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Network analysis of microarray data 

Abstract 

DNA microarrays are widely used to investigate gene expression. Even though the classical 

analysis of microarray data is based on the study of differentially expressed genes, it is well known 

that genes do not act individually. Network analysis can be applied to study association patterns 

of the genes in a biological system. Moreover it finds wide application in differential co-expression 

analysis between different systems. Network based co-expression studies have for example been 

used in (complex) disease gene prioritization, disease subtyping and patient stratification. 

In this chapter we provide an overview of the methods and tools used to create networks from 

microarray data and describe multiple methods on how to analyze a single network or a group of 

networks. The described methods range from topological metrics, functional group identification 

to data integration strategies, topological pathway analysis as well as graphical models. 

 

Keywords (5-10): microarray, co-expression, differential co-expression, multi-layer networks, 

pathways 

 

Introduction 

The ultimate goal of large scale transcriptome analyses, such as DNA microarrays, is the 

characterization of the molecular alterations underlying a certain biological condition (1, 2). 

Although transcriptomics analysis allows the identification of a compendium of up to hundreds of 

genes which are deregulated under a certain condition, classical univariate analysis of the 
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individual gene alteration might fail to illustrate the complex interactions in the system under study 

(3). 

Co-expression network analysis is the method of choice in order to describe gene-gene interactions 

underlying a certain phenotype. In the particular case of large scale transcriptomics experiments, 

network-based analyses can support the characterisation of the mechanistic interplay between 

individual genes based on their expression levels (4–7). 

Starting from gene expression estimates, measured by microarrays, a co-expression network can 

be constructed (figure 1A-C). In this case, the genes and their associations are represented as a 

graph where the genes are the nodes of the network and their strength of similarity in their co-

expression patterns can be represented as weighted or unweighted edges between the nodes. The 

advantages of representing microarray data as a network are multiple. For example, it allows the 

exploitation of a wide range of network topological properties (figure 1E-F) in order to generate 

new knowledge about the system under analysis (8, 9). Community detection or module detection 

allows tightly knit gene areas to be found (figure 1G) and then to functionally characterize them 

for example through pathway or (gene) ontology enrichment (figure 1H) (10). Multi-network 

comparison can provide insights about whether specific functionalities, single genes or gene 

neighborhoods are affected between multiple conditions.  

 

Co-expression networks, built from DNA microarray data, can be integrated with other prior 

information (e.g. Protein-Protein Interaction (PPI) networks or co-regulation networks) to improve 

the robustness of the results (figure 1D) (11). This is based on the assumption that genes (or their 

proteins) that interact directly with each other or are co-regulated are often part of the same 

underlying biological function and therefore are likely to be co-expressed (12). Adding this 
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information during network generation allows the algorithm to detect noisy correlation patterns. 

Network analysis can also be applied in the context of multi-omics data analysis. Potential 

complementary information for the same samples, coming from different (experimental) data 

layers, are used to build a comprehensive picture of the biological systems in the form of a network. 

 

Since DNA microarray technology became a pivotal instrument to study complex (or 

multifactorial) diseases, which are the result of complex interactions and perturbations involving 

large sets of genes, fast progress in the development of gene prioritization methods has been 

observed (13). These methods are aimed at uncovering and prioritizing candidate disease-

associated gene markers by exploiting large scale omics studies (14).  

 

Gene prioritization, through network-based methods, have become quite a popular tool. Another 

level of complexity, in understanding molecular relationships, is due to the fact that most cellular 

processes are interconnected through key genes (figure 1F). Network analysis aids biomedical 

researchers in identifying and prioritizing such key genes. Two of the most widespread strategies 

to exploit networks in order to identify and prioritise disease genes take into account i) the topology 

of the network and ii) prior information of the genes composing the network (15).  

 

Another application of network theory in biomedical research is disease subtyping. The huge 

amount of large scale data made available in the last years for a plethora of human diseases, with 

a particular regard to multi-factorial ones, allowed the definition of “disease subtype” (16). 

Although a certain disease is characterized by a similar phenotype across the affected population, 

individual patients rarely show the same molecular makeup. This is particularly true for complex 
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diseases such as cancer as well as metabolic and immunological syndromes (17). Taking as 

example the study of cancer biology, the identification of patients subtypes is a central topic of 

research in order to identify novel drug targets and switch from classical therapeutic approaches 

(one disease - one therapy) to quasi-personalised pharmacological treatments (one disease - many 

therapies). Histological subtypes of some cancer types are already well-established (17). On the 

contrary, cancer subtyping from a molecular point of view can be less obvious due to the 

heterogeneity of the molecular alterations in cancer. Tumor stratification in clinically relevant 

subtypes can be achieved by integrating molecular networks with mutational profiles. 

 

In this chapter, we will define the concept of a graph or network, we will describe algorithms to 

construct gene co-expression networks along with metrics that can be used to identify relevant 

nodes and edges based on the network topology. Furthermore, we will touch upon the basic 

concepts of pathway enrichment analysis, differential co-expression analysis and the use of 

graphical models on biological networks.  

