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Supervised methods for biomarker detection from microarray 

experiments  

Abstract 

Biomarkers are valuable indicators of the state of a biological system. Microarray technology has 

been extensively used to identify biomarkers and build computational predictive models for 

disease prognosis, drug sensitivity and toxicity evaluations. Activation biomarkers can be used to 

understand the underlying signalling cascades, mechanisms of action and biological crosstalk. 

Biomarker detection from microarray data requires several considerations both from the biological 

and computational points of view. In this chapter, we describe the main methodology used in 

biomarkers discovery and predictive modelling and we address some of the related challenges. 

Moreover, we discuss biomarker validation and give some insights into multi-omics strategies for 

biomarker detection. 

 

Keywords (5-10): microarray; biomarker; classifier; feature selection; validation metrics; data 

unbalancing; model selection; hyper-parameters estimation; biological validation; multi-omics 

Introduction 

The biological state of a system can be defined in terms of activated, deactivated or altered 

indicators. These known (bio)markers can be measured from the molecular, biochemical, cellular, 

physiological, pathological or behavioral state in the biological system due to a changed condition, 

such as drug/chemical exposure or disease stage (1–3). Considering the high heterogeneity 

between individuals, different disease stages, and the complexity of biological systems, usually a 
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single marker does not provide enough value or power for comprehensive conclusions and 

predictions. To determine a descriptive panel of meaningful biomarkers, advanced, high-

throughput methods are required. With microarrays, a substantial panel of possible molecular 

biomarkers - genes with expressional alterations can be determined simultaneously. Microarrays 

provide an in-depth method for the identification of specific gene signatures and patterns with high 

predictive value. The obtained information can also be used to build a detailed and inclusive 

understanding of the underlying biological state as well as to classify and predict the disease onset 

or chemical hazard. In disease diagnostics, some biomarkers are easily measured with modern 

laboratory techniques. For example, specific antibodies suggest a specific treatment against a 

pathogen while different lung function tests such as spirometry, fractional exhaled nitric oxide or 

peak flow are indicative markers of asthma development. With no predictive power, these markers 

are used to determine treatments for already existing diseases. Instead, microarrays and high 

throughput techniques have enabled a shift from the traditional medical and therapeutic approaches 

towards predictive and precision techniques, utilising sophisticated computational methodologies 

and algorithms. Simultaneously, the large amount of data facilitates the use of biomarkers in data 

modelling, allowing a more detailed understanding of the chemical and drug sensitivity and 

toxicity, such as dose- and time-dependency for the risk and hazard assessment.  

In biomarker analysis from microarray data, two main computer-aided tasks can be performed 

namely biomarker discovery and development of predictive modelling (4–7). The former refers to 

the identification of the smallest, most accurate and reliable set of predictive biomarkers for a 

particular endpoint. The latter refers to the development of a computational model that, using the 

subset of identified biomarkers, can learn a function that connects their expression values to a 

phenotypic outcome.  However, microarray data pose some computational challenges that need to 
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be addressed for biomarker discovery and predictive modelling development to succeed (7–11). 

Since the number of biological samples is usually limited compared to the number of measured 

bio-molecules, such as genes, microarray experimental data can contain noisy information. 

However, exploring all the possible subsets of tens of thousands of biomolecules in the microarray 

experiment is computationally infeasible. This problem is tackled by feature selection methods 

that reduce the risk of overfitting and the computational burden. These methodologies include 

simple univariate and multivariate statistical analysis or more complex machine learning-based 

algorithms (12).   

Predictive models can be categorized as classification or regression methods depending on whether 

the predicted variable is categorical or continuous (12, 13). Simpler models, that directly use the 

values of few biomarkers to perform a prediction, are easy to interpret and help enlarge the 

understanding of the biological process under study.  However, they do not always ensure the 

highest predictive capability unlike more complex models that use many biomarkers or non-linear 

combinations of them. These models can lead to better predictive performances, however, deriving 

a biological interpretation is more difficult. To reach the highest levels of predictive power, these 

algorithms may require extensive tuning of their input parameters. Moreover, since the 

experimental data are highly heterogeneous, it is important to evaluate these models on external 

independent datasets that are often unavailable.  

