decrease in the computation time 
(Supplementary Table 4). We also compared the computation cost 
of SAIGE-GENE+ and REGENIE2 (Supplementary Tables 2 and 3, 
Supplementary Note and Extended Data Fig. 8).
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Fig. 1 | Q–Q plots for Burden, SKAt and SKAt-O for four exemplary binary phenotypes in uKBB WES data using SAIGE-GENE and SAIGE-GENE+.  
a, SAIGE-GENE. b, SAIGE-GENE+. Burden, SKAT and SKAT-O tests were performed for 18,372 genes with missense and LoF variants with three different 
maximum MAF cutoffs (1%, 0.1% and 0.01%). Names of genes reaching the exome-wide significance threshold (two-sided P < 2.5 × 10−6) in SAIGE-GENE+ 
are annotated in the plots.
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By collapsing ultra-rare variants, SAIGE-GENE+ can have more 
significant P values than SAIGE-GENE. We applied both methods to 37  
self-reported binary phenotypes in the UKBB WES data. We observed 
27 significant gene–phenotype associations in which SKAT-O P val-
ues in SAIGE-GENE+ were more significant than SKAT-O P values 
in SAIGE-GENE (Supplementary Table 5). For example, BRCA2 
for breast cancer with MAF ≤ 0.1% had a P value of 7.62 × 10−8 in 
SAIGE-GENE+ and 1.65 × 10−3 in SAIGE-GENE, and GCK for diabe-
tes with MAF ≤ 0.1% also had a more significant P value (1.22 × 10−13) 
in SAIGE-GENE+ than in SAIGE-GENE (P = 4.06 × 10−6). More 
detailed discussion is provided in the Supplementary Note.

We evaluated the power of SAIGE-GENE+ and SAIGE-GENE 
through simulation studies based on real genotypes of ten genes in  
the UKBB WES data (Supplementary Table 6, Supplementary Note 
and Methods). In all scenarios, SAIGE-GENE+ had higher or simi-
lar empirical power than SAIGE-GENE (Supplementary Table 7 and 
Supplementary Fig. 3) with increased median Chi-square statistics 
(Supplementary Table 8). In line with previous studies6, our results 
showed that SKAT-O tests can have higher power than Burden tests 

(Extended Data Fig. 2 and Supplementary Table 8). As expected, 
Burden test P values were highly concordant in SAIGE-GENE+ 
and REGENIE2 (Pearson’s correlation R2 = 0.99 for –log10(P value)) 
(Supplementary Fig. 4). In addition, the simulation results sug-
gested that incorporating multiple functional annotations (LoF, 
LoF+missense and LoF+missense+synonymous) and maximum 
MAF cutoffs (0.01%, 0.1% and 1%) can increase power compared 
with using only a single MAF cutoff (1%) on one set of function 
annotation (LoF+missense+synonymous) (Supplementary Fig. 5 
and Supplementary Table 8).

We applied SAIGE-GENE+ to 18,372 genes in the UKBB WES 
data with 160,000 individuals of white British ancestry for 30  
quantitative and 141 binary traits (Methods). We identified 465  
gene–phenotype associations for 27 quantitative traits and 86 for  
51 binary traits that were exome-wide significant with P values ≤ 
2.5 × 10−6 (Supplementary Tables 9 and 10), containing both known 
and potentially new associations (Supplementary Note). We cre-
ated PheWeb-like server for visualizing these results (see Data 
availability)10.
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Fig. 2 | Performance of SAIGE-GENE+ in uKBB WES data. a, Computation time and memory of the gene-based tests (Step 2; Methods) in SAIGE-GENE 
and SAIGE-GENE+ for four genes with different numbers of variants. The SKAT-O tests were conducted with three maximum MAF cutoffs (1%, 0.1% 
and 0.01%) and three variant annotations (LoF only, LoF+missense and LoF+missense+synonymous) and combined using the Cauchy combination or 
minimum P value approach. Plots are in the log10 –log10 scale. Details of the numbers and genes are presented in Supplementary Table 1. b, Most significant 
variant sets across the three different MAF cutoffs (1%, 0.1% and 0.01%) and three functional annotations (LoF (L) only, LoF+missense (M+L) and 
LoF+missense+synonymous (S+M+L)). Distribution of variant sets with the smallest P values among 551 significant gene–phenotype associations 
identified by SAIGE-GENE+ in the analyses of 30 quantitative traits and 141 binary traits in the UKBB WES data.

