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ABSTRACT

Based on the collective input of Dagstuhl Seminar (21342), this

paper presents a comprehensive discussion on AI methods and

capabilities in the context of edge computing, referred as Edge

AI. In a nutshell, we envision Edge AI to provide adaptation for

data-driven applications, enhance network and radio access, and

allow the creation, optimisation, and deployment of distributed

AI/ML pipelines with given quality of experience, trust, security

and privacy targets. The Edge AI community investigates novel ML

methods for the edge computing environment, spanning multiple

sub-fields of computer science, engineering and ICT. The goal is to

share an envisioned roadmap that can bring together key actors

and enablers to further advance the domain of Edge AI.

CCS CONCEPTS

• Computing methodologies → Distributed artificial intelli-

gence; • Networks → Cloud computing;

KEYWORDS

Edge AI, Edge Computing, 5G Beyond, Future Cloud, Roadmap

1 INTRODUCTION

Edge computing promises to decentralise cloud applications while

providingmore bandwidth and reducing latency [10]. These promises

are delivered by moving application-specific computations between

the cloud, the data producing devices, and the network infrastruc-

ture components at the edges of wireless and fixed networks [4].

Meanwhile, the current Artificial Intelligence (AI) and Machine

Learning (ML) methods assume computations are conducted in

a powerful computational infrastructure [5], such as datacenters

with ample computing and data storage resources available. To shed

light on the fast evolving domain that merges edge computing and

AI/ML, referred as Edge AI, the recent Dagstuhl Seminar 213421

has gathered community inputs from a diverse range of experts.

The efforts result in this CCR paper that discusses both technical

and societal demands for applying AI methods in the context of

edge computing.

1https://www.dagstuhl.de/en/program/calendar/semhp/?semnr=21342

Figure 1: Usecases of Edge AI

As recent research and development go along, the ’Edge’ itself

remains a diffuse term. A commonly accepted definition of what

the edge is, where it resides, and who provides it, is lacking across

different communities and researchers2. Common understanding is

shared about its properties: as compared to the cloud, its features

are closeness (latency and topology), increased network capacity

(effectively achievable data transmission rate), lower computational

power, smaller scale, and higher heterogeneity of devices. Com-

pared to the end devices (the final hop), it features increased com-

putational and storage resources. It is an abstract entity to offload

computation and storage without the detour to the cloud.

A raising area of tension arises from current AI and ML meth-

ods, which require powerful computational infrastructure [5] – a

demand that is better satisfied in a data center with ample avail-

able computing and data storage resources. However, sending the

necessary raw data to the cloud puts pressure on the network w.r.t.

bandwidth and throughput. Meanwhile, organisations are usually

less keen on sharing (potentially restricted) data with commer-

cial cloud providers. This tension is addressed by the fast evolving

domain of Edge AI.

As highlighted in Figure 1, Edge AI has gradually found its way

to mainstream service domains such as connected vehicles, real-

time gaming, smart factories, and healthcare. From infrastructure

perspective, edge environments provide a unique layer for AI and

2We deliberately renounce marketing-driven differentiation of edge vs. fog vs. mist
computing in this work.
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also offer opportunities for existing technologies such as embed-

ded AI or federated learning, which look at minimising memory

consumption on individual devices, increasing privacy by keeping

data on the local device, as well as reducing communication needs

between distributed entities. Those features serve as the foundation

for the use cases shown in Figure 1.

Based on the collective input of Dagstuhl Seminar on Edge Intelli-

gence (21342), this paper aims to share an envisioned roadmap that

can bring together key actors and enablers to further advance the

domain of Edge AI. Sections 2, 3, and 4 cover the perspectives of 5G

beyond, future cloud, and AI/ML, respectively. Section 5 presents

the envisioned road map and outlook.

2 5G BEYOND PERSPECTIVE

The evolution of the fifth-generation networks towards the 6G era

shapes the perspective of future networking. The developments

along this path not only encompass network communication (e.g.

speed, coverage, and resilience) but also quality and delay in compu-

tations. To unlock the true potential of future networks with such

a complicated structure, various technologies, at both hardware

and software levels, need to coexist and cooperate. These include,

for example, the creation of edge computing and communication

fabrics or using self-learning technologies for dynamic network

orchestration. Similarly, there are critical perspectives in holistic

system trustworthiness, including security assurance mechanisms

or confidential communication, computing, and learning. In this

section, we elaborate on the challenges and opportunities.