 

In this chapter, we will describe the most common feature selection and predictive methods for 

biomarker discovery. Moreover, we will discuss the challenges related to the use of machine 

learning methods such as model selection, parameter tuning, and reproducibility. We will shortly 

introduce the issue related to data unbalancing and we will discuss the biological validation of the 



4 

results. Culminating in a short overview of the multi-omics methodologies available for biomarker 

detection. 

Feature selection based approaches for biomarker discovery  

Biomarker discovery methods from microarray data aim to identify the smallest, most accurate 

and reliable set of predictive biomolecules. This task is usually performed by applying feature 

selection algorithms to microarray data. Feature selection is the process by which a subset of 

relevant biomarkers is selected to construct accurate predictive models. In the context of 

supervised learning, feature selection techniques can be divided into three main categories: filter, 

wrapper and embedded (Figure 1) (14).  

 

[Figure 1 near here] 

 

Filter methods evaluate the relevance of the features by only looking at the intrinsic properties of 

the data, independently from the selected classifier. These methods compute feature relevance 

scores and only top-ranked features are presented to the classifier. Because of the high 

dimensionality of omics datasets, fast, univariate filters have been widely applied. For gene 

expression data, the simplest heuristic is to rank the genes according to their deregulation between 

the treated and the control samples. The main assumption is that genes with the strongest 

expression change at the top of the ranks represent the key drivers of the disease stage or response, 

and thus, are chosen as candidate biomarkers for further validation.  

Multiple parametric and non parametric methodologies are widely applied such as the two sample 

t-test and ANOVA or the Wilcoxon rank-sum test and the information gain (15). However, these 

univariate methodologies do not take into account the feature dependencies and may lead to less 
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accurate classification. To this end, multivariate filter methodologies have been suggested ranging 

from simple bivariate interactions towards advanced solutions exploring higher-order interactions. 

The correlation-based feature selection (16), the ReliefF (17), and the Minimum Redundancy-

Maximum Relevance (MRMR) (18) are examples of solid multivariate filter procedures, 

highlighting the advantage of using multivariate methods over univariate procedures in the gene 

expression domain. 

Wrapper methods mix the feature selection step together with the model parameter search. In this 

scenario, subsets of features are evaluated by training and testing a specific classification 

algorithm. The wrapping methods can be categorized into deterministic, which try to explore all 

the possible subsets of features, and randomized. The forward- and backward- sequential selection 

and SVM-RFE are examples of deterministic wrapper methods (19–21). These algorithms did not 

receive a lot of attention in the omics data analysis literature since exploring all the feature 

subspace is a limitation when tens of thousands of features are considered. On the other hand, 

randomized approaches such as particle swarm optimization and genetic algorithms have been 

applied in the omics data analysis (22, 23). For example, the GARBO method, based on a genetic 

algorithm for biomarker discovery and feature set optimization, has recently been proposed. 

GARBO identifies the smallest and most robust set of biomarkers with the best predictive 

performances from a single-omics data layer (24).   

In the embedded methods, the search for the optimal set of features is built into the classifier 

construction, making them specific to the learning algorithm. These approaches are less 

computationally intensive than the wrapper methods since they do not search for all possible 

subsets of features. Examples of embedded feature selection methods are feature importance 
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derived from decision trees and random forests (RF) (25–27), and regularization based methods, 

such as Ridge, LASSO and ElasticNet (28–30).  

 

Predictive modelling 

The task of prediction refers to the development of a computational model that, using the subset 

of identified biomarkers, is able to learn a function that connects their expression values to a 

phenotypic outcome (e.g., toxicity assessment or disease severity) (12, 31). The task of predicting 

discrete values is known as classification, whereas when the outcome variable is continuous we 

talk about regression. An example of classification is the task of discriminating between toxic or 

non-toxic compounds. On the other hand, an example of regression would be the prediction of a  

drug sensitivity score. 

 

[Figure 2 near here] 

 

Classification based predictive modelling 

Classification is the problem of assigning samples, represented by vectors of features, to a specific 

class between a set of possible ones. A classifier is a function that maps a sample to a class. In the 

context of biomarker detection, the classes are the outcomes of interest (e.g., toxic/non-toxic, drug 

resistant/non-resistant), while the features are potential biomarkers (Figure 2). 