 

[ Figure 1 here] 

What is a graph 

A graph G = (V, E), consists of a set of nodes (V) and a set of edges (E). The graph in figure 2A 

has for example a node set of [w, x, y, z] and an edge set of [yw, yx, yz, xz].  An edge wy joins two 

nodes [w,y], which can be used to model relationships between node w and node y. In an undirected 

network yw = wy holds. This means that there is no direction associated with any edge and it can 

be travelled in both directions. On the other hand, in a directed network there is a direction 

associated with each edge and the graph can only be traversed in this direction. For example, in 
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figure 2A w can be reached from y through the edge yw as well as node y can be reached from 

node w through the edge wy and yw = wy holds. In figure 2B, on the other hand, node w can be 

reached from y through the edge yw but node y cannot be reached from node w, since there is no 

edge wy. Further edges can be associated with a weight property, which can for example stand for 

a distance between node y and node w or a correlation coefficient between two nodes. In an 

unweighted network, each edge is considered equal and no weight attributes are assigned to any 

edge. For example, in figure 2A the “cost” of reaching node x from node y or node z is the same, 

while in figure 2C less “cost” is associated with the edge zx in comparison to edge yx. Here it is to 

be noted that, depending on what the assigned edge attributes stand for, either large values can 

indicate a larger distance or large values can indicate a higher similarity between the two nodes 

(e.g. if the edge attribute is a correlation). Further, the weight attributes do not need to be in [0,1] 

but can be in any range, as defined by the user. This implies that it is the users responsibility to 

ensure that edge attributes are interpreted in the correct way by applied algorithms. In a binary 

network representation, edge weights are either 1 or 0, where an edge weight of 1 implies that this 

edge exists and an edge weight of 0 implies that this edge does not exist. 

 

[ Figure 2 here] 

Algorithms for genes co-expression networks 

The results of a microarray experiment analysis is a normalized expression matrix D with M rows 

representing the genes and N columns representing the samples. Starting from this matrix, a gene 

co-expression network can be built, which allows investigation of how the genes jointly behave 

under the experimental condition. In this case, a gene co-expression network is a graph G=(V,E), 

where V is the set of M nodes represented by the genes and E is the set of edges representing the 
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co-expression between all  gene pairs. Under the assumption that genes with similar expression 

patterns are coexpressed, gene co-expression is usually computed by means of information-

theoretic methods, such as the pairwise correlation coefficient or mutual information (MI) (18, 

19), to evaluate how similar the expression profiles of two genes (gi and gj) across the set of N 

samples are. For example, correlation based measures assume continuous values between -1 and 

1, where positive values mean that two genes have a similar pattern across the samples (e.g both 

genes have an increase in their expression values), while negative values indicate different patterns 

(e.g. when one gene increases its expression value, the other decreases). These techniques result 

in a weighted, undirected, and fully connected graph, where there is an edge connecting each 

possible pair of genes. However, microarray data are known to be noisy and prone to experimental 

biases. Thus, an important aspect is to evaluate the amount of non relevant edges inferred from the 

experimental data and be able to distinguish between real edges (e.g. genes that are actually co-

expressed in the system and therefore show a high correlation coefficient) and edges that are 

inferred due to the noise (e.g. genes that are not co-expressed in the biological system but still 

achieve a high correlation coefficient) (20). To this end, simple approaches use a user-defined 

threshold to cut edges from the networks. In this case, all the edges, whose weight is below the 

predefined threshold are removed from the network. Here, the assumption is that low correlation 

or mutual information values can be induced by noise, while strong values might carry relevant 

information. However, the main issue with these approaches is that the selection of the threshold 

is arbitrary, and it does not take into account the topology and the structure of the network, and 

each edge is treated independently. 
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To overcome these limitations, multiple algorithms, such as RelNet (21), ARACNE (22) and CLR 

(23) have been developed, which differ mainly in the methods used to compute the co-expression 

values and how they identify non-relevant edges. The ARACNE algorithm works with both the 

mutual information and correlation measures. It computes the co-expression values for all gene 

pairs in a gene expression dataset and subsequently reduces the number of false positive 

connections, by cutting the less strong associations between every triplet of genes in the network. 

The CLR algorithm first computes the MI between each pair of genes, then calculates the statistical 

likelihood of each MI value within its network context (23). This algorithm compares MI values 

of gene pairs with the background distribution of MI values. The interactions whose MI scores 

stand significantly above the background distribution of MI scores are considered as the most 

probable interactions.   

 

RelNet (21) works in two steps: it first creates a completely connected gene co-expression matrix 

where the mutual information between all genes is computed. Subsequently, a threshold is defined, 

called TMI, that identifies which associations are to be considered significant.  