2.1 Communication and Computation with

Human-in-the-Loop

With the wide dissemination of smartphones and other personal

carry-on devices, their significant computation, communication,

and sensing capabilities become valuable to solve challenges in

networking. The examples include local data acquisition as in feder-

ated learning, reducing the communication overhead as in device-

to-device caching, and cooperating in executing computationally-

intensive tasks. In future networks, mobile devices can decide if,

when, where, and which fraction of a specific task to offload to a

server at cloud or edge. Besides, they can take the role of computa-

tional worker, form pools of resources, and divide the tasks based

on their preferences to optimize their utility and performance.

While humans or human-driven devices may significantly con-

tribute to Edge AI, such involvement raises several challenges. To

model such challenges, one can use multi-agent systems. Subse-

quently, to address them, one can use various mathematical tools

such as control and game theory. Furthermore, ML and AI play sig-

nificant roles if there is some uncertainty and lack of information.

In all of the above-mentioned steps, the specific characteristics of

humans should be taken into account [1]. In particular, humans

often act based on heuristics and irrational influences, taking into

account the factors such as social norms and peer pressure. When

dealing with self-interested entities, it is essential to consider mu-

tual trust and to respect the welfare of each entity [12]. Finally,

using humans as a data source, e.g., using body sensors or GPS,

proliferates privacy concerns that strongly couple with legal and

ethical challenges.

2.2 Critical but Conflicting Actors and

Applications

In the transition from the current systems and networks to 5G

beyond, the future needs of the societies become the driving force

that creates use cases. As such, building innovative technology to

address the society-driven use-cases becomes imperative [3]. To

some extent, it stands opposite to the current use-cases such as low-

latency and reliability that are generated by technological advances

rather than taming directly from the society. Examples include the

current vertical trends, including resource-efficient manufacturing,

green energy generation and distribution, organic agriculture, and

optimization of retail logistics.

Heterogeneous actors are expected to build and consequently

share the massive edge computing infrastructure to serve their wide

range of demands. Despite having some common goals to achieve,

such actors often exhibit conflicting interests; i.e., more benefit for

one attribute may reduce that of the other (here the utility can

correspond to higher monetary return, sustainability, improved

environmental factors, and the like). Finding a Pareto-optimal and

stable solution to this problem is significantly challenging as dif-

ferent utility measures are often conflicting. The problem becomes

aggravated in practice as it involves several decision-makers in-

stead of a single central authority. That is not only because of

self-interest but also due to information asymmetry and different

types/preferences [2]. AI can be a solution to this problem, as it

enables distributed systems to interact, learn, and make decisions –

rendering smart systems inseparable blocks of edge intelligence.

2.3 Edge Intelligence and the Emerging

Technologies in Beyond 5G Networks

Next-generation networks beyond 5G encompass several technolo-

gies whose efficient deployment depends strongly on reliable cloud

infrastructure as well as edge intelligence. These include, among

others, joint communication and sensing, campus networks, Open

Radio Access Network (RAN), intelligent reflecting surfaces (IRS),

to name just a few. For example, the technology of joint commu-

nication and radar sensing is implementable in two networking

architectures, namely small cell networks, and cloud RAN [6].While

the latter is amenable to the cloud infrastructure, both implementa-

tions greatly benefit from edge intelligence. That is because joint

communication and sensing necessitates swift signal processing

and precise pattern recognition, both of which are computationally

complex.

Another example is campus networks, which covers a geograph-

ically limited region to cover the communication requirements

specific to that area. For example, a manufacturing company can

integrate a campus network in response to the need for secure,

reliable, and persistent industrial communications with ultra-low

latency. Other applications of campus networks include agriculture

fields, construction sites, hospitals, and the like. The 5G technology,

together with the edge computing capacity and AI, are the drivers

of campus networks. They enable secure and stable communication,

fast and no-failure computation, also reliable and efficient perfor-

mance, even in the absence of precise information. The reliable

performance of several other technologies such as IRS depends

on edge intelligence as well. IRS technology relies on the optimal
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beam configuration, which might happen repeatedly. As a result,

the required low-delay computation can be handled by the edge.