Some properties of classifiers are particularly useful in the context of biomarker detection. One is 

parsimony in the number of features used, if a classifier uses only the strictly necessary number of 

features, it is easier to understand and to apply in practice, and less prone to overfit with the 

inclusion of spurious features that are not real biomarkers. A common distinction is between 



7 

“white-box” and “black-box” models. White-box models allow for an easy understanding of the 

underlying algorithm that leads from the features to the assigned class, as opposed to black-box 

models that are difficult to grasp, due to a high number of parameters and/or complex non-linear 

interactions. White-box algorithms are generally more appreciated since they can lead to better 

insights into how biomarkers and biological outcome are related. 

 

[Figure 3 near here] 

 

Machine learning and artificial intelligence techniques are pervasive in biological studies (13), like 

cancer drug resistance (32), or chemical toxicity assessment (12). Supervised methods allow to 

train a model, a classifier in this case, starting from training data. Training data includes feature 

vectors and class labels. A trained model can then be applied to new labeled data for validation or 

to unlabeled data for predictions. We will briefly describe four of the most well known 

classification methods: logistic regression (LR) (Figure 3A), support vector machine (SVM) 

(Figure 3B), random forest (RF) (Figure 3C), and artificial neural network (ANN) (Figure 3D), 

together with some examples of application to biomarker detection using microarray data. 

A LR is composed of a standard logistic function applied to the result of a linear function, with the 

parameters of the linear function that are learned on the training data, typically with the maximum 

likelihood method. Park et al. (33) proposed a novel penalization method that incorporates a 

measurement of the significance of genes to LASSO-type regularization, and used it to classify 

cell lines as drug sensitive or resistant, and identify biomarkers, on the Sanger dataset from the 

Cancer Genome Project (www.cancerrxgene.org). 
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SVM separates two classes of training samples seen as points in an n-dimensional space, where n 

is the number of features of the samples, by an n-1-dimensional hyperplane, so that a new 

unlabelled sample is classified according to the side on which it is placed with respect to the 

hyperplane. If the training samples cannot be separated by a hyperplane, it is possible to apply a 

non-linear transformation to the feature vectors so that the resulting vectors are now separable 

(34). Zheng et al. (35) applied two kinds of SVM and logistic regression to Serum miRNA 

expression profiles from 52 Esophageal Squamous Cell Carcinoma patients, and identified miR-

16-5p, miR-451a, and miR-574-5p as biomarkers for the diagnosis of the disease. There was 

substantial concordance on the choice of features, while SVMs showed slightly better predictive 

performance than logistic regression. 

Classification trees in RF method, are tree structures representing decision processes where 

starting from the root, at each branch, an evaluation is made on the input features that assigns the 

process to one of the following branches. This is repeated until a leaf is reached, each leaf 

representing a decision on the class of the sample. RF for classification are grown by training a 

number of classification trees on different extractions of the training samples, performed with the 

bagging method (25–27). Su et al. (36) used data from the HT-HGU133A Affymetrix whole 

genome array belonging to the Cancer Cell Line Encyclopedia and the Genomics of Drug 

Sensitivity in Cancer database. They compared SVM, Deep Forest (37), and a new deep forest-

based algorithm in classifying drug response into “sensitive” or “resistant”. Results showing 

slightly better predictions of the deep forest algorithms and a substantial equality between these 

two. 

Artificial neural networks (ANNs) are based on networks of units in which each non-input unit 

integrates signals from its predecessors, typically with a dot product operation, and then applies a 
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nonlinear function, e.g., a sigmoid function. In feed forward ANNs the units are arranged in a 

directed acyclic graph, while in recurrent neural networks the graph is cyclic. The input units are 

fed with the input features, internal units process signals from other units, and the output units 

return the output classification. Each non-input processing unit has a set of parameters that are 

learned during training, typically with a back-propagation algorithm (38). Wang et al. (39) used 

Affymetrix GeneChip Rat Genome 230 2.0 Array in vivo liver data from DrugMatrix and Open 

TG-GATEs, to train and validate SVM, RF, and single and multi-task deep neural networks (DNN) 

on the tasks of predicting biliary hyperplasia, fibrosis and necrosis, in order to compare the 

accuracy of the models. Single-task DNN and SVM outperformed RF and multi-task DNN for the 

three endpoints. The two best models were further compared on another dataset (Gene Expression 

Omnibus accession number, GSE70559) where Single-task DNN outperformed SVM. 

