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Abstract
In most autonomous robot approaches, the individual robot’s goals and cooperation behavior are fixed during the design.
Moreover, the robot’s design may limit its ability to perform other than initially planned tasks. This leaves little room for
novel dynamic cooperation where new (joint) actions could be formed or goals adjusted after deployment. In this paper, we
address how situational context augmented with peer modeling can foster cooperation opportunity identification and coop-
eration planning. As a practical contribution, we introduce our new software architecture that enables developing, training,
testing, and deploying dynamic cooperation solutions for diverse autonomous robots. The presented architecture operates
in three different worlds: in the Real World with real robots, in the 3D Virtual World by emulating the real environments
and robots, and in an abstract 2D Block World that fosters developing and studying large-scale cooperation scenarios. Feed-
back loops among these three worlds bring data from one world to another and provide valuable information to improve
cooperation solutions.
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1. Introduction
In autonomous robot cooperation, understanding the
robots’ context plays a key role. Situational context is a
term used to describe why some phenomenon occurs in a
specific situation and what actions can be associated with
this situation [1]. This paper presents an architecture that
fosters the robots’ situational awareness in their present
context. Central in our approach is the information that
is relevant for the cooperation planning: A robot must
be able to form an understanding of the other robots and
their resources and an understanding of the environment
where the cooperation is intended to take place. Hence
our architectural approach does not provide a solution
to form a complete or joint contextual understanding be-
tween the robots. Instead, the architecture enables each
robot to form its own view of the situation. The robots
then use their situational context model and understand-
ing as a basis for forming joint action plans for meeting
their own personal goals.

In most autonomous robot approaches, the goal of the
individual robot and its cooperation behavior is fixed dur-
ing the design. However, in heterogeneous encounters
with diverse peers and other computational actors, this
leaves little room for novel dynamic cooperation where
new (joint) actions could be formed or goals adjusted
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after deployment. Nonetheless, this kind of creative use
of complementary capabilities could highly benefit the
whole robot population, especially when the population
is sparse and consists of low-end consumer robots built
for singular tasks, e.g., cleaning, with ample idle time to
allocate to other goals.

To optimize the use of context and training the robots
to understand their situation and cooperation possibil-
ities, we propose a novel three-world development ap-
proach. The development approach involves Real World,
3D Virtual World, and 2D Block World, and an associated
software architecture and frameworks that can operate
in all these three different worlds, allowing to focus on
different aspects of the development.

The 2D Block World works as a platform and test bed
for developing the ontology-based understanding as it
allows simulation of large number of diverse robots in dif-
ferent cooperation scenarios. Ontological reasoning and
planning provide robots a shared understanding of "how
the world works" and thus are crucial in our approach
for multi-robot cooperation.

As our starting ontology, we adopt DUL (DOLCE+DnS
Ultralite) ontology1, which suits well for autonomous
robot reasoning (see, e.g., KnowRob 2.0 [2]). It serves as
a top-level ontology, which applications are supposed to
extend by their own ontological concepts. For this work
we have made a minimal extension to DUL to showcase
the applicability of our approach.

In the Real World and 3D Virtual World implementa-
tion, we have focused on robots based on Robot Oper-
ating System (ROS). Briefly put, ROS is an open-source

1http://ontologydesignpatterns.org/wiki/Ontology:
DOLCE+DnS_Ultralite
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robot development framework where different nodes, or
programs, communicate asynchronously by subscribing
and publishing to topics shared over a network. A single
ROS node acts as the server, or master, to which other
ROS-enabled devices can be connected to as clients, form-
ing the network. Being a leading open-source project in
robotics, ROS has an active development community, and
a different, newer version, ROS2, is also seeing increasing
amounts of use and development. In this work, we use
ROS2 in our implementation.

Our approach aims to support ad hoc encounters of het-
erogeneous autonomous robots, which each have their
own individual goals, which can be used to define vari-
ous plans that include different types of tasks. Typically,
the cooperation tasks can be categorized into loosely
and tightly coupled cooperation tasks [3]: Tightly cou-
pled tasks cannot be performed by one robot but require
multiple robots working cooperatively; Loosely coupled
tasks, on the other hand, can be performed by a single
robot but the task can be performed more efficiently in
cooperation.

