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Summary

• Binary ICA is much less developed than continuous ICA, despite abundant
binary data.

• Linear mixing model + continuous latent variables + binary observed
variables.

• Employ non-stationarity of the sources (binarization would destroy non-
Gaussianity).

• We develop a closed form likelihood via the Gaussian CDF and an ap-
proximate MLE.

• Identifiable only for certain numbers of observed variables, latent sources
and segments.

Background

• ICA decomposes multivariate data into underlying factors.

• Non-stationarity is a well-known “path for ICA”.

• Data is divided into segments, which express the non-stationarity.

• Examples of additionally observed variable: non-stationary time series,
experimental condition, class label.

• Identifiability of ICA from binary data has not been theoretically proven.

• Potential applications in paleontological data, medical diagnosis, primary
user separation in cognitive radio networks.

Binary ICA Model
The sources are non-stationary, in each segment u:

zu ∼ N (µu
z ,Σu

z ),

• Σu
z is diagonal

• Thus, the sources are independent given observed segment index u.

Linear mixing model:
yu = Azu,

• yu are continuous mixtures that would be observed in continuous ICA

• A is the mixing matrix.

Binary observations xu through linking function:

P (xu
i = 1) = Φ(

√
π

8 yu
i

∣∣0, 1)

• Φ is the Gaussian CDF

• matches closely the sigmoid, allows the evaluation of Gaussian integrals.

Closed-Form Likelihood
Probability of observing an assignment of ones:

P (xu = 1) =
∫

Φ(
√

π

8 yu|0, I)N (yu|Aµu
z , AΣu

z A⊺)dyu = P ( n︸︷︷︸
∼N (0,I)

<

√
π

8 yu)

= P
(

n −
√

π

8 yu︸ ︷︷ ︸
qu

< 0
)

= Φ(0| −
√

π

8 Aµu
z︸ ︷︷ ︸

µu
q

, I + π

8 AΣu
z A⊺︸ ︷︷ ︸

Σu
q

),

can be computed via the multivariate Gaussian CDF!

Likelihood:
l =

∑
u

∑
xu

c(xu) log Φ(l(xu), u(xu)|µu
q,Σu

q),

where the multivariate Gaussian PDF integrated from/to:

l(xu)i =
{

−∞ if xu
i = 1

0 otherwise
u(xu)i =

{
0 if xu

i = 1
∞ otherwise

• c(xu) is the number of assignments xu in segment u

• In 2D: assignment probability is the mass of a Gaussian in a quadrant.

On Identifiability
Column scale and order Indeterminacy. Scale and order indeterminacies in
the columns of the mixing matrix and sources, as in Linear ICA.

Binarization Indeterminacy. The probability
of an assignment stays the same even if qu is
multiplied by a diagonal positive matrix Qu:

P (qu < 0) = P (Ququ < 0) .

• Figure: identical probabilities in each
quadrant, but different Gaussians

• Scale information is lost in binarization.
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Row Order Indeterminacy in 2D.

• Row order of 2-by-2 mixing matrix can be reversed without affecting the
observed binary distributions.

• Thus, LiNGAM or ANM style causal orientation between two variables is
not possible here.

Correlation identifiability. Correlation matrix of qu is identifiable from binary
data. (But covariance matrix (of qu) directly is not.)

Estimation Methods
Full MLE. Optimize the likelihood given with L-BFGS. Likelihood is computa-
tionally expensive to evaluate in large dimensions.

BLICA.

1. Estimate correlations of qu via pairwise MLE.
2. Regularize correlation matrices.
3. Match correlation matrices to model parameters (continuous Gaussian

MLE with L-BFGS, also Qus as parameters – binarization indeterminacy).

Linear iVAE. Apply linear iVAE, optimization with L-BFGS.

Experiments
MCS. Mean cosine similarity (MCS) of the columns of A. Does not penalize
column scale and order.

Identifiability. Empirical identifiability when number of observed variables and
segments is large enough.
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