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In certain special circumstances, such as in the vicinity of a black hole or in a uniformly accelerating
frame, vacuum fluctuations appear to give rise to a finite-temperature environment. This effect, currently
without experimental confirmation, can be interpreted as a manifestation of quantum entanglement after
tracing out vacuum modes in an unobserved region. In this work, we identify a class of experimentally
accessible quantum systems where thermal density matrices emerge from vacuum entanglement. We show
that reduced density matrices of lower-dimensional subsystems embedded in D-dimensional gapped Dirac
fermion vacuum, either on a lattice or continuum, have a thermal form with respect to a lower-dimensional
Dirac Hamiltonian. Strikingly, we show that vacuum entanglement can even conspire to make a subsystem
of a gapped system at zero temperature appear as a hot gapless system. We propose concrete experiments
in cold-atom quantum simulators to observe the vacuum-entanglement-induced thermal states.
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I. INTRODUCTION

Thermalization is one of the most widespread and fun-
damental phenomena and plays a central role in virtually
all branches of physics. In standard textbook statistical
physics, a thermal state arises as a maximum entropy
state that satisfies appropriate external constraints [1].
More recently, the notion of the eigenstate thermaliza-
tion hypothesis has identified temperature as a generic
emergent phenomenon in closed quantum systems [2—4].
According to the hypothesis, the reduced density matrix
of a subsystem of a thermodynamically large, interacting
many-body system is asymptotically equal to the thermal
reduced density matrix when the subsystem is sufficiently
small compared to the total system [5—7]. This hypothesis
in its strong form, where all eigenstates become ther-
malized, has been verified for nonintegrable systems [8].
A weaker version, such that an exponentially small num-
ber of nonthermal states can exist, has been observed in
certain integrable models as well [9].

While the eigenstate thermalization hypothesis only
accounts for a nonzero temperature in highly excited
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systems, there are famous examples of how vacuum fluc-
tuations may give rise to a finite-temperature environment.
The Hawking effect, which attributes a finite temperature
to black holes, is deeply connected to the entanglement
of vacuum modes [10—12]. In the same vein, the Unruh
effect gives rise to a finite temperature for accelerated
observers moving in the relativistic vacuum. In both cases,
the apparent unitarity-violating emergence of a thermal
state could be attributed to entanglement with an unob-
servable region beyond the event horizon or the Rindler
wedge. It has been recognized that this picture is valid in a
much broader sense, promoting entanglement as the key
unifying concept in analyzing diverse phenomena from
black hole physics to condensed-matter systems [13-22].
For example, the emergence of effective temperature from
ground-state entanglement has lately been identified in
systems obeying the entanglement area law, where the
entanglement entropy scales as the subsystem boundary
[22-24]. The area law is known to give rise to subsystem
density matrices that are characterized by a spatially vary-
ing effective temperature that decreases rapidly away from
the boundaries [25-29]. Unfortunately, the strongly inho-
mogeneous entanglement temperature profile is mostly of
theoretical interest since its experimental verification poses
so far unresolved practical and conceptual issues. How-
ever, a direct experimental observation of a thermal state
emerging from vacuum entanglement would be an out-
standing achievement with deep implications for multiple
branches of physics.

Published by the American Physical Society
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FIG. 1. Entanglement-induced thermal subsystems embedded
in a D-dimensional Dirac fermion system at zero tempera-
ture. (a) Examples of lower-dimensional thermal subsystems
embedded in 2D and 3D parent states. When the full system
is in the ground state of the total system Hamiltonian Hp, the
reduced density matrix of the subsystem has a thermal form p =
e PHp-1/Z (b) Thermal state emerging from vacuum entan-
glement could be observed in cold-atom quantum simulators by
probing particle fluctuations in the one-dimensional subsystem.

In this work, we identify a large class of systems, illus-
trated in Fig. 1(a), where vacuum entanglement induces a
uniform temperature and where the phenomenon becomes
experimentally accessible. Specifically, we show that
the lower-dimensional subsystems embedded in a D-
dimensional gapped Dirac fermion vacuum have thermal
density matrices. This property holds for continuum mod-
els as well as for lattice systems. The thermal Hamiltonian
of a subsystem has a simple relation to the Hamiltonian of
the whole system, while the effective temperature is deter-
mined by the bandwidth in the traced-out directions. For
lattice systems, the effective temperature acquires momen-
tum dependence; however, typically, the density matrix is
excellently reproduced by a constant-temperature approx-
imation. We explain how the notion of lower-dimensional
thermal subsystems is closely connected to the table of
topological insulators in different dimensions. As a strik-
ing consequence of our results, we show that the vacuum
entanglement can conspire to make lower-dimensional
subsystems of a zero-temperature gapped state appear as
hot gapless systems. Finally, we explain how the thermal
nature of the subsystems manifests through fluctuations in
observables and propose a concrete setup, illustrated in
Fig. 1(b), where our predictions can be verified in cold-
atom quantum simulators. Specifically, we show that the
particle number fluctuations in a one-dimensional (1D)
chain embedded in a 2D array match those of a genuinely
1D Dirac system at finite temperature, providing a smok-
ing gun signature of the vacuum-entanglement-induced
thermal state.