The proposed software architecture enables coopera-
tion in both tightly coupled and loosely coupled tasks
mainly through peer modeling, which has been argued
to be a requirement for cooperation [4]. The robots ex-
change, learn, use and evaluate models of themselves
and their peers to identify and exploit cooperation oppor-
tunities. Although the architecture proposes means for
coordination and communication, implementing tightly
coupled tasks, however, requires more work from the
developer.

The rest of this paper is structured as follows. In Sec-
tion 2, we introduce concepts related to our architecture.
In Section 3, we describe our solution – a software archi-
tecture that enables the developing, training, and testing
cooperation of autonomous robots. In Section 4, we ex-
plain the current status of the architecture and what kind
of experiments are currently possible with the architec-
ture. In Section 5, we cover work related to our approach.
In Section 6, we discuss how we plan to improve the so-
lution in the future and what we are currently focusing
on implementing. Finally, in Section 7, we draw some
conclusions for this work.

2. Cooperation Concepts
To understand our architecture, we first introduce the
ontological concepts we use to enable cooperation. The
basic concepts introduced here are part of DUL ontology,
but we extend them in our work to provide concrete
solutions and a more fine-grained understanding of the
situation at hand.

The robots’ essential operation revolves around goals
describing desirable situations, which we model as states

of the environment and the robot should find itself in.
A goal can be, e.g., to keep a room clean or deliver a
package to a specific place. A robot may have multiple
or even conflicting goals.

To achieve its goals (either by itself or in cooperation),
robot forms plans which consist of tasks. A plan describes
how a certain goal is achieved, i.e., which tasks should be
done and their (partial) order. To make a plan concrete,
each task needs to be assigned to a robot (or a set of
robots). This concrete plan is called a workflow.

Tasks are the individual elements from which plans and
workflows are composed of. Each task includes individual
objects to be achieved, e.g., open a particular door, move
to a specific place, etc. Tasks can be hierarchically nested
in two ways. First, there can be general tasks (open a
door) and refinements of those tasks (open a door by
pulling the handle). Second, lower-level tasks may be
combined to compose higher-level tasks, e.g., moving,
opening a door, and moving again can be seen as one
higher-level moving task. These task structures are used
when generating and communicating workflows.

Tasks have defined start and end conditions. How-
ever, the actions (see below) can be partly responsible for
checking these conditions. The start condition is checked
before the task can be attempted, e.g., to open a door man-
ually, the robot must be next to it. The end conditions
are checked to see if the task was completed successfully,
e.g., if the door is open. The task end conditions can be
thought of as individual, low-level goals.

To achieve tasks, each robot has actions by which the
tasks can be completed. The robot may have multiple
(sets of) actions that achieve the same task, and an action
may be utilized in multiple tasks. Where goals, plans,
workflows, and tasks are platform-independent, actions
should be implemented on each platform (and the world)
separately.

To allow cooperation, robots communicate their goals,
suggested workflows, and tasks to develop workflows,
including multiple robots. To make this communication
more fluent, robots maintain a model of themselves and
each of their peers. In general, these models may hold
any important information of the robot in question, such
as their physical properties, capabilities, i.e., which tasks
they can perform, the robot’s goals, and the history of the
workflows they have been included in and their success.

3. Software Architecture for
Autonomous Robot
Cooperation

At the core of our research is the CACDAR architecture.
The architecture, with its components and the leveraged
services, is depicted in Figure 1. The architecture can
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Figure 1: CACDAR architecture.

operate in all three worlds, 2D Block World, 3D Virtual
World, and Real World, and it also provides feedback
loops between these three different worlds, allowing us
to manually and automatically incorporate the insights
in order to advance the situational context awareness
that fosters the robot cooperation (see Figure 2).

2D Block World 3D Virtual World Real World

Figure 2: Lessons learned feedback loops between three de-
velopment and evaluation stages.

3.1. Cooperative Brain Service
The critical enabling service for the novel and valuable
cooperation is platform-agnostic Cooperative Brain Ser-
vice, which encloses several components. The service is
responsible for the high-level functionality of the robot
such as planning of future tasks and cooperation (see
Planner), scheduling of tasks to be executed (see Sched-
uler) by Task Runtime, and it gathers information from
sensors, its operation and communication with other
robots into Knowledge Manager which it uses in its rea-
soning. For cooperation, the service needs to be able to
detect if there is a robot that has requested help, and then
try to reason if it would a) have the missing resources,
or b) would have free resources or less important tasks
so that it could free up the resources for the cooperation.
The availability of such resources (e.g., time and battery)



are estimated in collaboration with Scheduler and Task
Runtime components.