2.4 Technology Meets Business

Recently, the discussion around 5G and beyond has been largely

driven by the potential use cases and the over-arching goal to

build real-time integrated edge computing, AI, and communication

services that respond to the dynamic needs of the applications.

These anticipated solutions, from everyday life to smart traffic and

medical advantages, are significant but need evaluations within the

context of technology and novel business models.

We identified three examples where AI technologies have a role

in entirely new functions, however, hardly any business cases and

models are yet defined for them:

(1) Interpreting the results of joint sensing and commu-

nication capabilities in future networks. Future higher

frequency communications allow some level of “radar-like”

recognition of the environment. This represents a significant

change to what current networks do or how they operate,

and the security issues involved are substantial.

(2) Optimal link-level communication details discovery

through ML. This, in theory, is possible. However, the use-

fulness of these technologies is still questionable along with

the necessary learning costs offset by the optimisation bene-

fits accrued.

(3) Interoperability and collaborative use of data and AI

technologies. Current systems are largely run within single

organisations, but we raise the question: “what can we do to

enable more sharing technologies and inter-operable inter-

faces”. There is a need for various stakeholders to identify

and discuss relevant security, privacy, and ethical issues and

tools to respond to them in trustworthy manner.

3 FUTURE CLOUD COMPUTING

PERSPECTIVE

The perspective of future cloud computing is shaped by the collab-

oration between future clouds and future edge nodes. The main

reasons for shifting tasks from the cloud to the edge are latency,

bandwidth, locality of data, scalability, accessibility, security, and

fault tolerance. This collaboration is not only a technical aspect,

but also involves business and stakeholder challenges. An impor-

tant non-technical challenge is the potential competition between

cloud and edge, which need to work together closely to provide

the best-possible service to customers. In the following, we will go

into detail about the technological challenges involved from the

cloud perspective. In our opinion, these challenges are: i) resource

management, ii) energy constraints and efficiency, iii) security, trust

and privacy, and iv) intermittent connectivity.

3.1 Resource Management

Although the total volume of edge servers may provide a large

amount of resources, the necessary locality of edge servers limits

the amount of available resources compared to a cloud environment

quite drastically. That limits the number of different ML tasks that

may be executed simultaneously due to hardware limitations and

the execution latency of the tasks. While the number of ML tasks

supported by the edge can be increased through on-demand loading

and execution of the corresponding models, this may increase the

latency of tasks that need to be loaded. Thus, for latency-critical

tasks, pro-actively reserving resources might be a necessity. As

the reservation of resources could drastically limit the number of

supported ML tasks, the necessity of reserving resources should

be determined based on the risk of failure together with the con-

sequences of that failure. Especially when resources are sparse,

the management of these resources in critical situations might be

challenging.

Importantly, AI tasks at the edge are often embedded in larger

settings, e.g., as part of a control workflow. Accordingly, different

services hosted on edge resources have to interact with each other.

Not taking into account that data items may have to be forwarded

to services may lead to the fact that these services are not ready

when receiving data and/or may not possess the computational

resources for handling data items. Accordingly, a backpressure

of data items might occur. This is especially the case in stream

processing scenarios, e.g., when new data items need to be classified

and—based on the classification—forwarded to different destination

services. Thus, it might be interesting to observe and analyze the

execution of tasks depending on their priority level given different

loads on the edge.

3.2 Energy and Operational Constraints

In general, edge nodes are expected to be less efficient (in terms of

energy and cost) than cloud data centers. That is, as the Economies

of Scale might work against edge data centers, e.g., by allowing

for better cooling. Both, edge nodes and cloud data centers, have

the possibility to deploy renewable energy, but it is unclear where

these units are producing energy more efficiently. On the one hand,

large data centers provide more opportunities to deploy renewable

energy, increasing their sustainability and environment compati-

bility, but also consume a significantly higher amount of energy

compared to edge nodes. On the other hand, edge nodes might

harvest their own energy easier than cloud data centers due to their

small scale and geographical dispersion, even though their capacity

for renewable energy units is quite limited.