II. THERMAL ENTANGLEMENT SPECTRA IN
D-DIMENSIONAL GAPPED FERMI SYSTEMS

In this section, we study lower-dimensional subsystems
embedded in the ground state of a gapped D-dimensional

Dirac fermion system with the Hamiltonian

Hp(k) =Y dp, (T = dp(k) - T, ()
N

where I'* are 2”-dimensional (with n € N) Clifford matri-
ces {I'*, '} = 216*" and dp satisfies dp - dp > 0 for all
D-dimensional (quasi)momenta k € R”. In particular, we
show that the reduced density matrix of a Ds-dimensional
translation-invariant subsystem (Ds < D) can be exactly
written in the form

o= Lk By Hp, (ko)

Z >

Ppy = )
where the effective subsystem Hamiltonian (ESH) Hp,
(ky) =dp,(ky)-I' has a Dirac form with a lower-
dimensional momentum k, € R?s and the cAz’kS are fermion
annihilation operators. The reduced density matrix in
Eq. (2) in its general form corresponds to a general-
ized Gibbs ensemble that reduces to an exactly thermal
density matrix for a constant 8 [30]. We obtain an ana-
lytical expression for the effective translation-invariant
inverse temperature S(K;) and demonstrate with examples
how expression (2) typically holds to remarkable accu-
racy when B(Kk;) is approximated by a constant. Despite
the system as a whole being in the quantum ground state,
from the point of view of observables, the subsystems
behave as D;-dimensional systems at finite temperature.
We note that the ESH should not be confused with the com-
monly studied entanglement Hamiltonian Hg, defined by
op, = e HE/Z_ In contrast to the ESH, the entanglement
Hamiltonian does not provide a natural notion of tempera-
ture, and it does not reduce to the subsystem Hamiltonian
even when all couplings between the reduced subsystem
and the rest vanish.

A. Entanglement-temperature mapping

Here we derive the entanglement-temperature mapping
in Eq. (2). For a free-fermion system in a Gaussian state,
including (but not limited to) the ground state and a
finite-temperature state, the reduced density matrix of an
arbitrary subsystem also corresponds to a Gaussian state
[31,32]. Consequently, due to Wick’s theorem, the entan-
glement spectrum of a subsystem is completely encoded in
the correlation matrix with real-space components defined
as C:‘i,/ = (alyar)* given in terms of fermion operators
Cxo for a particle with orbital index « and at position x
in the subsystem. If two systems have the same corre-
lation matrices, they necessarily have coinciding reduced
density matrices. Here, by matching the correlation matri-
ces, we map the reduced density matrix of D,-dimensional
subsystems to thermal Ds-dimensional systems given by
Eq. (2). In translationally invariant systems, by expanding
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particle creation operators in the basis of Bloch eigenstates

Yok as el = Y (| y)d, we find the correlation matrix
elements in k space as

(Clylra) = Y @V Wokle Xy do),

v

where the expectation value on the right-hand side gives
the Fermi-Dirac distribution ng (E,). In the following, we
assume that the parent D-dimensional system is at zero
temperature so np(Eyx) is 1 for filled bands and 0 for
others. It is now straightforward to show that, by restrict-
ing spatial indices x,x’ to a D,-dimensional subsystem
with periodic boundary conditions, the correlation matrix
becomes

ﬂkxx AT A
XX,_LDE ( )C Cka)

1
= LDs

ke te) @ ®l),  (3)

Ks

where L is the linear extent of the system in all D dimen-
sions and

S

A su 1
k)= Y vl @

filled v,k |

This defines the Fourier transform of the subsystem cor-
relation matrix that has been obtained simply by substi-

tuting the above expression for (Elaﬁka/)*. The full D-
dimensional momentum k = (ky, k) is decomposed as
the reduced subsystem momentum k; with Dy components,
and the momentum perpendicular to subsystem k; with
D — D, components. We note that, since the Hamiltonian
is expressed in terms of anticommuting gamma matrices,
the number of different orbitals (bands) « is also lim-
ited to 2" and the correlation matrix C must be 2" x 2",
accordingly. The entanglement spectrum and the reduced
density matrix are now fully determined by the correlation
matrix (3).

The correlation matrix of a genuinely D;-dimensional
system at a finite temperature is also given by

A sub
expression (3) but now with operator ¢ (k) substituted

by

& k) = Y 1o ) ur Inr (@i, 5)

where |¢x,) and w, are eigenstates and energies of a
Dy-dimensional Hamiltonian. The necessary and sufficient
condition for the thermal mapping of the reduced den-
sity matrix of Ds-dimensional subsystems is that expres-
sions (4) and (5) must match for some D;-dimensional

Hamiltonian Hp . Thus, the emergence of an effective
temperature in the reduced density matrix of the subsys-
tem arises from the momentum average of D-dimensional
band projectors over the D — D, unobserved dimensions.
Equations (3)~5) are valid for all free-fermion systems.
We now show how the generalized Dirac systems
(1) provide a natural example of the entanglement-
temperature correspondence in Eq. (2). The spectrum of
the D-dimensional parent Hamiltonian (1) is given by & =
+|dp(k)| and the projection to the filled negative-energy

bands is obtained by
dp
Vi) (Yok| = ( 1">'
Z Kk Kk | |
Hence, we find that
~ sub 1 dD
C k,)= —( < > -T ) 6
2 |dp| ©

filled v
(=LY,
ki

denoting the momentum average over the traced-over
dimensions. Defining a new quantity

with

1 dp
dp,(ky) = ————(=—) - !
D, (Ks) }"Dx(ks)<|dD|>J_ v
where
1
K, s
Fp, (k) = <|dD|> Y

the correlation matrix (6) for the reduced system becomes

A sub
C (k) =31 —Fpdp,-I). )

This is immediately similar to the thermal correlation
matrix of a genuinely D;-dimensional system with a Dirac
Hamiltonian Hp, = dp, (k) - T. Using Eq. (5), the thermal
correlation matrix for such a system reads

A th 1
C%ng(

n==x1

D
—.T dx. D),
n|dDX| )"F(m k)

which can be matched with Eq. (9) by requiring that

np(=|dp,|) — nr(ldp,|)
|dp, |

From this equation we can solve the effective entanglement
temperature as

]:DS (ks) =

|dp, |
2 arctanh(|dp, | Fp,)

T(ky) = B~ (k) = (10)
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ESH (7) and temperature (10) fix the entanglement-
temperature mapping in Eq. (2), proving that the ground-
state entanglement in lower-dimensional subsystems gives
rise to a thermal density matrix. This density matrix is
characterized by a translation-invariant temperature and
the ESH Hp, that is obtained by averaging the par-
ent Hamiltonian Hp over the unobserved directions. The
entanglement temperature (10) is of the order of the
bandwidth (or the hopping amplitude) in the traced-out
dimensions and, as such, is very high for isotropic mod-
els. In strong contrast to generic area-law subsystems
that exhibit a strongly inhomogeneous spatial tempera-
ture profile [27,28], the entanglement entropy here scales
as the subsystem volume, and the effective temperature
for lower-dimensional systems can be typically regarded
as a constant, as seen below. The analogy to a true ther-
mal equilibrium state with uniform temperature makes the
phenomenon feasible to experimental studies.