However, the most crucial responsibility of the ser-
vice is to estimate whether it will meet its own goals.
It constantly keeps track of its resources and what re-
sources other robots have allocated for helping it to meet
its goals. Hence, it leverages Knowledge Manager and
Task Runtime components by observing changes in the
models that represent the other robots and environment,
and then notifies the Planner which can alter its work-
flow and tasks (e.g., by replanning tasks with missing
resources or reorganizing tasks in its workflow).

3.2. Knowledge Manager
Knowledge Manager takes care of maintaining the robot’s
understanding of the world and the information associ-
ated with the cooperation. The main input source for the
component is the robot’s (platform-dependent) service
components that the robot uses for observing and sens-
ing. Knowledge Manager may also exchange information
with other robots’ Knowledge Manager components via
respective Cooperative Brain Services with Coop Messages.
Knowledge Manager maintains the following models that
enable novel and valuable cooperation as well as robot’s
individual goal-oriented behavior:

Situational Context Model captures information
considering the robot’s current situation, e.g., where it
and other robots currently are, what is the state of the en-
vironment objects near it, and other dynamic properties.
The model’s contents can be updated using feedback from
sensors, Environment Model (e.g., by making queries of
possible state changes in the physical objects represented
in the ontology if they are not directly perceived), Self
and Peer Models, and direct communication with other
actors, such as robots, through Coop Messages. To this ex-
tent, Situational Context Model operates in tandem with
the environment and peer models to provide a unified
view of the most current understanding of the situation.
This model can be used directly in Planner, whereas other
models provide more fractured view of the situation.

Environment Model connects actions in the operat-
ing environment, e.g., moving or object manipulation,
into state changes in ontological objects. The model
should represent the environment and its objects in suffi-
cient detail so that it can be used to derive reasonable Situ-
ational Context Model and reason about possible changes
of certain actions in particular situations. It can be up-
dated using feedback from the environment (either per-
ceived or received through communication). The level of
detail in Environment Model varies across the different
world types. In 2D Block World, the model is sufficient
to possess simple logical states, e.g., is the door open or
closed, while in Virtual and Real World the model may
be more elaborate, e.g., a door can be partially closed

and currently opening. However, to keep the "backward
functionality" intact from Real World back to 2D Block
World, individual object states and actions that manipu-
late them in Real World model should be mappable into
the 2D Block World model.

Self Model and Peer Models contain information
about the robot itself and its peers. In general, each peer
has its model, but aggregate models, e.g., considering cer-
tain classes of robots, are possible. Robots exchange basic
information considering themselves (drawn from their
Self Model and other knowledge sources) when they first
meet their peers and update and replace this informa-
tion through communication and observations. Where
Situational Context Model offers current information of
the state of the world, and Environment Model offers an
understanding of how the world works, these models
provide knowledge of what are each robot’s goals, which
tasks are possible for the robot, and what restrictions
the robot may have for performing specific tasks, e.g., if
the robot can only open specific types of doors. From
the cooperation perspective, these models are highly rel-
evant, as their information is needed in Planner when
determining whether who can perform a particular Task.

Task to Action Mapping Models contains knowl-
edge about mapping the task realizations to actions. This
knowledge is mainly about the robot’s tasks, but peers’
tasks to action mapping information can also be partially
stored. This applies especially to cases if the robots are
of the same type. Additionally, other peers may provide
some information about their action mapping for a par-
ticular task, e.g., resource estimates, timing information,
or constraints that can be used in planning.

Workflow History Model contains the information
on earlier cooperation situations, such as performed task
hierarchies, their configurations, and execution results.
The information is used for improving the quality of the
cooperation by analyzing which workflows and roles
have previously worked well and which ones have failed.

Task Hierarchy Models are used as configuration
models for creating task hierarchies (consisting of task-
goal-plan nodes), e.g., options for decomposing tasks or
goals and constraints for valid hierarchy configurations.
It can be used to determine whether a particular task
hierarchy configuration is valid, and the hierarchies can,
then, be used by Planner or other components in Knowl-
edge Manager, e.g., to represent aggregated high-level
capabilities of the peers.