In addition, the data need to be transferred via the Internet

which also consumes energy, increasing the possibility of edge

nodes to surpass energy-efficient cloud data centers: Edge nodes

can pre-process data, e.g., can detect anomaly cases and transmit

only relevant data or adapt sensing rates dynamically. However,

energy saving largely depends on the amount of processing that

can be done at the edge. Another possibility is to move the training

process partially to the edge, utilizing methods such as federated

learning (see Sec. 4.3). In that case, only learned parameters (e.g.,

gradients) need to be transmitted, rather than raw data, which is

multiple orders of magnitude larger.

Another potential advantage of the edge nodes is the more spe-

cially designed hardware compared to generic cloud server racks, as

this specially designed hardware is becoming more popular in the

market (e.g., hardware accelerators) and utilizes limited processing

and graphical capacities more efficiently.
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Figure 2: Trust, Security and Privacy of Edge AI

3.3 Security, Trust, and Privacy

As shown in Figure 2, Edge AI offers both opportunities for higher

trust, security, and privacy, but also adds additional challenges.

The security might be increased as some attacks might be detected

early and countermeasures can be taken. However, the number of

possible targets and attack vectors are much higher, which lead to

a higher potential of attacks.

Edge AI might have an issue with trust in the system, which is

caused by its distributed nature and the potential liability issues.

However, the trust in edge servers might be increased through

open implementation and specifications. Additionally, it might be

necessary to differentiate between devices under the control of the

user and resources provided by providers (e.g., AWS, GCP, Azure).

One possible solution for increasing trust is the introduction of

a reputation system known from other areas, that assesses and

manages trust. However, it will take new players a while to build

that reputation.

Another property of Edge AI is that the data required to per-

form the ML tasks is kept local at the edge servers. This led to the

common assumption that the privacy and trust in edge servers is

higher compared to the cloud. In contrast to the common assump-

tion, edge does not guarantee privacy, but raises new challenges to

ensure privacy. That is, as the trust of edge nodes is harder to keep

and manage compared to a cloud provider, thus also aggravating

data security and privacy, even though the locality of the data will

prevent some attacks on the data.

3.4 Intermittent Connectivity

In general, we also consider the possibility of poorly connected

edge servers, i.e., edge servers in regions where the connection to

the internet is poor. Also in those areas, edge intelligence has a huge

potential and can be a driver towards digitalized non-urban areas.

Some examples for such systems include water and air pollution

monitoring and natural disaster (wildfire, flood, volcanic eruption,

etc.) prediction. For instance, in water pollution monitoring, the

identification of substances in the water could be done using edge

resources.

The lack of reliable network connectivity in those areas could

be the main driving factor in environmental monitoring scenar-

ios in which streaming data has to be processed in near real-time.

Intermittent connectivity and energy constraints prevent monitor-

ing systems from continuously transmitting raw data to the cloud

for processing, whereas less data-intensive control signals like the

output of ML algorithms can still be communicated under interrup-

tions and low bandwidth availability. In addition, the actors which

rely on the outcome of ML algorithms are often close to the data

sources. By not sending the data to the cloud, a complete processing

step can be saved, e.g., starting countermeasures automatically. In

the previous example of water pollution monitoring, the services

running at the edge can then inform pumps or valves to open or

close, depending on the scenario.

4 EVOLVING AI/ML PERSPECTIVE

In this section, we describe the AI perspective on edge nodes and

the challenges associated with it. Figure 3 depicts the different

levels of complexity of AI and the availability of data on mobile

devices, edge servers, and cloud servers: While the mobile devices

have the highest volume of data available to them, their capability

of processing this data is generally limited. Thus, preprocessed

data can be offloaded to local edge servers to perform tasks which

cannot be executed by the mobile devices. The edge server has

more resources than the mobile devices and can run more complex

tasks, but due to the preprocessing its access to data is more limited.

Tasks that cannot be executed will then again be offloaded to the

cloud server, which can run the most complex models, but also

receives only a part of the data available at the edge server.

In the following, we describe three challenges that have been

identified and deserve community attention: These challenges are 1)

availability of accelerators for AI applications; 2) defining a trade-off

between accuracy and resource demand; and 3) utilising federated

learning of edge servers.