B. Example I: 1D thermal subsystems in a Chern
insulator

To make the general entanglement-temperature map-
ping more concrete, we now illustrate it by exam-
ples. First we study a 2D Chern insulator model and
show that its 1D subsystems correspond to thermal 1D
systems. In particular, we consider the Qi-Wu-Zhang
(QWZ) model defined by Hop = dyp(Kk) - 0 with dyp(k) =
(t; sink,, t, sink,,m — t, cosk, — t, cosk,). For the sake
of compactness, in the following we set #, = 1, which
is equivalent to measuring all other energy scales with
respect to that quantity. The correlation matrix given by
Eq. (4), for a 1D subsystem in x direction and with the
valence band filled for the 2D model, reads

1
Clhk) = 7 3 1) |

ky

T 1 dp(k)
=_|l1-= )
2[ 7 2 @) "}

ky

with | —) indicating the negative-energy eigenstates. The
averaging over vertical momentum, using the expression
for the vector d,p, can be written as

1 dop(K) .
_ = (sinky, 0, m — cos k) F (k,
L%: |dop (K)| (sink 7

1 t k
— (0,0, Y 222
L 2= (dp(®)

in which F(k,) = (1/L) Zkv 1/|dyp(K)|. It is clear that
the average of the second component of the vector iden-
tically vanishes due to its antisymmetry under k, — —k,.

The second line can also simply be absorbed inside the
mass term m as a renormalization,

1 g cos ky,

dm(k,) = = .
" F ) 1 2 k)

Putting altogether, the correlation matrix of the 1D subsys-
tem takes the form

Clk) = 3[1 — F(k) dip(ky) - 0] (11)
with

dlD(kx) = [Sil’l kx: 0; m— Sm(kx) — €08 kx] (12)

The 1D ESH determining the thermal state is given
by Eq. (12), which has the form of H,p with vanish-
ing transverse hopping #, =0 and renormalized mass
m + Sm(ky). In other words, the 1D subsystem embed-
ded in the 2D QWZ model has the same static
properties as a vertically decoupled 1D chain with
just a renormalized mass, and subjected to a tem-
perature, as will be elucidated more clearly in the
following. The dependence of the mass renormaliza-
tion term ém on momentum for different values of
m and f#, is shown in Figs. 2(a) and 2(b), respec-
tively. Intriguingly, the mass renormalization vanishes
identically when m =1 and k, =0, which can also
be deduced from the mass renormalization expres-
sion by noting that at this particular point we have
dop (ke = 0,k,) = 1,(0,sink,, —cosk,), thereby  ém
(ky = 0)|y=1 = 0. But, since m =1 corresponds to
the gap-closing point of the 1D model with dip =
(sink,,0,m — cos k,), the above observation implies that
the gap-closing point of the ESH given by Eq. (12) at
m =1 is not affected by §m. As shown in Appendix A,
this behavior is not limited to the simple model with just
nearest-neighbor hopping. We also see that dm is sup-
pressed by decreasing the lateral hopping and vanishes
when #, — 0, as expected.

Result (11) can be recast into a manifestly thermal
form as

1 dip
Clk) = = (]1 +n -0>n (nldip)),
2 n; dip| )

where the temperature is obtained from Eq. (10) as

|dip|

T(k,) = .
(k) 2 arctanh(|d;p|F)

This temperature is plotted in Fig. 2(c) for various val-
ues of the mass m and in Fig. 2(d) for different values
of the transverse hopping #,. As seen in Fig. 2(d), the
scale of the temperature is set by the transverse hopping
t,, as expected. The temperature has a weak dependence
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FIG. 2. Entanglement temperature and mass renormalization
in the QWZ model. Panels (a) and (b) show the dependence of
the mass renormalization dm on the momentum k, for different
values of m and ¢, respectively. As discussed in the text, §m iden-
tically vanishes at the gap-closing point when m = 1 and k, = 0.
Panels (¢) and (d) show the variation of the effective temperature
with momentum.

on momentum, especially around m ~ 1 where the gap of
the effective 1D model (12) closes. Now, remembering that
at m = 1 the parent 2D system is gapped, this has an inter-
esting consequence that the reduced density matrix of a
1D subsystem for m = 1 matches that of a gapless sys-
tem at a very high temperature, even though we started
from a gapped 2D system in its ground state. This result
stems from the fact that, as we have noted earlier, the ESH
is equivalent to decoupled 1D chains accompanied with a
mass renormalization that itself vanishes at the gap-closing
point of the decoupled chains. Moreover, as we will see
in the next section, a similar behavior is also revealed in
higher dimensions, which makes this result quite profound,
especially noting that the inclusion of further hopping
terms may result in the same final result (Appendix A). In
Sec. 111, we elaborate more on the physical reasons behind
the appearance of gapless subsystems of gapped systems,
in a broader sense.