NAturE GENEtIcS | VOL 54 | OCTOBER 2022 | 1466–1469 | www.nature.com/naturegenetics1468

http://www.nature.com/naturegenetics


Brief CommuniCationNature GeNetics

The UKBB WES data analysis showed that using lower MAF 
cutoffs can identify new associations in which the associations 
are highly enriched in rarer variants. For example, the asso-
ciation between PDCD1LG2, which encodes Programmed Cell 
Death 1 Ligand, and chronic lymphocytic leukemia became sig-
nificant in tests restricted to variants with MAF ≤ 0.01% and 
0.1% (P = 7.5 × 10−7) compared with tests with all variants with 
MAF ≤ 1% (P = 5.4 × 10−4) (Supplementary Table 11). The underly-
ing reason could be that associations are enriched in the rarer vari-
ants, for example, the most significant variant has a MAF 3.4 × 10−4 
(rs7854303) (see the PheWeb-like visual browser). Using a MAF 
cutoff ≤ 1% includes many noncausal variants, and thus decreases 
power. Moreover, including lower MAF cutoffs helped to repli-
cate known associations such as MLH1 for colorectal cancer and 
CDKN2A for melanoma (Supplementary Table 11). Due to mul-
tiple comparison burden, including lower MAF cutoffs can make 
marginally significant associations insignificant. For 141 binary 
phenotypes, 17 out of 92 (18.4%) associations were further iden-
tified with lower MAF cutoffs, while 9 (9.8%) became insignifi-
cant (Supplementary Fig. 6a and Supplementary Table 11). For 30 
quantitative traits, 28 out of 465 (6%) associations were additionally 
identified, while 53 (11.4%) became insignificant (Supplementary 
Fig. 6a and Supplementary Table 12), suggesting that restricting 
association tests to rarer variants has a gain for binary phenotypes. 
In functional annotation categories, 184 associations were identi-
fied by testing LoF only; including LoF+missense sets identified 299 
additional associations and including LoF+missense+synonymous 
sets identified 91 more associations (Supplementary Fig. 6b). These 
results are consistent with our simulation studies showing that 
empirical power increased when incorporating multiple functional 
annotations (Supplementary Fig. 5). We also investigated which 
variant set among the 551 significant gene–phenotype associations 
had the smallest P value (Fig. 2b). Interestingly, in variants sets with 
MAF ≤ 0.01%, those with LoF only generally had the smallest P val-
ues, while with MAF ≤ 1%, LoF+missense+synonymous sets tend 
to have the smallest P values.