4.1 Accelerators for AI applications

While we expect that hardware accelerators for AI applications will

also be available at the edge, it is expected that only small hardware

accelerators will be available there. That is, as resources at the edge

can be used less elastically compared to the cloud, which might

lead to idle hardware. Due to business aspect, it is expected that

the large hardware accelerators will be deployed in the cloud.

One current trend to work with these limited resources is to split

the model and AI algorithm into multiple smaller chunks, which

can be executed by these small hardware accelerators. Through

joint interference among these small hardware accelerators, the

user experience and quality of service of applications running at the

edge can be enhanced. In general, it will be necessary to transfer

the large models with high resource demands to the cloud and

vice-versa.

ML also provides unique opportunities for offloading and multi-

tier architectures. Unlike traditional workloads, which inherently

offer conflicting requirements in terms of scaling to more nodes and

tiers and keeping the state of the workload sufficiently consistent

between the different nodes, ML, especially training of neural net-

works, has clearly defined state distribution and synchronisation
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Figure 3: Scope of Edge AI

models [11]. Furthermore, unlike traditional distributed systems

the consistency requirements can be comparably easily relaxed,

thereby trading network bandwidth and number of replicas for

typically moderate losses in accuracy. An important question is

therefore which accuracy and latency requirements the application

has and how to monitor the quality of the model during the entire

life-cycle on the edge.

4.2 Tradeoff between accuracy and resource

demand

As mentioned previously, edge servers have higher resource con-

straints compared to cloud servers. Some models may only run in

the cloud due their complexity.

In today’s AI research, the common goal is often to achieve re-

sults with the highest possible accuracy or maximizing the reward

function. However, a pivotal difference for Edge AI is that the qual-

ity of results is not the only measure for performance, but also

other metrics like energy consumption and memory need to be

considered. Thus, models need to be elastic to adapt to the cur-

rently available resources and memory. For that purpose, it must be

possible to adapt the size of the respective ML models. This can be

done by miniaturizing them using techniques like transprecision,

quantization or approximation. These techniques generally provide

a tradeoff between performance metrics and the accuracy of the

model. Examples for Edge AI minimization are TinyML and Tensor-

Lite. An interesting research challenge is the analysis of adapting

the ML model given the current (and maybe future) available re-

sources. In addition to that, we consider the possibility to offload

certain tasks to the cloud: If the accuracy of the miniaturized model

executed at the edge is insufficient, it might be necessary to offload

the task to the cloud. The cloud is then able to provide the results

with high accuracy and send it back to the edge.

4.3 Federated Learning

In addition to the miniaturization of models, models can be trained

on multiple devices simultaneously using federated learning. This

is especially important for Edge AI, as the distributed nature of

edge-servers increases the need of federated learning.

For federated learning, the data is kept local and thus not shared

with the cloud. However, when a complex model is run at an edge-

server, the available resources might be insufficient to run or train

the model. One research challenge is the deployment of a complex

model only in the cloud, which is trained in a federated manner

based on less complex models deployed at the edge.

Federated learning also allows for the classification of time-

critical labels at the edge directly, while other labels need to be

classified in the cloud. This adds another layer of elasticity to the

model. We expect that the accuracy of these time-critical labels

remains high even though the model might be simplified through

miniaturization by summarising all non-time-critical labels to be

classified by the cloud model. Thus, an open research question is

the miniaturization a model such that the accuracy for a subset of

labels remains high and the decision on when a classification needs

to be executed by the cloud.

In addition, the data received by the edge servers and generated

by the mobile devices might be quite diverse. Federated learning

can help to train a single model using these diverse sensor inputs

and increase the accuracy of all models independent of their sensor

setup. The detection of malicious data, that could harm the training

process, is also considered as an open challenge [7].

Another challenge is the elastic adaptation of federated learning

systems to dynamically updated client partnerships considering

the satisfaction of collaboration criteria (e.g., minimum number of

training partners) and still optimizing model accuracy.