Thermalization is further confirmed in Fig. 3, which
shows a comparison between the exact correlation matrix
eigenvalues (denoted by &) and the corresponding thermal
model with constant temperature. The correlation matrix
eigenvalues provide the occupation probabilities of the
subsystem states and are given by the Fermi-Dirac dis-
tribution at finite temperature. As seen in Fig. 3(a), the
constant temperature Fermi-Dirac distribution essentially
reproduces the exact results. Away from |m| = 1, ESH (12)
is gapped, as indicated by the correlation matrix spectrum
in Fig. 3(b). In Sec. IV we discuss how the entanglement-
induced thermal state and the gapless subsystems can be
observed through experimentally measurable fluctuations.

FIG. 3. Thermal population of a 1D subsystem in the QWZ
model. (a) Correlation matrix spectra for the 1D subsystem
(shown by circles and squares) and a thermal system (shown
by lines) for m = 1 and two different values of lateral hopping.
(b) Similar results for m = 1.4. In both panels, the thermal cor-
relation spectrum is given by the Fermi-Dirac distribution 7z (E)
at temperatures 7' = 0.5 (for f, = 1) and T'= 0.1 (for £, = 0.2),
and plotted as a function of the ESH energy £ = +|d;p (k)|

C. Example II: Dirac models with linear dispersion

We now show that the entanglement-temperature map-
ping of lower-dimensional subsystems becomes simple for
continuum Dirac models with linear dispersion in arbitrary
spatial dimensions. For simplicity, we consider the two-
dimensional case, but generalization to higher dimensions
is straightforward. Let us consider Hamiltonian H,p =
dop(K) - o with dyp(K) = (&, k,,m) representing a 2D
massive Dirac Hamiltonian. Adapting Egs. (7) and (8)
derived for lattice systems to continuum, we obtain the
effective 1D Hamiltonian of the corresponding thermal
system as d;p(k) = (ky, 0,m) and

r 1 /A | ( 4N )
= — _ XX —In| — ).
2N J_\ k§+k§+m2 2A k£+m2

Here, a finite high-energy cutoff A is required to avoid log-
arithmic divergence of the integral, and the final result is
justified by assuming that A > \/k2 + m?. According to
Eq. (10), the effective temperature reads

A A
T = ~ ,
2InQRA /K2 +m?) 2 In2A /m)

(13)

which means that it is only weakly dependent on momen-
tum and becomes constant in the small-momentum limit
ky < m < A. Similarly, for higher dimensions, the effec-
tive Dg-dimensional Hamiltonian determining the reduced
density matrix in Eq. (2) is given by Hp(K;) and the scale
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of the effective temperature is set by the cutoff scale A.
Result (13) shows that, for the temperature mapping to
apply at small momentum, it is necessary to have a finite
mass |m| > 0 to avoid infrared divergences.

D. ESH versus the Bisognano-Wichmann Hamiltonian

Above we noted the difference between the entangle-
ment Hamiltonian and the ESH for lower-dimensional
subsystems. Here we emphasize that the entanglement
temperature and the ESH found in our work neither
follow nor are consistent with the well-known Bisognano-
Wichmann (BW) theorem that has enjoyed renewed inter-
est recently. This theorem states that the entanglement
Hamiltonian for a half-partitioning of Lorentz-invariant
systems exactly follows the system Hamiltonian with just
an additional spatially varying prefactor besides the local
Hamiltonian density of the original system [25,27]. The
first obvious difference is that, unlike the BW Hamilto-
nian, the ESH need not contain any position dependence
since our subsystems are of lower dimension and are (lat-
tice) translation invariant themselves. The second and even
more important difference is that the ESH does not fol-
low the system Hamiltonian as we have seen explicitly
for prototype examples. In fact, the ESH can have a com-
pletely different spectrum and physical behaviour from the
original Hamiltonian. This is reflected in the surprising
physical effect that the reduced density matrices of lower-
dimensional subsystems of a gapped parent system can
mimic that of a gapless system. Moreover, our thermal
mapping is mathematically exact, and we find a renormal-
ization of the Hamiltonian parameters—for instance, the
mass parameter m of Dirac models—in the ESH, which
is not consistent with the BW form of the entanglement
Hamiltonian.

On top of the above distinctions, the temperature asso-
ciated with the ESH and the renormalization of the
parameters is controllable by adjusting the lateral hopping
strength, as seen above. This possibility to physically dis-
entangle the notion of temperature and the ESH is absent
in the BW framework since, relying just on the stan-
dard notion of the entanglement Hamiltonian and BW
form, we always suffer from indistinguishable dual inter-
pretations: (a) a uniform Hamiltonian accompanied by
spatially varying effective temperature, (b) a spatially vary-
ing BW Hamiltonian and a constant effective temperature.
Not to mention that we can have even further mathe-
matically valid choices between the two above limiting
interpretations.

Even if one attempted to settle the ambiguity of disen-
tangling physically relevant temperature by simply regard-
ing the BW form of the reduced density matrix in terms
of a constant Hamiltonian and spatially varying tempera-
ture profile, one would run into serious practical problems
when trying to experimentally confirm the temperature

profile. To probe the reduced density matrix, one would
need probe the reduced system as a whole. But, since
the postulated effective entanglement temperature profile
is strongly spatially dependent, one would also need to
probe the reduced system locally to confirm the temper-
ature profile. This leads to a dichotomy that one would
simultaneously need to observe the whole system as well
as probe its local properties. Thus, experimentally measur-
ing any spatially varying temperature associated with the
BW theorem is deeply problematic in ways that highlight
its different nature with ordinary temperature profiles.