 

Regression based predictive modelling  

Regression is a supervised learning methodology that estimates the relationship or function 

between the features and a continuous variable (Figure 4). Regression methods for biomarker 

detection from microarray data have been applied to predict important quantities such as the 

toxicity level of a compound (40–42), the drug sensitivity tumor cell lines (43, 44), and patients 

survival (45, 46). Moreover, regression based methods are extensively used in toxicogenomics to 

identify dose-responsive genes. Under the hypothesis that dose-responsive genes are altered as a 

direct consequence of the exposure, they can be prioritized as candidate biomarkers for the 

biological question under study (12, 47–50). 

The most common regression algorithm is the linear regression where all the features (e.g., genes) 

are linearly combined to predict an outcome variable. In case of high dimensional data, such as the 
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ones coming from microarray experiments, the linear regression method can be combined with 

regularization methods which are able to estimate the contribution of the different variables to the 

overall prediction problem. Examples of these regularization methods are LASSO (29) and 

ElasticNet (51) regularization. When these techniques are used, the biomarker discovery and 

modelling steps are embedded into the predictive modelling resulting in smaller sets of biomarkers. 

ElasticNet is a linear regression with a hybrid regularization term combining LASSO and Ridge 

regularizations (51).  

An example of application of regression models for drug sensitivity prediction from cancer cell 

data is the work of Jang et al. (52), where the authors compared multiple models for the analysis 

of pharmacogenomic datasets in search of biomarkers for continuous drug sensitivity scores. Their 

results suggested that ElasticNet or Ridge regression methods working on the whole set of genomic 

features, in particular those coming from gene expression profiles, yield the most accurate 

predictions. Similarly, Ding et al. (43) applied the ElasticNet regression to generate logistic models 

for drug sensitivity prediction in the Cancer Cell Line Encyclopedia and Genomics of Drug 

Sensitivity in Cancer project datasets. 

 

[Figure 4 near here]  

Validation Metrics 

 
When training a predictive model, it is usually assumed that the dataset collected is representative 

of the underlying data distribution, i.e., new, unseen data should "look like" the data collected for 

training. The objective is to train a model to learn the distribution of the data reasonably enough 

to be able to generalize appropriately to new data samples and to avoid overfitting. The easiest 
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approach to evaluate the generalization capabilities of a trained model is to split the dataset into a 

training set and a test set. Once trained, the model's generalization capabilities are estimated with 

a variety of measures (53, 54).  

Accuracy Measures in classification 

In the case of a binary classification problem, such as the discrimination of toxic vs. non toxic 

chemicals, the goodness of the model can be evaluated by computing accuracy measures from a 

confusion matrix. For example, out of 100 chemicals tested, 30 are toxic and 70 are non toxic. This 

scenario is summarized in Table 1. 

 

The confusion matrix shows the following values:  

● true positives (TP): number of samples from the positive class (Toxic) correctly classified 

as such (~Toxic);   

● false negatives (FN): number of samples from the positive class (Toxic) classified as 

negative samples (~Non Toxic);  

● false positives (FP): number of samples from the negative class (Non Toxic) classified as 

positive samples (~Toxic);  

● true negatives (TN): number of samples from the negative class (Non Toxic) correctly 

classified as such (~Non Toxic); 

With these quantities, different predictive metrics can be defined, such as:  

Recall or sensitivity, hit rate or true positive rate: defined as TP / (TP + FN), which 

corresponds to the portion of positive data points which are correctly considered as positive, with 

respect to all the positive data points.  High values imply few false negatives; In our example this 

would be 25 / (25 + 5) ≈ 0,83. 
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Specificity, selectivity or true negative rate: defined as TN / (TN + FP), that measures the 

proportion of negative data points that are correctly identified. High specificity indicates the 

presence of a few false positives. In our example this would be 60 / (60 + 10) ≈ 0,86. 

Precision: defined as TP / (TP + FP), whose high values imply few false positives; In our 

example this would be 25 / (25 + 10) ≈ 0,71. 

Accuracy: defined as (TP + TN) / (TP + TN + FN + FP), whose values define the proportion of 

correctly classified samples compared to the samples in the dataset; in our example this would be 

(25 + 60) / 100 = 0,85. 