3.3. Planner
Planner is responsible for constructing Workflows which
are then, e.g., passed to Scheduler for execution or stored
for later use. As input, Planner is given some starting
situation, e.g. the current Situational Context, a desired
end condition, e.g. the current Goal, and other related



parameters, e.g. restrictions for the workflow. Planner
leverages the information maintained by Knowledge Man-
ager in its attempts to select the robot and its peers to
specific roles and to assign them Tasks. For actually as-
signing Tasks for its peer robots, Planner negotiates with
different robots’ Planner components. The purpose is
to ensure that the robot has a correct understanding of
its peer’s capabilities (i.e., Tasks it can perform) and that
the peer has sufficient resources, e.g., time and battery
power, to participate in the workflow.

Goal Model defines a single mission that is expected
to be carried out by a single robot or a set of robots.
However, it does not define how the actual plan and the
mission is expected to be performed. Instead, a Goal
Model can set some ground rules for the robot behavior,
like time constraints or quality attributes. A Goal Model
is used for deriving start and end conditions for specific
tasks. It may also affect what types of robots get selected
into the roles of the cooperation.

Workflow Model consists of a Goal Model and a par-
tially ordered list of Task Models where each task is as-
signed to a (set of) robots. By default, Planner tries to put
together a Workflow Model where the robot itself is in the
primary role, and its peers are assigned only if the robot
cannot meet the Goal. However, the Goal Model can af-
fect how the workflow is put together: As the Goal Model
contains information regarding a single robot’s mission,
it can then define the mission to be highly cooperative
or act as a leader. For example, consider that one robot
is expected to act as a supervisor for the other robots –
its mission is then defined to coordinate the others and
their cooperation.

3.4. Task Runtime
Different types of robots can feature very differing un-
derlying platforms for development and interfacing in
general. Therefore, the platform is essentially what dic-
tates how actions have to be implemented. The Task
Runtime is accordingly designed so that support for new
platforms can be added at will, in the form of platform
modules. Currently supported platforms are the older and
newer versions of the Robot Operating System, ROS1 and
ROS2, introduced in more detail later. However, as a par-
ticular measure stemming from the similarity of these
platforms, actions are shared between both by abstracting
implementation differences of subscribers and publishers
using the respective platform modules.

Task. The self-adaptive aspects of the architecture
come into play when the autonomous operation or coop-
eration requires certain resources. Each robot describes
its capabilities by communicating to others what kind of
tasks they can execute. A task may consist of sub-level
tasks, that is, a task may group other tasks into a higher-
level behavior. As an example, consider that a robot can

perform a task Guide. Such task then consists of other
tasks, like Move, Turn, Navigate, etc.

Action is the mapping from the behavior modeled
with tasks to the actual implementation of a specific task.
Actions are generally platform-specific, but there can be
alternative versions of actions for different robots even
within the same platform. Similar to the tasks, also ac-
tions can consist of other sub-level actions. For instance,
conforming Action: Guide may leverage various other
action implementations.

3.5. Robot’s Services
For actuating and sensing the events coming from the
world, the architecture enables leveraging various ser-
vices and communication between them. In Figure 1,
such services have been illustrated: an imaginary actuat-
ing Service A is used, for example controlling the robot,
and at the same time, it sends data to Analysis Service A.
While we have mainly used ROS2 based services in our
current implementation, the Cooperation Brain is not
tied to any specific robot technology. Hence the services
may also be realized as ROS1 services or any other type of
service technology (e.g., as a Docker-based microservice).

3.6. Scheduler
Scheduler component is part of the Task Runtime com-
ponent. Scheduler fetches the Tasks from the Planner
components Workflow and delivers the runnable Tasks
to the Task Runtime. Scheduler’s primary duty is to main-
tain a Task list for execution in the robot, considering
priorities and constraints of active goals. For this purpose,
the Scheduler uses each task’s start and end conditions to
ensure that the situation is correct for running the task.
The Scheduler also uses the resource estimates to ensure
that the robot has the promised resources for performing
the task.

3.7. Coop Communication Service
In order to cooperate effectively in varying situations and
environments, the robots require a communication plat-
form that can relay messages between the components
deployed on various nodes. The base technology for inter-
robot communication is Socket.IO. It provides a relatively
reliable and fast enough communication channel for ne-
gotiating about the cooperation-related activities, like
tasks and roles in workflows, and providing feedback.