E. Thermal subsystems from vacuum entanglement
versus genuine thermal states

Since a density matrix encodes the full information
of the state of a system at a given moment in time,
all single-time expectation values and subsystem observ-
ables obtained from the density matrix (2) will coincide
with those of a D,-dimensional system with Hamilto-
nian Hp, at finite temperature. However, it is clear that
the entanglement-induced effective thermal subsystems
exhibit crucial departures from true thermal states. In gen-
eral, thermal systems emit thermal radiation and perturb
their environment by thermal fluctuations. Since the full
D-dimensional system (1) is in the ground state, it is
obviously impossible to extract net energy from any of
its subsystems. Thus, contrary to naive expectations, the
static thermal mapping (2) does not imply that lower-
dimensional subsystems would inherit all the properties of
thermal states.

To further quantify the above stated limitations, one can
consider time-dependent generalization of the correlation
operator (4), i.e.,

A Sul 1 .
i = D I Yl (14)

LD
filled vk |

which depends on the full energy spectrum (excitations)
E,x of the higher-dimensional parent system. Since the
density matrix (2) contains only the ground-state infor-
mation, it is insufficient in obtaining the time- and
frequency-dependent correlations necessary to establish
many standard properties of thermal systems, such as the
fluctuation-dissipation theorem. At very short times com-
pared to the inverse of the bandwidth (¢t € 1/AE), we
only need to retain the ground state in Eq. (14) and the
short time correlations from the static density matrix (2).
However, when 7 2 1/AE, the full spectrum and excited
states of the higher-dimensional parent system become
relevant to the subsystem properties, breaking the cor-
respondence to genuinely thermal systems. As a conse-
quence, the entanglement-induced thermal subsystems do
not emit thermal radiation, display Johnson-Nyquist noise,
or obey fluctuation-dissipation relations. Furthermore, we
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cannot expect thermal signatures in any linear-response
quantities as they also depend on frequency-resolved cor-
relations (spectral functions of the full system). Thus, in
sharp contrast to single-time expectation values, the prop-
erties sensitive to temporal correlations behave drastically
differently from true thermal systems.

III. THERMAL SUBSYSTEMS AND THE TABLE
OF TOPOLOGICAL INSULATORS

The entanglement-temperature mapping for lower-
dimensional subsystems has particularly interesting impli-
cations for topological materials. These materials can be
arranged into a periodic table in terms of symmetry class
and dimensionality, which repeats itself every eight dimen-
sions [33,34]. The topological classes of adjacent dimen-
sionality are connected through Bott periodicity, which
maps a topological system in d dimensions to one in d + 1
dimensions with the same topological invariant by adding
or removing chiral symmetry. Typically, this is used to
establish connections between different physical systems,
e.g., between one-dimensional chains and the scattering
invariant of two-dimensional systems [35]. Alternatively,
one can introduce additional variables describing synthetic
dimensions to carry out quantized pumping, which can also
be realized experimentally [36,37].

Since topological phases at different dimensions have
Dirac Hamiltonian representatives, we can apply the
entanglement-temperature mapping to study them. We
show that the reduced density matrices of lower-
dimensional subsystems have thermal form with respect
to ESHs that exhibit the same topological classification as
the table of topological insulators. By carrying out differ-
ent subsystem measurements, the dimensional reduction
actually becomes observable in a single physical system.
Furthermore, we illustrate the general pattern of how a
hot gapless D,-dimensional subsystem emerges from a
D-dimensional gapped vacuum state, as pointed out in
Sec. II B.

A. Dimensional reduction from the 4D parent state

To demonstrate the connection between the thermal
subsystem entanglement spectra and the dimensional hier-
archy of topological materials, we explicitly derive lower-
dimensional reduced density matrices of the 4D quan-
tum Hall state [38,39]. This model is widely known
as the parent Hamiltonian for descendants’ topological
states using the standard dimensional reduction procedure
[33,34,39-41]. The lattice version of this model can be
written in the form (1) with a five-component vector

4 4
dup (k) = (m — ) cos k,~>éo + ) sinkie,  (15)
i=1 i=1

TABLEI. Dimensional reduction: symmetry classes and phase
boundaries of the 4D parent system and lower-dimensional
subsystems.

Dimension Symmetry class Gapless points
4D All A m,==+4,£2,0
3D DIII Al me = £3,+1
2D D A m. = £2,0
1D BDI Alll m. = =+1
0D Al A me =0

which depends on 4D momentum k. Here, we can
introduce a basis where the five I' matrices are given
by T =(1: ® 00,7, ® 0, T, 0y, T, ® 07, Tx @ 0p). The
spectrum of the Hamiltonian possesses a pair of twofold
degenerate bands with energies ¢+ (k) = +|d(k)|. Unlike
the 2D Chern insulator, which explicitly breaks time-
reversal symmetry (TRS), the corresponding 4D model
has a time-reversal symmetry 7 Hyp(K)7 ! = Hyp(—Kk)
with time-reversal operator 7 = iz, ® 0,,/C based on the
above choice for the I' matrices. Hence, Hamiltonian (15)
belongs to the symmetry class All in the periodic table
of the topological insulators. Nonetheless, since the topo-
logical classification of 4D topological phases in classes
All and A coincide, we can equally consider the same
model as a parent Hamiltonian in class A by adding a
small TRS breaking term. Then, according to the Bott peri-
odicity depending on the symmetry class of the parent
4D system, we obtain two different generations of topo-
logical phases in lower dimensions belonging to different
symmetry classes, as summarized in Table 1.