F1-score (or F-score or F-measure): defined as 2 × TP / (2 × TP + FP + FN), it is the harmonic 

mean of precision and recall. In our example this would be 2 × 25 / (2 × 25 + 10 + 5) ≈ 0,67. 

According to the context, high rates of false negative or false positive predictions can have 

different implications such as using a compound predicted to be non toxic as a treatment when it 

is actually toxic (false negative) or vice-versa not assigning a compound as a treatment because it 

is predicted to be toxic, when it is actually non toxic (false positive). The F1-score was defined to 

find a balance between the precision and recall metrics.  

All of these metrics values range between 0 and 1. Good performances are achieved for values as 

close as possible to 1. In the case of a binary, the proportion of the most represented class (0.5 in 

case of balanced classes) can be used as a threshold for chance level, meaning the accuracy that a 

classifier would get, if it randomly assigns the majority class instead of using a model. Models are 

said to have predictive power when they perform better than the chance level.  

Accuracy and F1-score are widely used to evaluate classification models, however, in cases where 

the data is heavily unbalanced, these measures alone are inappropriate (55).  
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Data unbalancing 
 
Usually, the amount of samples in one of the classes is significantly outnumbered by the samples 

of the opposite class. For example, in the case of toxic vs. non toxic drugs, the number of toxic 

compounds in the dataset is often much lower than the non toxic ones (56–58). The more a dataset 

is unbalanced, the less reliable some of the previous metrics become. For example, in the case of 

a dataset with 100 drugs with 10 toxic and 90 non toxic drugs, a classifier that always predicts the 

drugs to be non toxic would have an accuracy of 90% even though it completely misclassifies the 

toxic category. This is because, during training, it’s easier to learn the negative class by increasing 

the number of false negatives. In these cases some particular strategies need to be applied in order 

to perform a good evaluation of the model. 

To compensate for imbalances, the samples can be made more or less relevant by weighting each 

class with the inverse of the corresponding class proportion. A more elaborate approach consists 

in resampling parts of the dataset: the majority class can be down-sampled (i.e. randomly discard 

a number of samples), the minority class can be over-sampled, or both. Over-sampling can be as 

simple as randomly adding duplicate samples, or it can be a generative scheme that creates new 

synthetic samples combining the actual samples such as ROSE (59, 60), SMOTE or its variants 

(61, 62). 

In conjunction to these approaches, model evaluation should be performed using a metric that takes 

into account the proportions of each possible outcome (TF, TN, FP, FN) such as the Matthews 

Correlation Coefficient (55, 63), defined as 

𝑀𝐶𝐶 =
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

*(𝑇𝑃 + 𝐹𝑃) × (𝑇𝑃 + 𝐹𝑁) × (𝑇𝑁 + 𝐹𝑃) × (𝑇𝑁 + 𝐹𝑁)
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The MCC varies between -1 and 1, with 1 being the best score, i.e. perfect classification. When 

the MCC is 0, the classifier is equivalent to a random guess. Finally, when the MCC equals -1, the 

classifier predicts each sample with the opposite label.  

Goodness of fit  measures in regression 

A model is considered accurate when the difference between the real and predicted values (i.e., 

the error) is as small as possible. Given a vector of real values 𝑦 and predicted values y0, the most 

commonly adopted error measure is the mean absolute error (MAE) (Figure 5A) defined as  

𝑀𝐴𝐸	 = 	
1
𝑁5|𝑦! − 𝑦"7 |

#

!$%

 

However, the MAE does not give any information on the direction of the error, for example, if a 

value is under or over predicted. Another commonly used metric is the mean squared error (MSE) 

(Figure 5A) defined as 

𝑀𝑆𝐸	 = 	
1
𝑁5(𝑦! − 𝑦"7)&

#

!$%

 

The MSE is more susceptible to outliers in the dataset since MSE evaluates the square of the error, 

while the MAE is less affected, so this is a point to take into account while choosing a proper error 

measure. Other variants of MAE and MSE are the root mean squared error (RMSE), a scale-

independent alternative of MAE called RAE, and the relative squared error (RSE) (53). 