 

It is important to note that the different algorithms cut the non relevant edges by following different 

heuristics, thus when executing on the same dataset the resulting networks may not be consistent 

between them. For this reason, Marwah and collaborators recently proposed a tool, called INfORM 

(Inference of NetwOrk Response Module) (10), able to infer a more stable and robust network by 

applying an ensemble strategy. INfORM derives gene networks from a collection of algorithms, 

ranks the genes in each network by their relevance and merges them in a final network that ensures 
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robustness of gene-gene associations. Furthermore, it provides a simple graphical user interface 

and substantially guides the user in the algorithms setup and execution.  

Local  and Global connectivity measures 

In year 1999, Albert László Barabási and Réka Albert published a study (24) where they 

investigated topological properties of real networks. They observed and demonstrated that real 

networks differ in their connectivity from random networks, which have been the main study 

subject at the time. The connectivity of real networks, such as the world wide web or molecular 

networks, follow a scale-free power law distribution, while random networks follow a gaussian 

distribution. This means that many real networks contain a few nodes, called “hubs”, which have 

a high number of edges in contrast to the majority of the nodes in the network. Based on this 

property researchers can explore the role of individual nodes in a network. 

 

There are multiple different local and global network metrics available which have as a main 

objective to quantify the importance of a node based on the network topology (25). This can help 

to identify genes that have a “high” impact on many other genes (e.g. that are key regulators) and 

therefore may be a good target candidate for treatment (26, 27). Since all the measures (table 1) 

have a different approach on how to evaluate a node's importance (for information flow) it can be 

a good idea to combine multiple measures. 

 

The metrics mentioned in table 1 can be interpreted differently based on the nature of the biological 

network they are applied to. In a PPI or a co-expression expression network, high degree nodes 

(hub genes) can for example indicate important regulators (e.g. master regulator of a biological 

function, such as transcription factors). A PPI  network is a representation of how proteins are 
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known to interact within a biological system. In such a network nodes are proteins and their 

relationships represent known interactions between them (e.g. created through a Yeast-Two-

Hybrid analysis). When comparing multiple networks, for example co-expression networks of 

different tissues or treatments, the degree distribution can be used to investigate if a significant 

perturbation of the system has occured or compare gene quantile positions between the networks 

(28, 29). In weighted networks (e.g. weighted co-expression networks) strength measures instead 

of degree measures can be used, which allows for example to add information about the “strength 

of correlation“ between two nodes. Another type of measurement that aims to identify important 

nodes in the network are centrality metrics, which in contrast to the degree do not only take a 

node's direct connections into account but its overall position in the network. When comparing 

multiple networks, these measures can be used to identify nodes (genes) which have changed 

strongly in their overall connectivity and therefore may have been affected by the condition under 

investigation (28, 30). In figure 3 node w has the highest degree (centrality) as well as eigenvector 

centrality, while node c has the highest closeness centrality and node x has the highest betweenness 

centrality, since all traffic between the two tightly knight groups needs to go through it.  

[ Figure 3 here] 

Next to the above introduced local measures, there are global network measures outlined in table 

2, which aim at quantifying a network's overall topology without taking individual nodes into 

account. This can be a helpful measure to compare multiple networks or when networks without a 

large amount of common genes are compared. 

 

Structural measures are especially useful to quickly compare multiple networks. For example to 

quantify if a treatment had a special effect in comparison to the control network(s). A less dense 
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network could for example suggest that a loss of homeostasis has occurred (31). Graphlet 

distribution and cycle distribution can be interesting to be evaluated in certain networks. For 

example different graphlets have been linked to different biological functions in protein - protein 

interaction networks or the existence of cycles can indicate existing feedback loops in a biological 

regulation network (32–34). 

Community detection algorithms 

Community detection algorithms aim at grouping the nodes of a graph into sets (communities) 

based on different properties. This results in sets of nodes which are more tightly connected (based 

on the grouped by property) with each other than the rest of the network. In figure 4 for example 

node groups w, z and x are topologically tightly connected with each other but do not have many 

outgoing edges (edges that go to another node group) and therefore groups w, z and x can be 

described as three communities of the network. Communities are also sometimes called modules. 

A community C of a graph G is defined as a node set C =  {n1, n2,...nn}. Depending on the 

investigated problem or applied algorithm a node can be part of a single community or it can be 

assigned to multiple ones. Many different algorithms for community detection have been proposed 

(table 3), that can be classified into four categories: (i) node clustering algorithms aim at assigning 

each node to a specific community; (ii) overlapping community detection algorithms allow nodes 

to belong to multiple communities; (iii) probabilistic community detection algorithms estimate the 

probability of a node belonging to a community; (iv) edge clustering algorithms are similar to node 

clustering algorithms where instead of grouping the nodes, edges are assigned to distinct 

communities. A more detailed classification of these algorithms, divides them into weighted or 

unweighted, depending on whether they take edge weights into account when performing 

community detection or treat every edge as equal.  
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[ Figure 4 here] 

 

In co-expression networks we assume that nodes which are topologically close together in the 

network are part of the same process (e.g. genes that take part in the same pathway). Therefore 

grouping them into their communities, enables you to functionally enrich parts of the network. The 

most commonly used method is node clustering, but the assumption of a node only belonging to 

one community does not always hold in biological networks. For example a gene can take part in 

multiple different processes, such as being part of multiple different pathways.  