Next, we consider lower-dimensional subsystems of the
4D Hamiltonian (15). According to Eq. (6), for generalized
Dirac Hamiltonians (1), the subsystem density matrix is
determined by the effective Hamiltonian obtained by aver-
aging the d vector over the 4 — D, transverse momenta.
Thus, the ESH is determined by Egs. (7) and (8) and
given by

d d
dp, = |:m — &mp,(Kp,) — Z cos ki:|é0 + Z sin k;€;,
i=1 i=1
1 dk4--‘des,+| COSk4 + - —|—COSkDY+|
SmDS = — 7 D‘ —.
(2)*=5s |dsp|

(16)

The entanglement temperature then follows from Eq. (10).
The gapless points of the ESHs, signifying possible topo-
logical phase boundaries, are given by the condition dp, =
0. This can only take place at the high-symmetry points
0O; of the subsystem Brillouin zone, where sinQ; = 0
for i =0,...,d. Hence, at different Q points, the gap-
closing condition becomes dp (Q) = [m — dmp,(Q) —
Zf.]:l cos Q;]ép = 0. Since the shifts in the mass vanish at
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high-symmetry points [émp, (Q) = 0] implied by Eq. (16),
the critical values are then given by m, = Zf:l cos Q.

All of the descendent models as well as the parent sys-
tems have a Z-classified topology that is characterized by
Chern and winding numbers in even and odd dimensions,
respectively. This property holds irrespective of whether
one regards the 4D parent state as belonging to class A
or All. For a Hamiltonian given in terms of n + 1 different
anticommuting Dirac matrices and in # spatial dimensions,
the Z invariant has a generic form

1 N ~ ~
Vn = S_ / d”ke”‘)*wduo (akldm) e (aknd“n)’

in terms of the mapping fl(k) =d(k)/|d(k)| from the
n-dimensional Brillouin zone to the n-dimensional unit
sphere [42]. The prefactor S, = 2x"+V/2/T'[(n+ 1)/2]
given in terms of the gamma function denotes the area of
the n-dimensional unit sphere. The topological invariant
for the 4D parent Hamiltonian and the lower-dimensional
entanglement Hamiltonians can be evaluated straightfor-
wardly and the results are summarized in Fig. 4. We
observe that the topological invariant always changes at
each gapless point and then identically vanishes for |m| >
d (where 1 < d < 4), indicating a trivial topological phase.
In particular, we find that the ESHs have distinct topologi-
cal landscapes with phase boundaries that move with the
subsystem dimension d. Although this conclusion relies
on the specific model (15), the gap-closing pattern of the
lower-dimensional ESHs is more general, as discussed
in Appendix A. At the critical point of the subsystem,
the spectrum of the ESH actually describes a semimetal
at finite temperature. This systematizes the observation
in Sec. II B that the lower-dimensional subsystems of a
gapped system at zero temperature may actually appear
as a metallic state at finite temperature. It also offers an
intuitive explanation for the emergence of the gapless
subsystems as follows. We have demonstrated that the pro-
cess of tracing out the higher-dimensional complement to

FIG. 4. Topological invariant v; of the 4D quantum Hall
model and its lower-dimensional effective subsystem Hamilto-
nians as a function of the band mass m.

obtain the lower-dimensional ESH has analogous features
with the usual process of dimensional reduction. In this
process, the system parameters controlling the gap closings
of lower-dimensional systems are generically renormal-
ized. Likewise, the renormalization of parameters in the
ESH, which is ultimately responsible for the emergence
of hot gapless subsystems of zero-temperature insulators,
can be regarded as a reflection of what is expected from
the conventional dimensional reduction. This argument
applies to the generic spatial dimension and also suggests
that it is largely insensitive to the details of the considered
model. Therefore, from a physical point of view, the emer-
gence of hot metallic subsystems from vacuum fluctuations
of gapped systems is not limited to a specific model, which
makes it even more remarkable.

Finally, we note that the symmetries of the dimensional-
reduced entanglement Hamiltonians are in agreement
with the Bott periodicity of topological insulators. As
can be seen in Eq. (16), the d-dimensional entangle-
ment Hamiltonian depends only on the first d + 1 Dirac
matrices. As a consequence, the 3D subsystem not
only inherits the TRS from the parent 4D Hamiltonian,
but also acquires a particle-hole symmetry (PHS) as
PH3p(k)P~! = —H3p(k) with P = 1, ® 0, K. The pres-
ence of both TRS and PHS induce chiral symmetry C =
PT = 1, ® 0y, indicating that the 3D model belongs to the
class DIII. With similar reasoning, one can figure out the
symmetry classes of the lower-dimensional descendants as
listed in Table I. Thus, the entanglement-temperature map-
ping reflects the periodic table of topological insulators. In
Appendix B, we discuss how the reduced density matrix
also reflects the topological properties of weak topological
insulators.

IV. EXPERIMENTAL CONSEQUENCES

The emergence of thermal states from the ground-state
entanglement reflects the highly nontrivial nature of the
quantum vacuum. Although two special cases of this phe-
nomenon, the Hawking and Unruh effects, have been
known for half a century, the phenomenon has eluded
experimental confirmation. The first experimental observa-
tion of thermal states from vacuum entanglement would be
an outstanding achievement, bridging fundamental notions
of quantum information, statistical physics, condensed-
matter physics, and high-energy physics. Here we propose
a concrete setup to observe the vacuum thermalization
within currently existing technology. The most natural set-
ting for exploring our findings is ultracold atoms in optical
lattices. Such systems are considered ideal for quantum
simulation for a wide variety of quantum phenomena due
to their high level of control and accuracy [43—46]. More-
over, it has been previously established that these systems
can realize various topological systems [47—49]. In par-
ticular, the Haldane model [47] can be represented as a
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massive two-band Dirac Hamiltonian (1) and is directly
relevant for our discussion. Moreover, the QWZ model
studied in Sec. II B has already been realized in bosonic
systems [50,51]. Thus, two-band Dirac systems are suit-
able candidates for experimental studies.