In our present research, we mainly leverage ROS2-
based robots. ROS2, on the other hand, leverages DDS
technology for communication between the ROS2 ser-
vices. Hence, in the future, our implementation may
change using DDS also for the cooperation communi-
cation to make the architecture more streamlined. The



downside, however, is that setting up a DDS-based com-
munication infrastructure can be challenging for robots
that lack the required resources, and as there are sev-
eral different DDS implementations, incompatibility is-
sues may emerge and issues with licensing. For this
reason, the implementation yet relies on our service and
Socket.IO technology. Additionally, to support also non-
ROS2 based robots, we have been discussing implement-
ing a communication bridge that would allow ROS and
other types of robots and smart objects and resources (e.g.,
sensors, existing facility service systems, smart home
systems, etc.) in the environments to participate and
enhance the cooperation.

Coop Message is the base unit of the communication
in the CACDAR architecture. Two other base message
types – BroadcastMessage and Direct Message – are in-
herited from the base, and the idea is that the communi-
cation language is extended by inheriting new subtypes.
The only requirement is that each message has a sender.
The actual communication messages are based on FIPA
Communicative Act Library Specification [5] from which
we use a subset.

Broadcast Messages are sent publicly to all robots and
services connected to the Coop Communication Service.
Typical use cases for these messages are when a new
robot arrives at a specific venue and then gets connected
to the Coop Communication Service located at this venue.
The robot may then greet the other connected ones by
broadcasting its name and the tasks it considers capable
of performing. The robot may also request help from
other robots by trying to describe its goal to other robots.

Direct messages, on the other hand, are sent directly
from one robot to a set of recipients. These messages
are mainly used for negotiating a cooperation plan and
communicating during the execution of the plan.

4. Current Status
In this section, we present the current implementation
status of the architecture. We start by describing an exam-
ple use case and then continue presenting some proof of
concept implementations for the use case. Additionally,
we report our experiences so far about the three-world
approach and its benefits.

4.1. Example Use Case: Package Delivery
Throughout our implementation work and experiments,
we have used the following as a base use case and sce-
nario which has been adjusted and changed to different
environments and worlds in our three-world approach:
A delivery robot with a heavy package, e.g., a tool rented
online, comes to a construction site previously unknown
to it. It has a goal: deliver the tool to a specific location.

There are also a number of other robots with different
capabilities executing their tasks, such as cleaning the
place, who have appropriate knowledge related to their
responsibilities, such as the layout of the cleaning areas.
As their responsibilities, e.g., cleaning, may leave time
for other tasks, they can help the delivery robot.

While the above scenario seems very simple, there are
almost unlimited possibilities to advance creative coop-
eration. The scenario requires the robots to a) become
aware of each other skills, objectives, and knowledge; b)
be able to define their joint problem: delivering the pack-
age; and c) together form and execute good enough plans
for solving the joint problem. Hence, despite the limited
domain, we believe that the above scenario can serve as
a basis for numerous other cooperation applications for
diverse autonomous robots.

4.2. Introducing ROS and Real-World
Robots

To get started with implementing the package delivery
scenario and prototyping the Task Runtime, we initially
focused on physical robots of the Real World. We had
an already available supply of small-sized research use
robots, and with Real World being the most intricate of
the three-world approach, it was deemed beneficial to get
familiar with the particularities of physical robot devel-
opment from early on. The robots chosen for these early
implementation efforts were Rosbot 2.0 and TurtleBot3,
both which used Robot Operating System, ROS, as their
development platform. As ROS was to become the first
platform the Task Runtime would support, familiarizing
ourselves with it was necessary to get started.

Being small, economical robots for education and re-
search use, Rosbot 2.0 and TurtleBot3 were at the time
equipped simply with wheels for movement and LIDARs
for scanning surroundings, with the Rosbot 2.0 also fea-
turing a camera. The fundamental premises of the project
also meant further restrictions: we could not have the
robots share any common understanding of the world,
not a common map or even coordinate system. Inspired
by these limitations, the very first mutually coordinated
Action made was that of Rosbot 2.0 following Turtlebot3
with the help of QR codes. Due to both robots using
ROS, the development of Task Runtime began ROS sup-
port first, but care was taken in making it possible to add
support for other robot platforms also.