 

Selecting a weighted community detection algorithm, allows to take another layer of information 

into account. For example in a co-expression network, correlation values can be used as edge 

weights, which tells the algorithm that two genes that are strongly correlated should belong to the 

same community (e.g. functional group). But depending on which type of network you are working 

with this information may or may not be available or can become more computationally expensive. 

There is not one community detection algorithm that fits all problems and most algorithms have 

not been developed for biological networks. Therefore an algorithm has to be selected based on 

the problem and network you are investigating.  

 

In table 4 a few metrics are introduced which can evaluate mathematically the “goodness” of the 

community partitioning. However it needs to be taken into account that different algorithms 

identify the “best” partitioning based on different parameters and in the same manner different 

evaluation parameters focus on different metrics to estimate the “goodness” of the partitioning. 

Therefore, it is advised to select your evaluation metrics based on the community detection 
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algorithm you have selected. When possible, evaluating your partitioning over a multitude of 

evaluation parameters is advised. Further it can be useful, but more computationally expensive, to 

make use of an ensembl community detection method. In ensembl methods multiple (different) 

paritionings are combined and a consensus partitioning is identified. This allows to combine 

algorithms with different focus points and to create a more robust community partitioning. 

Pathway enrichment analysis 

Differential expression analysis at gene level is not able to capture the functional implications of 

the gene expression deregulation. This has led to the employment of a richer approach where genes 

that contribute to a single biological function are analyzed together. This kind of procedure is 

called “pathway analysis”. Pathway analysis is an analytical procedure that can help to clarify the 

disrupted functional interactions that sustain a certain phenotype. In detail, a pathway is a 

simplified representation of the functional interactions occurring in a cellular process. Pathways 

are a collection of several actors that may also be of different nature, spanning from proteins to 

metabolites, connected by a functional relationship (e.g. protein-protein interaction).  

 

One of the most common solutions in order to relate the molecular findings obtained from omics 

experiments to a specific phenotype is to leverage the knowledge contained in several databases 

of biological functional associations (e.g. pathways) (35, 36). Such databases are for example 

KEGG (Kyoto Encyclopedia of Genes and Genomes) (37, 38), Reactome (39), Biocarta (40) and 

PANTHER (41). 

 

These databases contain collections of genes grouped into pathways or biological functions that 

can be used to functionally characterize a set of relevant genes (e.g. differentially expressed genes 
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or the genes in a particular community) instead of studying them individually.  Classically, 

enrichment methods rely on tests applied to evaluate the statistical significance of the 

overrepresentations of the genes in a pathway or functional group into the set of genes of interest. 

The most widespread statistics employed in order to verify the enrichment of a certain pathway by 

differentially expressed genes is the overrepresentation test, for example the Fisher Exact test , 

chi-square and hypergeometric test (42).  

 

Alternatively, a slightly more sophisticated method is the Gene Set Enrichment Analysis (GSEA) 

(43), where the enrichment of one or more pathways are evaluated against a ranked gene list, by 

means of the Kolmogorov-Smirnov test (44). In recent years, pathway analysis methods shifted 

from a non-topological to a topological approach, where the knowledge about the position of each 

gene, as well as the type and the direction of a signal, within a biological/cellular pathway is taken 

into consideration (figures 5-6). The advantage of the topological approach is that a hypothesis 

testing for pathway expression is often more accurate (35, 45) . 

[ Figure 5 here] 

Draghici and colleagues (46), described the first method able to integrate topological information 

in the classical pathway analysis approach. This method, named impact analysis, takes into 

consideration two properties: the magnitude of deregulation of the genes (usually represented as 

the log-fold change) belonging to a certain pathway and the position and the type of gene-gene 

interactions within the pathway. The first implementation of this method was included in the 

Pathway-Express package (now included in ROntoTools, https://rdrr.io/bioc/ROntoTools/), which 

represents a precursor of the following widely used SPIA (47), graphite (48) and ROntoTools (49). 
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Nguyen et al. (35) compared 5 topologically-based and 8 non-topologically-based pathway 

analysis tools, showing that topologically based tools generally perform better than non-

topologically based ones, but this is not always true and depends on the specific tools and the 

specific aspects on which they are compared. The results of their study suggest that when 

considering only the ranking of pathways on real pathological data, the non-topological PADOG 

algorithm (50) shows the best performance. If we consider data from knockout experiments, where 

the expression of specific genes is artificially silenced, the topological ROntoTools has the best 

performance, while if we consider the distribution of p-values under the null hypothesis the non-

topological GSEA (43) is the only unbiased one. 

[ Figure 6 here] 

Differential co-expression analysis  

 
Differential co-expression analysis aims to identify significant differences in the structure of two 

or multiple co-expression networks. The assumption is that genes that are differentially co-

expressed between different experimental setups (e.g. diseases vs. controls) are more likely to be 

key regulators, and are therefore likely to explain differences between phenotypes (51–54).  