In summary, our results demonstrate that incorporating multiple 
MAF cutoffs and functional annotations in exome-wide set-based 
association tests can help identify new gene–phenotype associa-
tions, and that SAIGE-GENE+ can facilitate this.
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Methods
Collapsing ultra-rare variants. Ultra-rare variants with MAC ≤ 10 are collapsed 
to a single marker, as illustrated in Extended Data Fig. 5. Like SAIGE-GENE, 
SAIGE-GENE+ allows incorporating weights for dosages or hardcalled genotypes 
of each marker. By default, to upweight rare variants, SAIGE-GENE+ calculates 
the weight for each variant using its MAF from a beta distribution beta(MAF,1,25). 
SAIGE-GENE+ also allows users to specify per marker weights. The weighting 
scheme when collapsing ultra-rare variants is slightly different between these two. If  
the default MAF-based beta-weight is used, SAIGE-GENE+ first obtains the collapsed  
variant and assigns the weight based on collapsed variant frequency (Extended Data  
Fig. 5a). In particular, the dosage or genotype for each sample of the collapsed variant  
is assigned as the maximum raw dosage or genotype value among all ultra-rare 
variants carried by the sample. Then the weights of the collapsed variant and other 
less rare variants (MAC > 10) are calculated based on their MAF. Alternatively, if the  
per marker weights are provided by users (Extended Data Fig. 5b), the dosages or 
genotypes of the ultra-rare variants are first multiplied by the provided weights and  
then collapsed to a new variant whose dosage or genotype for each sample is assigned  
as the maximum values among the weighted dosages or genotypes of all ultra-rare 
variants carried by the sample. SAIGE-GENE+ also allows not incorporating any 
weights to set-based tests and collapses ultra-rare variants following the second 
scheme described above, as this is a special case that has equal weights for all variants.

Aggregating multiple tests. For each gene or region, P values of multiple 
testing set corresponding to different maximum MAF cutoffs and functional 
annotations were aggregated using the Cauchy combination2,3. Note that the 
Cauchy combination does not work when a P value of any individual test is unity. 
Therefore, we used the minimum P value with Bonferroni correction to combine 
multiple tests when any individual test had P = 1.

Type I error evaluation. To evaluate the type I error control of SAIGE-GENE and 
SAIGE-GENE+, we simulated binary phenotypes under the null hypothesis of no 
genetic effects based on the observed genotypes of 166,955 individuals of white 
British ancestry with WES data in UKBB (Supplementary Note). We conducted 
gene-based tests for 7,932 genes on the even chromosomes with missense and LoF 
variants using three different maximum MAF cutoffs (1%, 0.1% and 0.01%). In 
total, 158,640 gene-based tests were conducted for each maximum MAF cutoff 
for SAIGE-GENE and SAIGE-GENE+, respectively, and the quantile–quantile 
(Q–Q) plots are shown in Extended Data Fig. 4. Our simulation results suggest that 
SAIGE-GENE+ has well controlled type I errors with case–control ratios of less than 
1:100 when testing variants with maximum MAF 0.01% (Extended Data Fig. 4b).

We evaluated the type I error control of SAIGE-GENE, SAIGE-GENE+ and 
STAAR using the UKBB data (Fig. 1 and Supplementary Fig. 1). We applied 
these methods to four exemplary self-reported binary phenotypes with various 
case–control ratios in 166,955 individuals of white British ancestry with WES 
data to 18,372 genes, including all LoF and missense variants using three different 
maximum MAF cutoffs (1%, 0.1% and 0.01%). For STAAR, we used the relative 
coefficient cutoff of 0.05 for the sparse GRM to fit the null models.

Power evaluation. To evaluate the power of SAIGE-GENE+ and SAIGE-GENE, we  
simulated binary phenotypes based on genotypes of ten genes in 166,955 individuals  
of white British ancestry with WES data in UKBB (Supplementary Table 6). The 
selected genes showed significant gene–phenotype associations (Supplementary 
Table 5) and had a wide range of the number of rare variants from 2,901 (APOB) 
to 107 (GPSM3). The phenotype prevalence was set to be 10%, under which both 
SAIGE-GENE and SAIGE-GENE+ have well controlled type I error rates for Burden,  
SKAT and SKAT-O tests (Extended Data Fig. 3). Three scenarios with different 
settings of proportions of causal variants and magnitudes of effect sizes for causal 
variants were used: (1) low proportion of causal variants and small effect sizes, (2) 
low proportion of causal variants and large effect sizes, and (3) high proportion of 
causal variants and large effect sizes (Supplementary Table 7). More details about 
the simulation settings are described in the Supplementary Note. Our simulation 
results suggest that SAIGE-GENE+ has higher or similar empirical power than 
SAIGE-GENE (Supplementary Fig. 3 and Supplementary Table 8).