The entanglement-induced thermalization in these
systems could be probed by comparing the entanglement-
governed fluctuations in subsystems with genuinely ther-
mal fluctuations. This idea had been previously used to
introduce an effective temperature for subsystems of a 1D
spin system [52]. But, as we have thoroughly discussed
in Sec. II D, for such situations, a unique unambiguous
definition of entanglement temperature is almost impos-
sible due to its position dependence. Nevertheless, using
the fluctuations, it has been found that the effective tem-
perature of a subsystem vanishes as T.g o logL/L for
large subsystem sizes [53]. In sharp contrast, for lower-
dimensional subsystems, we see that the entanglement
temperature is enormous as it scales with the lateral hop-
ping term and can be much higher than the real temperature
in the experiment. As long as the real temperature is low
compared to the hopping amplitudes, it has little effect
on the outcome of the experiment. Moreover, the effec-
tive entanglement temperature can be easily controlled
by varying the hopping amplitude out of the subsystem.
Fluctuations of the subsystem observables match those
of thermal systems at corresponding temperature, thus
providing a feasible experimental signature to probe the
entanglement-induced thermalization.

We illustrate the above recipe by studying the behav-
ior of particle fluctuations in a 1D subsystem of the QWZ
model studied in Sec. II B. The subsystem particle number
operator is defined as N = Y".2/¢;, where the summa-
tion is restricted to a chain in the x direction embedded
in the 2D lattice. The subsystem particle number fluctua-
tions are quantified by their variance AN2 = (N2) — (N)2.
We consider two different values for the lateral hopping,
t,/t. = land t,/t, = 0.5, which translate to different effec-
tive temperatures. The corresponding correlation matrix
spectra (or population probabilities) of the 1D subsystem
are shown in Figs. 5(a) and 5(b). As seen in Figs. 5(c)
and 5(d), the comparison of the particle fluctuations as
a function of the mass parameter in the subsystem with
that of the associated 1D system at a constant temperature
shows excellent agreement. When the effective tempera-
ture is reduced by decreasing the lateral hopping to ¢, /t, =
0.5, the gap-closing points of the ESH (and the correla-
tion spectrum) at m = £1 become clearly visible through
enhanced fluctuations signaled by the two peaks. The posi-
tions of these peaks, obscured by high effective tempera-
ture at ¢, /t, = 1, do not coincide with the 2D gap-closing
points (|m| = 2, m = 0) but provide a smoking gun signa-
ture of our prediction that a 1D subsystem in the gapped
2D subsystem at zero temperature can appear as a hot
gapless subsystem. Moreover, the fluctuations of

O

0 0
e f
©, " M, ”
1.2
N N
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0.4
0.0 -2 -1 0 1 2 0.0 -2 -1 0 1 2
m, m
FIG. 5. Correlation matrix spectra and particle number vari-

ances of finite 1D subsystems of a 2D QWZ model, with different
orthogonal hoppings corresponding to different effective temper-
atures in the mapping to 1D systems. The red curve in the bottom
figures also shows the fluctuations obtained using Eq. (11), but
with a constant temperature simply equal to the mean over & of
the temperature given by Eq. (10) [with the k-dependent T'(k), the
fluctuations would match exactly]. (a),(c) All hoppings of equal
magnitude. (b),(d) Orthogonal hoppings half the magnitude of
hoppings parallel to the chain, corresponding to a lower effec-
tive temperature. (e) Particle number variance of a subsystem of
length 5 in a total system of size 5 x 10 with open boundary con-
ditions. Inset: schematic illustration of the system. (f) Same as
(e), but with y-directional hoppings half the magnitude of those
in the x direction.

conserved quantities can be exploited as an effective mea-
sure of entanglement entropy. The connection linking fluc-
tuations and entanglement entropy, which was previously
considered in various studies, especially in a transport con-
text [54-56], has been put in a general framework by
justifying the similarities between entanglement entropy
and variance of conserved subsystem observables [57].
Thus, the agreement between the fluctuations, as shown
in Fig. 5, implies that the entanglement entropy of the 1D
subsystem corresponds to the thermodynamic entropy of a
genuine 1D system at a constant temperature.

Importantly, the qualitative behavior of the fluctuations
is preserved even at small system sizes accessible in cur-
rent experiments. This is illustrated in Figs. 5(e) and 5(f),
where we show AN? for a subsystem of length 5 embedded
in a 5 x 10 array. Manipulating comparable lattice sizes
are within reach of the current experimental techniques
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[58—60]. Moreover, a site-resolved measurement of par-
ticle number statistics, similar to what is needed in our
proposal, has already been demonstrated in Refs. [43,44].
Thus, the thermal state arising from ground-state entan-
glement could be observed by realizing a two-band Dirac
insulator and carrying out a site-resolved particle num-
ber measurement, both of which have been previously
demonstrated in cold-atom experiments.

Finally, we emphasize the sharp distinction between our
experimental proposal and a number of recent works with
superficial similarities. First, the recent experiments sim-
ulating some aspects of the Hawking and Unruh effects
[61-63], unlike in our proposal, apply time-dependent
driving to stimulate a thermal-like radiation in systems that
are not described by a static thermal density matrix. In
this sense, they do not constitute a demonstration of ther-
mal states emerging from vacuum entanglement. Similarly,
the purpose and the outcome of previous works simu-
lating entanglement Hamiltonians [27,28,64] are equally
distinct from our theoretical proposal. The main pur-
pose of these works is to artificially realize entanglement
Hamiltonians for certain lattice models that follow, at
least approximately, the BW ansatz. As has been thor-
oughly discussed in Sec. I D, the artificial simulation of
entanglement Hamiltonians, while interesting in its own
right, cannot be regarded as a confirmation of vacuum-
entanglement-induced thermalization, and nor do the cited
works claim so. In our experimental scheme, we suggest
to directly observe the subsystem particle number fluctua-
tions that follow a thermal equilibrium form, thus directly
revealing the thermal nature of the reduced system. In
this definite sense, our proposal would indeed enable the
first observation of vacuum-entanglement-induced effec-
tive temperature.