 

The simplest approach for differential co-expression analysis consists in ranking the genes in each 

network according to one or more centrality measures (e.g. degree centrality) and comparing these 

ranks to identify genes who are ranked at the top only in one co-expression network and not in the 

others (25, 55, 56). Other gene-based differential co-expression analysis methods identify genes 

that show changes in association with other genes across multiple experimental conditions. To this 

end, different strategies have been developed, and they can be differentiated in global, local or 
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hybrid methods based on if they compare the expression pattern of one gene with those of all the 

other genes, with those of a subset of genes, or if they apply a combination of global and local 

measures (29, 57). Global gene-based methods include DCglob (58) and the N-statistic (52). Local 

gene-based methods include DCloc (58), DCp (59), DCe (59), DiffK (60), differential motif 

centrality (25), RIF (61), and metrics based on correlation vectors (62). DiffRank is a hybrid 

method where both local and global measures of differential association are computed for each 

gene (63). 

 

More complex differential co-expression methods work by identifying communities in each 

network and comparing them (figure 7). The most simple comparison is the presence (or absence) 

of a module between the two networks (figure 7A). This might indicate that a particular biological 

process, associated with the genes in the module, can be (when present) or cannot be (when absent) 

exerted by a particular experimental condition. Another scenario consists of identifying a set of 

genes that form a module in both networks and investigating their connection structure (figure 7B). 

This would allow us to find changes occurring in molecular processes underlying both 

experimental conditions. For example, by analyzing the strength of interaction between the genes 

in the same module, one could find out that the module’s hub in the two networks are different. 

This would mean that, even though the two experimental conditions carry out the same biological 

function, this is driven by a different key gene. More complex patterns can be detected in 

differential co-expression analysis, such as community division (figure 7C) and gene hopping 

(figure 7D). In the case of community division, a community of genes that is present in a network 

is then split in two or more communities in another network. In the case of gene hopping, a set of 
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genes that is tightly connected with the gene of a community in one group, switch their connections 

to another community in another group.  

[ Figure 7 here] 

Multiple tools have been developed to perform differential co-expression analysis at module level 

such as WGCNA (64), DICER (51), DiffCoEx (65) and DINGO (66), GSCA (67). WGCNA is a 

popular tool for module identification which is able to compute the importance of a module in a 

subpopulation of samples. Similarly, DICER and DiffCoEx identify de novo modules and allow 

for comparisons between multiple conditions. DINGO works by grouping the genes based on how 

differently they behave in the samples of a particular condition with respect to the baseline co-

expression determined from all samples (66). Another method for de novo module identification 

and differential co-expression analysis is CoXpress, which is only able to compare modules 

between two experimental conditions (68). Differently from the previous methods that work by 

first identifying the gene modules, the GSCA method starts from a known list of genes and ranks 

them according to a differential co-expression score between multiple conditions (67). Other 

methods that only work with binary comparisons and known sets of genes are GSNCA (69), CoGA 

(70), dCoxS (71) and DiffCorr (72). 

 

A number of studies have successfully used differential co-expression analyses to identify 

networks unique to specific tissues (73) or disease state (31). For example, in the GTEx project 

multiple expression data for 35 different human tissues have been collected (74). Based on the 

average gene expression of each tissue a hierarchy has been derived and used to generate a single 

combined co-expression network derived from the tissue specific networks. They showed that in 

tissue specific networks, transcription factors with functions specific to that tissue are highly 
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expressed together with tissue-specific genes. However, the tissue specific genes tend to remain at 

the periphery of the network, while the transcription factors are more central. Thus, transcription 

factors could be uncovered by identifying modules with increased co-expression strength in 

tissues-specific networks and by pinpointing the central hubs of these modules. On the other had, 

genes that are not TFs but are tissue-specific should be detectable by identifying genes that are at 

the periphery in these modules 

 

Integration strategies for graphs  

Data integration strategies can help to increase robustness of your microarray analysis and help in 

its analysis (75–78). There are many existing knowledge bases, structured as interaction networks, 

in the biological domain that contain valuable information about the relationships between genes, 

such as protein-protein interaction networks or regulation networks (37–39, 79–82). By combining 

results from microarray data analysis with these biological networks, hidden relationships and 

functional implications can be detected. For example differential expressed genes can be combined 

with a protein-protein interaction network, to investigate what other genes may be involved in the 

observed response (11). This can be further expanded by adding knowledge about direct protein 

interactors with your treatment condition (for chemicals/ drugs such data can for example be 

retrieved from CTD (83) or DrugBank (84)). Like the differential expressed genes, the identified 

interactor gene sets can be mapped onto a protein-protein interaction network, which allows 

investigation of genes that are very likely propagating the response between these two sets (85).  