Even though the model performs better when the errors are as low as possible, these metrics are 

not so easy to interpret such as the comparison with chance level of the binary classification 

problem. To this end the 𝑅2 metric can be used to compare the model performance against a 
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baseline level, which is the mean value of the variable to predict (Figure 5B). Given a vector of 

real values 𝑦 and predicted values 𝑦0, the 𝑅2 metric is defined as follows:  

𝑅& =
𝑀𝑆𝐸(𝑚𝑜𝑑𝑒𝑙)
𝑀𝑆𝐸(𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒) 	= 	

∑ (𝑦' − 𝑦0')&#
'$(

∑ (𝑦E − 𝑦0')&#
'$%

 

where 𝑦E is the mean value 𝑦. In other words, the predictive performances of the model are 

compared with those of a model that always predict the mean value. 𝑅2 values can range in 0-1 

with values close to 1 being the best as possible, while a model performing equal to the baseline 

would give value of 0. However, this measure does not take into account the fact that the more 

features (biomarkers) are used by the model, the closer the value will be to 1. Thus, an adjusted 

formula of the 𝑅2 can be used to penalize models which use a lot of features compared to the 

number of samples. The adjusted 𝑅2 is defined as 

 𝑅)*!& = 1−	(1− 𝑅2) F (+1
(	+	(./1)

G 

where k is the number of features and n is the number of samples. The adjusted 𝑅)*!&  measure can 

be used to evaluate the feature importance: when adding a relevant feature to the model the 

adjusted 𝑅)*!&  increases. If a new feature is added and the value does not increase, it means that 

the added feature is not relevant. 

[Figure 5 near here] 

Model selection and Hyper-parameter optimization 

In addition to model parameters that are learned during training, most models also have a set of 

hyper-parameters that need to be tuned to achieve optimal performances, like the number of trees 

in RF, the architecture of a neural network or the value of the regularization parameter of the 

LASSO method. 
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These hyper-parameters cannot be inferred directly from data like other training parameters, and 

need to be estimated by means of an explicit search. This procedure usually requires the dataset to 

be split in to at least three disjoint subsets: the training and validation sets that are used for model 

fitting and hyper-parameter selection, and the test set, that is only used for the final evaluation and 

never to further tune the models (64). A common rule of thumb is to use roughly 65% of the 

samples for training, 15% of the samples for validation and 20% of the samples for testing. 

However, splitting a dataset reduces the available data; a more data-efficient approach is k-fold 

cross-validation, in which the dataset is randomly split into k subsets of approximately the same 

size, then iteratively, one of the k subsets is used as a validation set and the remaining k-1 subsets 

as training. The cross-validated estimate is then the average across the k runs. Also in this case, 

there is no set rule to choose k, if not as a trade-off between the stability of training and reliability 

in validation, common choices for k are 5 or 10. The limit case where k is equal to the number of 

samples is called leave-one-out cross-validation. 

External Validation of Biomarkers 

It is estimated that the current number of candidate biomarker panels based on omics data is over 

one million. However, only few of them have been successfully translated into clinically useful 

tests leading to the so-called biomarker innovation gap (65). A major factor contributing to this 

gap is the challenge of assessing whether the body of evidence of omics-informed biomarkers is 

sufficiently reliable or not (66). A way to assess and increase the reliability of omics-based 

biomarkers before clinical testing, is to verify their prediction performances on external 

verification data sets, which can be retrieved from public repositories. External validation is 

necessary to reduce model instability and data overfitting (67). However, automatizing the search 
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and the re-use of publicly available data for biomarker verification and refinement is a laborious 

task. 

External validation datasets can be retrieved from public repositories that archives and freely 

distributes omics datasets, such as ArrayExpress (68), Gene Expression Omnibus (GEO) (69), 

GenomeRNAi (70) and dbGAP (71). These databases include thousands of different omics 

datasets, and often researchers struggle in discovering ‘similar’ omics datasets. During the past 

few years, different platform search engines have been proposed to find and link existing omics 

datasets. Table 2 includes a list of published search engines that researchers can use to link omics 

studies with a similar experimental setup (e.g., same disease, same tissue, similar omics 

technology, similar clinical phenotype, etc.). These search engines provide application-

programming interfaces (APIs) to query and access their data programmatically. 