UK Biobank WES data analysis. We applied SAIGE-GENE+ to analyze 18,372 
genes in the UKBB WES data from 166,955 white British individuals for 30 
quantitative traits and 141 binary traits. UKBB protocols were approved by the 
National Research Ethics Service Committee, and participants signed written 
informed consent. Three different maximum MAF cutoffs (1%, 0.1% and 
0.01%) and three different variant annotations (LoF only, LoF+missense and 
LoF+missense+synonymous) were applied, followed by aggregating multiple 
SKAT-O tests using the Cauchy combination2,3 or minimum P value for each 
gene. Variants were annotated using ANNOVAR11. The LoF variants include those 
annotated as frameshift deletion, frameshift insertion, nonframeshift deletion, 
nonframeshift insertion, splicing, stop gain and stop loss. Sex, age when attended 
assessment center and first four principal components estimated using all White 
British individuals were adjusted as covariates in all tests. A total of 250,656 
markers with MAF ≥ 1%, which were pruned from the directly genotyped markers 
using the following parameters, were used to construct the GRM: window size of 

500 base pairs (bp), step-size of 50 bp, and pairwise r2 < 0.2. We used the relative 
coefficient cutoff of 0.05 for the sparse GRM for the variance ratio estimation after 
fitting the null models. The model was fitted with leave-one-chromosome-out 
(LOCO) to avoid proximal contamination.

Computation cost evaluation. Benchmarking was performed on randomly 
subsampled UKBB WES data (up to 150,000 individuals with white British 
ancestry) for glaucoma (1,741 cases and 162,408 controls). We reported the 
medians of five runs for run times and memory usage with samples randomly 
selected from the full sample set using five different sampling seeds. SAIGE-GENE 
and SAIGE-GENE+ use a two-step approach. Step 1 estimates the model 
parameters (that is, variance component and fixed effect coefficients) in the null 
model, and Step 2 conducts set-based association tests. SAIGE-GENE+ runs Step 
1 with all covariates as offset, which leads to a decrease in the computation time 
(Supplementary Table 4). The computation cost of Step 1 in SAIGE-GENE+ is 
shown in Extended Data Fig. 8a and Supplementary Table 2. SAIGE-GENE+ 
has an option to use a sparse GRM to fit the null model in Step 1, which further 
reduces computation cost in Step 1 (Supplementary Note). Note that model 
parameters need to be estimated only once for each phenotype in Step 1 and can 
be used genome-wide regardless of MAF cutoffs and functional annotations in 
Step 2. We then compared computation time and memory usage of Step 2 (Fig. 2a, 
Supplementary Table 1 and Extended Data Fig. 7).

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The PheWeb (v.0.9.15)-like visual server10 and association summary statistics for 
30 quantitative and 141 binary phenotypes of UKBB WES data analysis results are 
available at https://ukb-200kexome.leelabsg.org.