 

Furthermore, such knowledge can directly be used during network creation. For example 

combining a protein-protein interaction network with a correlation based co-expression network, 
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can help guide the process of estimating which are the relevant edges to keep or discard during the 

simplification steps, as is for example implemented in the INfORM tool (10). However, this kind 

of approach has to be carefully applied. Evaluating the final results on the basis of similar data 

used in the integration process should be avoided in order to not introduce bias. For example you 

should not score edges based on two genes that are known to be in the same pathway and then for 

example do community detection on the network and perform pathway enrichment on these 

modules. Such results are likely biased by your data selection method and will not provide 

meaningful results. 

 

We have now discussed how different external data could be integrated with your microarray data 

analysis, either by referring to a known biological network or using such data during the analysis 

process. It is to note that these steps can not only be performed on a single data layer (e.g. where 

nodes are only of one data type and edges are only of one data type) but can also be performed on 

multi-layer or multiplex networks. Such networks are heterogeneous networks, which means that 

nodes and edges can represent different objects and relationships. For example, a Drug - Gene 

Target network or a Gene - Gene network where there are multiple relationships between genes, 

such as interactions, co-regulations and take part in the same pathway. 

 

To use such networks together with your microarray data it may be helpful to convert them into 

homogeneous (e.g. Gene - Gene) networks. This can for example be achieved by estimating 

relationships (similarities) between genes based on their common neighbors. Multiple of such 

networks can be merged into a single network by combining their edges or adding their adjacency 

matrices.  
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Furthermore, it is to be noted that from microarray technology multiple types of omics data can be 

produced. These are usually referred to as multi-omics data, which are experimental measures 

related to the same set of samples on which multiple molecular experimental results have been 

performed (e.g. gene expression, methylation, copy number variation etc.). These data are 

particularly useful, since they can show complementary aspects related to the same biological 

process and can be used to gain a better understanding of the overall phenotype(s) under study. 

Multiple methods for the integrative analysis of multi-omics data through network analysis have 

been developed (86–88). Examples of such methods are SNF (76) and lemon-tree (89). The SNF 

algorithm combines multiple networks with a homogeneous set of nodes into a single one. The 

SNF methodology can be used for multiple tasks. The authors showcased their integrative 

methodology for the patient subtyping task. In this case, each co-expression network represents 

the patient similarity in each omic view. These networks are merged to build a patient similarity 

network, which accounts for all the different aspects of the multi-omics data and can be used to 

cluster the patients in multiple subsets.  

 

The lemon-tree method was developed to identify gene co-expression modules starting from gene 

expression data (89). It first infers co-expression gene clusters using a model-based Gibbs sampler, 

then it identifies modules of co-expressed genes by means of a consensus based approach based 

on the spectral edge clustering. Eventually, another omics data layer, bringing information on 

candidate regulators such as miRNA expression, CNV and methylation data are combined with 

the consensus module to infer a regulatory score by using a decision tree structure.  
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Graphical models 

Biological systems are by nature highly complex systems which cannot yet be described accurately 

(there is no technical instrument to wholly measure them) therefore the possibility of a relationship 

existence can be described by means of probabilities. Graphical models are a means to compactly 

define probability distributions on a large number of variables. 

 

Graphical models are graph-based representations of statistical conditional dependence between 

the variables of a system. Each variable is assigned to a node of the graph, while edges are used to 

represent dependence. According to the type of graph, each node may represent a categorical, 

ordinal, or real valued variable, or even a tuple of more than one atomic variable. If an edge from 

A to B exists in the graph, then P(B|A), the probability of B given A, is a factor in computing the 

joint distribution on the whole graph. On the opposite, if there is no edge from C to D, knowing 

P(D|C) is not needed in order to compute the joint distribution on the whole graph. For this reason, 

graphical models can be considered compact representations of distributions. A node is 

conditionally independent with respect to the rest of the graph given a set of nearby nodes, this set 

of nearby nodes depends on the type of the graphical model and is called Markov blanket. 

Bayesian networks (figure 8A), also known as belief networks, are directed acyclic graphs, and 

the Markov blanket of a node is given by its parents, its children and the parents of its children. 

Markov networks (figure 8B), also known as Markov random fields, are undirected graphs 

allowing cycles, and the Markov blanket of a node is given by its first neighbors. Dependency 

networks (figure 8C) are directed possibly cyclic graphs, and the Markov blanket of a node is given 

by its parents. 

[ Figure 8 here] 



21 

The potentialities of applying graphical models to biological data are well known (90–92), and 

many software implementations exist (93, 94). An advantage of graphical models is that in their 

general formulation there is no restriction on the functions that model the probability of the values 

of a node given the values of its parents/neighbors, even non-linear functions can be used. A 

disadvantage is that if both the graph structure (i.e. the adjacency matrix) and the distributions are 

to be learned from data, as it is often the case with applications for the analysis of microarray data, 

the algorithms are often slower that the ones inferring simpler graph representations. 