V. CONCLUSION

In this work we identified a large class of quan-
tum many-body systems, constituting of gapped Dirac
fermions, in which entanglement of vacuum fluctuations
gives rise to a thermal density matrix in their lower-
dimensional subsystems. We also showed that, remark-
ably, subsystems of a zero-temperature insulator may even
appear as hot gapless systems. We proposed that the emer-
gence of a thermal state from vacuum could be realistically
observed, for the first time, in cold-atom quantum simula-
tors through thermal fluctuations. Direct experimental ver-
ification of an emergent thermal state from vacuum quan-
tum fluctuations would be an outstanding achievement
with ramifications in statistical physics, condensed-matter
physics, high-energy physics, and quantum information.
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APPENDIX A: GAP CLOSING IN
DIMENSIONALLY REDUCED SYSTEMS

Let us assume that we have a Dirac-type Hamiltonian

(AD)

N
Hy =Y di(®T},
i=1

where the I'; are 2" x 2" general gamma matrices that obey
the anticommutation rule {I';, I';} = 2§;;.

Let us assume that the system is D dimensional and
translationally invariant, and that the subsystem considered
for the C matrix is (D — 1) dimensional and likewise trans-
lationally invariant. As mentioned in the main text, the C
matrix at 7’ = 0 can then be written as

1
Chp=7 D vl (A2)

filled v,k |

In the above we have written k = (kj, k1), where k; are
the momenta inside the subsystem and &, represents the
single momentum component orthogonal to the subsystem.
Because of the structure of the Hamiltonian, the above is
equivalent to

d;(k
Ckp=1 ——Z ®©r

d(k) I =1 — B(k)).

(A3)

A gap closing corresponds to B having zero-energy eigen-
values for some k. Let us now separate the part of the
Hamiltonian that depends on the orthogonal momentum,
ie.,

di(K) = hi(ky) + fi(ky, ko). (A4)
In this way we have separated a lower-dimensional Hamil-
tonian expressed in terms of 4;:

N
Hp_y(kp) =Y _ hi(kp)T'.

i=1

(AS)

The functions / may or may not be k; dependent (as, e.g.,
would occur with diagonal hoppings).

Let us now consider a momentum k; = qo where Hp_;
has a gap closing, so that, for all i, 4;(qp) = 0. At this
particular point, the I' components of B take the form

1 ik,
B(qO)iZZZ Jilk1,qo)

kL \/Zjﬁ(h,%)z'

Let us first assume that, for every i, the function f;(ky, qo)
is either even or odd around 4, = 0 (note that this does not

(A6)
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need to be the case for a generic k). In this case, where it
is odd, B; vanishes, and where it is even, it reduces to

ﬁ(kLﬂ QO)

1
B(qo)i =2— —_—
Ly kg 2o S ki, qo)?

If now within this &k, interval the numerator is odd and
the denominator even around 7 /2, the whole sum van-
ishes. This will occur if, for every i, and 0 < € < 7/2,
Ifi(r/2 + €,q0)| = |fi(w/2 — €, qo)|, and further f;(7/2 +
€,qo) = —fi(w/2 — €, qp) for those i for which f;(k, , qq) is
even around £, = 0. This will be the case, e.g., for nearest-
neighbour hopping on a lattice. If so, gap closings of Hp_;
immediately imply gap closings of Hj.

(A7)

APPENDIX B: THERMAL
LOWER-DIMENSIONAL SUBSYSTEMS IN WEAK
TOPOLOGICAL INSULATORS

Here we show how the lower-dimensional thermal sub-
systems reflect the topological properties of weak topologi-
cal insulators. One way to construct a model for a 2D weak
topological insulator (WTI) is to consider a vertical stack
of Su—Schrieffer—Heeger chains with nearest-neighbor unit
cells coupled in the vertical direction as shown in the inset
of Fig. 6. The two-band Hamiltonian of the model can be
written in the Dirac form H>p = dwri(K) - 0 with

dwri(K) = (t, + £, cos ky + 2t, cos k,, £, sink,,0). (B1)
This Hamiltonian clearly satisfies the chiral symmetry as
we have o.Ho, = —H. Hence, the topological charac-
terization of the model is encoded in the weak indices
v = —i [ d®k/(27)? QIZlBkj Ok, which are based on the
vertical averaging over the 1D winding number densities.
Here, Ox = d, + id,, where d,, d, denote the components
of Eq. (B1). Assuming that #, > 0, the phase diagram of
this model consists of a WTI with (v,,v,) = (1,0) for
t. —t. > 2t,, atrivial phase for t, — £, > 2t,, and a gapless
(metallic) phase for |7, — #,| < 2t,.

In the WTI phase, depending on the orientation of the
reduced 1D subsystem with respect to the x and y direc-
tions, the entanglement Hamiltonian is in the topological
and trivial phases, respectively. This distinction, which
reflects the weak topological index of the parent 2D sys-
tem, is illustrated in Fig. 6. The topology of the 1D ESH is
easily obtained from the d vectors of the subsystems along
the x and y directions,

dix (k) = [ty + £, cosk + 8,t(k), £, sink, 0], (B2)

dyy (k) = [ty + 2t, cosk + 8,1(k),0,0],  (B3)

which are obtained from Egs. (7) and (8) by setting k;, =
ky, ke. This elucidates why the ESH for the subsystem

FIG. 6. Correlation matrix spectra for 1D subsystems of the
2D WTIL The system size (number of unit cells) is 60 x 60 and
the 1D sublattices have length L = 30. Panels (a) and (b) indicate
the spectra for a 1D open subsystem along x and y, respectively.
The dotted vertical lines are visual guides for separating different
phases, i.e., trivial, gapless, and WTI, respectively.

along y cannot have a topological phase since its winding
number vanishes identically. In contrast, d;, (k) for the sub-
system along the x axis supports a finite winding number
in the same regime as parent Hamiltonian (B1).
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