code availability
SAIGE-GENE+ is implemented as an open-source R package available at https: 
//github.com/saigegit/SAIGE. SAIGE-GENE+ used in this study is deposited at 
https://zenodo.org/badge/latestdoi/470322837.
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Extended Data Fig. 1 | Quantile-quantile plots for StAAr-O tests P values for four exemplary binary phenotypes with different case–control ratios 
in the uKBB WES data. The STAAR-O tests were performed for 18,372 genes with missense and loss-of-function (LoF) variants with three different 
maximum MAF cutoffs (1%, 0.1%, and 0.01%).
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Extended Data Fig. 2 | Scatter plots for association P values of SKAt-O and Burden tests in the simulation studies. Each plot is based on test results for 
1,000 test sets (100 data sets, each of which includes 10 genes; see Supplementary Table 6). The x-axis represents -log10 Burden test P values, and y-axis 
represents -log10 SKAT-O P values. The line in each plot represents the 45-degree line, so dots above the line have more significant P values from SKAT-O 
than the Burden test. The details of different simulation settings are presented in Supplementary Table 7. Tests conducted in the analysis were two-sided.
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Extended Data Fig. 3 | Genomic control inflation lambda values for 24 binary phenotypes in uKBB for SAIGE-GENE and SAIGE-GENE+. Genomic control 
inflation lambda values based on the 1st percentile against the disease prevalence for 24 binary phenotypes in UKBB for SAIGE-GENE and SAIGE-GENE+ 
using three different maximum MAF cutoffs.
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Extended Data Fig. 4 | Quantile-quantile plots for Burden, SKAt, and SKAt-O tests P values for simulated phenotypes with prevalence 10%, 1%, and 
0.3% based on the uKBB WES data under the null hypothesis. a, Using SAIGE-GENE. b, Using SAIGE-GENE+, which collapses ultra-rare variants with 
MAC ≤ 10 prior to the gene-based association tests. The tests were performed for 18,372 genes with missense and loss-of-function variants with three 
different maximum MAF cutoffs (1%, 0.1%, and 0.01%). Tests conducted in the analysis were two-sided.
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Extended Data Fig. 5 | collapsing ultra-rare variants with MAc ≤ 10. Demonstration on collapsing ultra-rare variants.
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Extended Data Fig. 6 | Histogram of number of genetic variants (missense and LoF) tested in each gene with maximum MAF 1% before and after 
collapsing the ultra-rare variants with MAc ≤ 10. a, All genes. b, Genes with number of markers ≤ 500 before collapsing.
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Extended Data Fig. 7 | computational cost of Step 2 in SAIGE-GENE+ with and without collapsing ultra-rare variants by sample sizes for gene-based 
tests for 18,372 genes with three maximum MAF cutoffs (1%, 0.1%, and 0.01%) and three variant annotations (LoF only, LoF + missense, and LoF + 
missense + synonymous). In total, around 165,348 tests were run for each data set. Benchmarking was performed on randomly sub-sampled UK Biobank 
WES data with White British participants for glaucoma (1,741 cases and 162,408 controls). The reported run times and memory are medians of five runs 
with samples randomly selected from the full sample set using different sampling seeds. a, Plots of the time usage as a function of sample size (N). b,  
Plots of the maximum memory usage (for genes containing most variants) as a function of sample size (N). The x-axis is plotted on the log2 scale. c,  
Scatter plots of the memory usage when N = 150,000 simulated with a random seed. We split the 165,348 tests into 133 chunks, each with ~150 genes.  
For each gene, nine SKAT-O tests were conducted corresponding to three different MAF cutoffs and functional annotations followed by combining the P  
values using the Cauchy combination or minimum P-value approach. Tests conducted in the analysis were two-sided. Each dot in the plot is the maximum 
memory usage of a chunk among five runs with different random seeds.
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Extended Data Fig. 8 | computation cost in SAIGE-GENE+ and rEGENIE2 by sample sizes for gene-based tests for 18,372 genes with three maximum 
MAF cutoffs (1%, 0.1%, and 0.01%) and three variant annotations (LoF only, LoF + missense, and LoF + missense + synonymous). In total, 165,348 
tests were run for each data set. Benchmarking was performed on randomly sub-sampled UK Biobank WES data with White British participants for 
glaucoma (1,741 cases and 162,408 controls). The reported run times and memory are medians of five runs with samples randomly selected from the full 
sample set using different sampling seeds. a, Pplots of the time usage and median memory usage in Step 1 as a function of sample size (N). b, Plots of the 
time usage and median memory usage in Step 2 as a function of sample size (N). Note that singletons only were also included as a mask in the Burden 
tests in both methods for a fair comparison. SAIGE-GENE+ further automatically output the P values by the Cauchy combination or minimum P-value 
approach. Tests conducted in the analysis were two-sided.
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Extended Data Fig. 9 | Histograms of kinship coefficients (≥ 0.05) in uKBB. a, All 408,910 samples. b, 200,643 samples with whole exome sequencing 
data available.
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