 

In order to use Bayesian networks to describe a system in time, Dynamic Bayesian networks 

(DBN) were introduced. A Dynamic Bayesian network can be seen as a Bayesian network that is 

replicated at each time point, with edges connecting nodes at contiguous time points to represent 

time-dependent evolution. Grzegorczyk et al. (95) proposed an extension to DBN and applied it to 

Affymetrix microarray RNA data from Arabidopsis thaliana to study its circadian rhythms. 

Directed graphical causal models are directed graphical models where edges represent causality, a 

stronger concept with respect to just dependency. Learning causality from data, especially if 

devoid of a sequence of time points, is a particularly difficult problem, but very interesting for its 

potential to explain biological systems. Glymour et al. (96) provides a review of causal discovery 

methods for graphical models including examples of applications to gene expression data. 

 

Conclusions/Summary 

In this chapter we described multiple strategies for the analysis of microarray data based on a 

network approach. Algorithms for the creation of co-expression networks from microarray data, 

such as ARACNE, CLR and INfORM (an ensemble approach) have been described and different 
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network types have been defined. Additionally multilayer and data integration approaches, which 

make use of a wide range of (experimentally) derived data for network creation have been outlined. 

Including multiple layers of information into your network creation and/ or analysis can yield more 

robust networks as well as guide analysis (for example functional enrichment). 

 

Different metrics for topological network description and comparison between networks have been 

introduced of which gene prioritization methods find wide application in disease gene 

identification or to identify system perturbations caused by treatment conditions. Gene 

prioritization methods for example include degree centrality and closeness centrality. Next to these 

local network metrics global metrics can be used to describe a network's overall topology, which 

can be used to describe a group of networks or if certain treatment methods had significant impact 

on the gene relationships in a network. 

 

Algorithms to detect functional groups within a network (communities) or to compare their 

distributions between networks have been discussed as well. Different algorithm types have been 

introduced together with multiple metrics that can be used to evaluate the created network 

partitioning. Community detection can be used to describe groups of genes in a network that are 

more tightly connected with each other than the rest of the network (highly co-expressed) and 

therefore are likely to take part in similar functionalities. Communities can be enriched by external 

data, such as pathways to functionally describe them. Topological pathway analysis methods were 

also discussed, which instead of only looking at (grouped) genes take their connection into account 

as well. Lastly we introduced graphical models, which try to describe the uncertainty existing in 

biological networks.  
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All together established and emerging methods for microarray analysis based on a network 

approach have been outlined and discussed, which can be used to gain new insight into gene - gene 

relationships, gene - disease relationships and many more relationship types contained in the data. 
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Figure 1: Example of co-expression network analysis. Starting from microarray experiments (A) 

the gene co-expression values (B) can be computed by means of correlation or mutual information 

metrics. From gene co-expression values, the co-expression network(s) can be computed by means 

of multiple algorithms (C). External data can be integrated during the co-expression network 

creation in order to obtain more robust and reliable results (D). Once the final network is obtained, 

global measures can be computed to evaluate network properties (E). Moreover local centrality 

measures can be used to identify key genes in the network(s) such as for example hub genes 

(F).Community detection algorithms can be used to identify groups of genes with strong 

correlation patterns (G) and pathways enrichment analysis can be used to functionally characterize 

the genes in the communities (H).  

 

Figure 2: An undirected unweighted graph (A), directed unweighted graph (B) and un undirected 

weighted graph (C). 
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Figure 3: Showing how different centrality measures identify different “high importance” nodes 

in a network. Node c has the highest betweenness centrality, node x the highest closeness centrality 

and node w has the highest degree and eigenvector centrality. 

 

Figure 4: A graph with three tightly connected structures (communities): w, z and x. 
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Figure 5: In topological pathway analysis the position of the differentially expressed (DE) genes 

in a pathway graph is taken into account. DE genes placed on different paths (on the left) have less 

impact than DE genes on the same path (on the right). 
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Figure 6: A generic outline of a topological pathway analysis. A co-expression network is 

functionally characterized by assessing the statistical enrichment of its connections over a set of 

pathways. 

 

Figure 7. Module based differential co-expression analysis. A different co-expression pattern can 

happen because a module is present or not in two co-expression networks (A); A different co-

expression pattern  can happen because a module of genes is present in both networks but with 
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 Absence of 
 Module

(B) Module 
 with different 
 structure

(C) Module split

(D) Gene 
 Hopping
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different structures (B); A different co-expression pattern can happen because a module of genes 

in a network is splitted in two modules in another network (C); A different co-expression pattern 

can happen because a module of genes is tightly connected with a set of genes in a network, while 

it changes genes connection in another network (D).  

 

Figure 8: Showing a Bayesian network (A), Markov network (B) and dependency network (C). 

 

Table 1: Different local network metrics. 