5 ROADMAP AND OUTLOOK

Roadmap overview: The envisioned roadmap of Edge AI is high-

lighted in Figure 4. Along with three identified driving areas of

5G beyond, future cloud, and evolved AI/ML, the advancement of

different technologies and the growing business interests will take

Edge AI forward in terms of hardware, software, service models,

and data governance.

Starting from the current state of play driven by cellular, cloud,

and AI/ML service providers, the roadmap reflects five general

phases: scalable framework, trustworthy co-design, sustainable

and energy-efficient deployment, equal accessibility, and perva-

sive intelligent infrastructure. As changes can always occur, the

sequence depicted in the roadmap could be switched or combined.

Nonetheless, this Edge AI roadmap reflects the combined effects of

technology enablers and non-tech demands such as socioeconomic

transformation of user behaviours, purchasing power and business

interests.

Open research challenges: Despite of its promise and poten-

tial, Edge AI can face major challenges in large scale deployment,

including energy optimization, trustworthiness, security, privacy

and ethical issues.

As an important goal of sustainability, the energy consumption

of Edge AI needs to be optimized. The energy efficiency is crucial

for Edge AI embedded infrastructures (e.g., road side units, micro

base stations) to sustainably support advanced autonomous driving

and Extended Reality (XR) services in the years to come. Through

the pipeline of data acquisition, transfer, computation, and storage,

there exists the possibility for Edge AI to trade accuracy with re-

duced power and less time consumed. For instance, noisy inputs

from numerous sensors can be selectively processed and transferred

in order to save energy. A set of applications would be satisfied
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Figure 4: Roadmap of Edge AI

with an ‘acceptable’ accuracy instead of exact and absolutely cor-

rect results. By introducing this new dimension of accuracy to the

optimization design, the energy efficiency can be further improved.

Concerning trustworthiness, Edge AI benefits from its close

proximity to the end-devices. However, due to the distributed de-

ployment with deep insights into personal context, the safety and

perceived trustworthiness for Edge AI services are raising concerns

among the stakeholders (e.g., end users, public sectors, ISP) [8, 9].

To achieve trustworthy Edge AI, critical building blocks are needed,

including verification and validation mechanisms that ensure trans-

parency and explainability, especially in the training and deploy-

ment of Edge AI in decentralized, uncontrolled environments. The

trustworthiness of Edge AI is a stepping stone to establish an appro-

priate governance and regulatory framework, on which the promise

of Edge AI can be built.

Safety and Privacy/Ethical Issues: When we discuss the se-

curity and privacy of Edge AI, there are two aspects to consider, i.e.,

1) usage of Edge AI to provide security and privacy; 2) new security

and privacy issues due to the use of Edge AI, as in Figure 2. Edge

AI can be a vital tool to ensure the security and privacy network.

Instead of performing AI processing in the cloud, Edge AI processes

the data locally closer to the user. That prevents the necessity of

transferring data between the user and the cloud and eliminates the

possibility of attack during the backhaul data transmission phase.

Moreover, privacy can be improved by keeping and processing data

locally. Processing is focused on moving the interface of the AI

workflow to the device while maintaining data restricted to the

device. Another security benefit of Edge AI is the possibility of an

AI algorithm being decentralized and eliminating a single point

of failure in the cloud AI system. In a way, Edge AI could be a

reason to limit the impact of an attack on the local environment

and mitigate it already at the edge level due to added intelligence.

There are new safety and privacy issues arising with the use of Edge

AI. Decentralisation of Edge AI opens up unknown attack vectors

and increases the number of entry points for AI system attackers.

Edge AI devices might not have the same level of security as cloud,

which can be used as easy entry points to get access to attack the

AI system. Moreover, edge devices are physically accessible, and

added AI to edge devices makes the impact of captures edge devices

severer than an edge device without AI. For instance, taking control

of Edge AI devices might jeopardise or take control of almost all

the localised network services of a particular location.

Concluding remarks: The promises of Edge AI come hand in

hand with new challenges and uncertainties. This paper is our en-

deavour to capture the latest technological development, crucial

actors across three major dimensions of 5G-beyond, future cloud

and AI/ML for the envisioned roadmap. We hope that the perspec-

tives conveyed in this paper can provide a different view to the

community and further pave the way to promote the global rollout

of Edge AI in the long run.
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