Biological Validation  
In the optimal case, a biomarker(s) leads to an accurate and precise prediction of a biological 

endpoint. Due to natural heterogeneity of biological samples and the unavoidable technical biases, 

the biomarker detection and/or predictions are not simple objectives. In order to confirm the 

validity of the detected/predicted microarray biomarkers, a measure of the real abundance and the 

statistically significant effect is probably needed. These measures also require repeatability, 

meaning that the outcome is detected from repeated but distinct experiments. To measure the real, 

biological abundance of a gene transcript instead of the relative fold-changes obtained from 

microarray data, quantitative polymerase chain reaction (qPCR) technology is often used. qPCR 

is considered a state-of-the-art validation step to measure transcriptional activation. However, 

measuring the same samples with two distinct methods such as microarrays and qPCR, mainly 
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provides information about the possible variance between two different technologies. Thus, to 

understand the real biological significance, a completely new set of samples should be prepared 

and measured. This, however, is not often executable with biological samples. Instead of utilizing 

additional technical measures for validation, more emphasis should be put into the interpretation 

of the biological meaning behind the data to recognise other important regulatory cascades. For 

this, studying the upstream regulators or co-regulators from the same microarray data set can 

explain/confirm the expressional changes measured or predicted from the microarray data sets. 

Also other techniques explaining the biological events behind the data, such as 

immunohistochemistry, fluorescence in situ hybridization or chromatography can be successfully 

utilized for validation of the microarray data (72). Moreover, it should be noted that transcriptional 

change measured by microarrays, does not necessarily inform about the translational changes and 

the consequent protein product. Thus, to validate the existence of the actual gene product other 

experimental techniques might be required. Although accurate and reproducible biomarker(s) with 

high predictability are discovered through computational modeling and validation steps, for 

clinical or regulatory purposes the evaluation will be continued in terms of patient samples and or 

additional animal models. 

Multi-omics strategies 

Due to technological advances, different types of omics data have become available. Among them 

are gene expression, microRNA expression, copy number variation, methylation, and SNP. This 

allows the measurement of multiple omics data layers for the same set of samples. These multi-

omics experimental data are often not highly correlated between each other, thus they provide 

potentially complementary information and assess different parts of the same complex biological 

process (73, 74).  
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Multiple data integration strategies to merge and analyze multi-omics data arise in a wide range of 

clinical, toxicogenomics, and functional genomics applications (9, 73, 75–77). Depending on the 

type of data integration strategy, integrative multi-omics data analysis can be classified into early, 

intermediate or late integration (13, 78, 79). In the early integration strategies, the multi-omics data 

layers are merged in a single dataset with the same samples and a number of features equal to the 

sum of the features of the different data layers. In the intermediate integration, the single omics 

layers are first individually transformed in the same space and then combined in a single dataset 

on which the feature selection or predictive algorithms are applied. In the late integration 

approaches, each algorithm is executed independently and in parallel on each omic layer, and only 

in the end the results of each algorithm are integrated.  

Some of the classical machine learning algorithms have been adapted to the analysis of multi-

omics dataset. For example, an adaptation of the min-redundancy and max-relevance (mRMR) 

feature selection method for multi-omics data for predicting ovarian cancer survival has been 

proposed (80). A classical mRMR algorithm iteratively identifies features that are of maximal 

relevance for the prediction task and minimally redundant (e.g., not correlated) with the set of 

already selected features. In case of multi-omics data, the mRMR algorithm could be applied 

independently to each omic layer (late integration), or to a new dataset created by concatenating 

all the layers (early integration). However, in the first case it would be difficult to evaluate the 

redundancy of the features between multiple data layers. In the second case it would fail to identify 

differences in the relevance of features coming from different views, or features from a view could 

be neglected. The authors suggest a two-level approach (intermediate integration) where the 

mRMR algorithm is applied on each omic data layer to identify its specific relevant biomarkers. 
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A further step is applied on the concatenation of the features identified at the previous step to select 

a final set of multi-omics non redundant biomarkers.  

Another example of intermediate integration is provided by (81) where a novel multi-view feature 

selection based on the canonical correlation analysis (CCA) statistical method was proposed. This 

method first identifies, by means of CCA, a common d-dimensional space among all the omics 

data layers and then scores and ranks the input features in this space to select the most relevant 

ones of each layer and combine them in a final dataset on which a classifier can be applied. In this 

study, the effectiveness of their methods to predict kidney renal clear cell carcinoma (KIRC) 

survival from copy number alteration, gene expression and reverse-phase protein array was 

reported.  