Type Measures Meaning 

Connectivity of a 
node/ all nodes 

● Degree 
● Degree 

Distribution 
● Strength 

● Number of a nodes incident edges 
● Distribution of all nodes in a graph’s 

degree 
● Sum of the weights of a nodes incident 

edges 

Centrality - a 
nodes position in 
the network w.r.t. 
all other nodes  

● Closeness 
Centrality 

 
 
 

● Betweenness 
Centrality 

 
 

● Eigenvector 
Centrality 

 

● How close (how many steps/ weighted 
paths) is a node to any other node in the 
network (that can be reached) - average 
length of the shortest paths between a 
node and all other nodes (97)  

● How important is a node for information 
flow in the network - quantifies how often 
a node lies on a shortest path between two 
other nodes (97, 98) 

● How influential is a node on the network - 
quantifies to how many “important” nodes 
a node is connected to (99) 
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● Katz Centrality 
 
 
 
 

● Cross Clique 
Centrality 

 
 
 
 

● Percolation 
Centrality 

● How influential is a node on the network - 
generalization of eigenvector centrality, 
takes into account immediate neighbors 
and all other nodes that can be reached 
from a node (100, 101) 

● How important is a node for information 
propagation - Estimates to how many 
cliques (a subgraph of the network where 
all nodes are connected to each other; the 
subgraph is a complete graph) a node 
belongs (101) 

● How important is a node for “information 
flow” over time - quantifies how many 
percolated paths go through a node, can be 
used to model infection spreading in a 
network; when all prelocation values are 
the same then percolation centrality = 
betweenness centrality holds (102) 

 

 

Table 2: Global network metrics. 

Type Measure Meaning 

Connectivity ● Clustering coefficient 
 

● Density 
 
 
 

● Shortest Path Length 
Distribution 

● Measures the degree to which nodes 
tend to cluster together.  (103, 104) 

● Quantifies how many of all possible 
edges exist in a network, it is 1 for a 
complete network and 0 for a 
network without any edges 

● Distribution of all shortest paths in a 
network (how close any node is to 
any other node) (105, 106) 

Size ● Diameter 
 
 
 
 

● Radius 

● A networks diameter is the largest 
path among all longest shortest path 
between any two nodes  that exists in 
a network (maximum eccentricity) 
(107) 

● A networks radius is the smallest 
among all the longest shortest paths 
between any pair of nodes  that exists 
in a network (minimum eccentricity) 
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Connectivity 
patterns 

● Graphlet Distribution 
 

● Cycle Distribution 

● Graphlets are small (often up to 5 
nodes) subgraphs (32, 34, 108) 

● Quantifies the size of cycles that 
exist in a network (109) 

 

Table 3: Groups of community detection algorithms and some example algorithms. 

Type Algorithms 

Node Clustering  

weighted ● Louvain (110) 
● Greedy modularity (111) 
● Leiden (112) 

unweighted ● Walktrap (non probabilistic random walks) (113) 
● Girvan Newman (114) 
● Label propagation (115) 
● Markov clustering (116) 

Overlapping ● Angel (117) 
● Seed set expansion (118) 
● CONGO/CONGA (119) 
● Big Clam (120) 

Fuzzy/ Probabilistic ● Fuzzy Rough Community Detection (121) 

Edge Clustering ● Hierarchical Link Clustering (122) 

 

Table 4: A collection of graph partitioning evaluation metrics. 

Evaluation Metric  

Community Size Distribution Are there strong differences in community size? Which 
distribution is to be prefered depends on the use case and 
type of network, but often the aim is an equal community 
size distribution. 

Average Internal Degree How tightly are nodes within a community connected. A 
high value indicates a tight knit community (123). 

Internal Edge Density/ Density w.r.t. How tightly are nodes within a community connected - 
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Graph density this can also be estimated in comparison to the graph 
density. A high within community score indicates a 
tightly knit community structure (123). 

Conductance Fraction of edges leaving a community. A small value 
indicates that there are not many connections to other 
communities (124). 

Fraction of weak members How many nodes in a community have more outgoing 
than in-going edges? A small value indicates that 
members of a community are tightly knit with each other 
w.r.t. to the outside (125). 

Modularity Fraction of edges existing in a community w.r.t. to the 
expected number of edges. A high value indicates a 
tightly knit community (126). 

Cut Ratio Fraction of edges (of all possible edges) that leave a 
community. A small value indicates a more condensed 
community structure (127). 

Average shortest path within a 
community/ w.r.t. Whole graph 

How close are nodes within a community. A small value 
indicates a more tightly knit community structure. 

Average Edge Weight (weighted 
graph)/ w.r.t. the whole graph 

Are “stronger” connected nodes clustered together? This 
measurement is for weighted graphs. Either a small or 
high value may be preferred (indicating that strongly 
connected nodes are clustered together) but this depends 
on the type of edge weight being used. 

Average Clustering Coefficient in a 
Community/ w.r.t. the whole graph 

How tight are nodes connected? A high value indicates 
tightly connected community structures w.r.t. to the 
whole graph structure. 

Hub Dominance Is a community based around a hub node? A high value 
indicates this.  

Node Embeddedness Node Degree within a community w.r.t. To its overall 
degree. A high value indicates a strongly connected 
community structure. 

 
 
 