Another example is the work of Wang et al. (82) where they used a sparse multi-view matrix 

factorization (sMVMF) approach for gene prioritization in gene expression data from multiple 

tissues. In this case, the omic feature is only one (gene expression) but the layers are represented 

by multiple tissue types. The authors showed the effectiveness of the sMVMF algorithm on three 

human tissues from the TwinsUK cohort. The sMVMF method was able to identify genes whose 

expression variance across multiple tissues and those that are tissue specific. This kind of approach 

is able to shed light on biological problems that are involved with tissue differentiation.  

Conclusions 

Multiple statistical and machine learning methodologies have been applied to the analysis of 

microarray data in search of biomarkers as indicators of the state of a biological system. In this 

chapter we introduced the basic concepts related to biomarker discovery and predictive modelling 

from microarray data, with particular attention on their related computational challenges, such as 

model selection and hyperparameter tuning, data unbalancing, metrics for model validations. We 
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also discussed the use of external data to further evaluate the predictive capabilities of the trained 

models and the biological validation of the identified biomarkers. Moreover, we briefly introduced 

multi-omics strategies for biomarkers identification. The authors hope that this short review could 

provide a useful compendium to bioinformatics practitioners.  
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Figure Captions 

 
Figure 1 - Filter, wrapper and embedded strategies for feature selection. 

 

Figure 2 - A simple example of binary classification with toxic (circle) and non toxic compounds 

(triangle). (A) The model is able to identify a simple relationship between the features of each 

compound and the classes and to identify a linear boundary between the two classes (dashed line). 

(B) The model is able to identify a more complex relationship between the features of each 

compound and the classes and to identify a non-linear boundary between the two classes (dashed 
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line). In both cases, when a new compound needs to be classified (square), the model will use its 

feature to estimate to which class it belongs.  

 

Figure 3 - (A) Example of the logistic regression model. Logistic regression is a well-known 

method to fit models for categorical data especially for binary responses since it can directly 

predict probability values restricted in the interval [0,1]. (B) Example of linear SVM. The dashed 

thick line represents the hyperplane that separates the two classes. The space between the two thin 

lines, called margin, represents the distance between the two classes. Data points following on the 

margin lines are called support-vectors and are those points that have more impact on the position 

of the hyperplane. (C) Example of Random forest (RF) classifier. Red dots show the decision paths 

for a particular data point in each decision tree. From each tree, a prediction is made and the final 

prediction is computed as the average of all the predictions (D) Example of ANN with three units 
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in the input layers (blue circles), four units in the hidden layer (grey circles) and two units in the 

output layer (red circles). The ANN is fully connected since each unit is connected to all the others 

in the next layer.  

 

Figure 4 - An example of linear regression to model drug sensitivity. Red circles are drugs 

represented by their feature values and their sensitivity score. The linear regression model learns 

a function (dashed line) between the feature values and the sensitivity score. The function is then 

used to predict the sensitivity score of a new compound.   
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Figure 5 - evaluation metrics for regression. (A) MAE measures the absolute distance between the 

real drug sensitivity value and the predicted one, while the MSE measures the square of distance 

between the true and predictive value.  (B) 𝑅2 measure the MSE between the real and predicted 

drug sensitivity value divided the MSE of the real and the mean drug sensitivity value. 

 

Table  

 

Table 1 - Example of a confusion matrix for a binary classification problem of toxic vs. non toxic 

chemicals. Rows specify real classes while columns specify predicted classes (~). 

 ~Toxic ~Non Toxic 

Toxic 25 (TP) 5 (FN) 

Non Toxic 10 (FP) 60 (TN) 

 

Table 2 - List of public search engines that can be used to link similar omics datasets. 
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Datamed 
www.datam
ed.org 

It discovers data sets across repositories or data aggregators. It collects 
different data types including omic, imaging and clinical data. 

(83)  

OmicsDI 
www.omics
di.org 

A knowledge discovery framework across heterogeneous data (genomics, 
proteomics, transcriptomics and metabolomics). 

(84)  

Omicseq 
www.omics
eq.org 

A web-based platform that facilitates the easy interrogation of omics 
datasets holistically to improve 'findability' of relevant data. 

(85)  

PubData 
www.pubda
ta.bio 

It uses novel natural language processing and artificial intelligence 
algorithms to discover omics datasets worldwide. 

(86)  

 

 