The QR code method is straightforward in principle:
A QR code stand is propped up on the Turtlebot3. When
Rosbot 2.0 sees the QR code on Turtlebot with its camera,
it tries to move itself so that the QR code is centered on
the image at a direct angle and a certain distance. The
movement direction is based on distance, derived by com-
paring the QR’s width in the image to a predetermined
expected width, and rotation, derived from the homogra-



phy matrix between the image and the QR code within
it.

However, this method alone does not make for an
adequate following logic. When the guide, Turtlebot3,
moves, it is easy for the follower, Rosbot 2.0, to lose sight
of the QR code. As a solution, we implemented a com-
munication protocol specific to this Follow action: If
the guide goes out of view, the follower asks the guide to
stop. The follower then moves to where it last saw the
guide, and begins a search process that uses rotation data
exchanged between the follower and the guide. This ap-
proach utilizes the fact that we can calibrate and compare
the rotations of the robots, even when the coordinates
cannot be shared (as both have their own map). As an
additional measure, QR codes are added on all sides of
the guide. If the follower sees a code other than the one
behind the guide, the guide will attempt to rotate so that
the follower is lined right behind the guide again.

As a result, the Follow and Guide actions were cre-
ated successfully on the physical robots alone. Yet, many
realities of the Real World hampering robot development
became apparent: Lighting conditions would affect the
detection of QR codes greatly, even the slightest of obsta-
cles such as cables were insurmountable for the Turtle-
Bot3, and having to reset the positions of the robots
manually every attempt was also rather inconvenient
in the long run. We also did not have the equipment or
means for complicated feats such as having the robots to
carry objects. To top it all off, the worsening COVID-19
situation meant that work would remain remote for the
foreseeable future, so we started to look into the robot
simulation environments next.

Figure 3: Rosbot 2.0 following a QR code-equipped Turtle-
Bot3.

4.3. Migrating from ROS to ROS2
Before moving from the Real World to the 3D Virtual
World, we also changed the primary development plat-
form from the original ROS, also known as ROS1, to ROS2.
Switching to the newer platform was not entirely trivial

due to major design differences between the two, but
we deemed it worthwhile for a number of reasons: ROS1
uses a client/server architecture, where all machines have
to be registered on the server machine. ROS2 is instead
an entirely peer-to-peer solution based on the DDS mid-
dleware, which would quite intuitively appear a better
fit for cooperation of autonomous robots. Our project
was also at an early stage at the time, and ROS2 exhibited
more promising prospects for the future. In contrast to
ROS, which was designed back in 2010 for research and
educational purposes, improvements in aspects such as
real-time programming claim to bring ROS2 closer to
applicability even for industry use. For us, this heavily
implied that any interesting future developments would
most likely focus on ROS2. Therefore, we are now using
the newly released stable release of ROS2, Foxy Fitzroy,
as the platform for Turtlebots and Gazebo simulation.
The support for ROS2 on Rosbot 2.0 has been more lim-
ited so far, so have instead kept it at ROS1 to demonstrate
how the Task Runtime is made to support both ROS1 and
ROS2.

4.4. Bring Cooperation from Real World
to 3D Virtual World

As the intermediate world of the three-world approach,
we chose Gazebo2 for our first simulation environment.
Gazebo’s close integration with ROS matches well with
our work on real-world ROS robots up to that point, and
it being the de facto standard for robot simulation on
ROS also means that ample support is available from the
open source community.

In many aspects, making the jump from Real World to
Gazebo was quite straightforward. A model of Turtlebot3
was already available for Gazebo, and it controlled effec-
tively the same as in the Real World. Case in point, the
QR code following method implemented in Real World
worked as-is in the simulated world too. What proved
difficult instead was having multiple robots in the same
Gazebo simulation. In a Real World environment, differ-
ent robots can be assigned different domain IDs to avoid
topic overlaps in messaging. In Gazebo, however, all sim-
ulated robots belong to the same domain by design, so
so-called namespaces have to be used differentiate the
topics. Unfortunately, as namespaces are no longer the
preferred solution like they were in ROS1, many ROS2
components do not work very smoothly with them, re-
sulting in some hack-like approaches required. Yet in
the end, we have managed to get multiple Turtlebots
running in the simulation, each complete with their own
namespace and navigation stack.

For all that, running multiple robots in Gazebo presents
us with a certain reality specific to the simulated world.

2http://gazebosim.org/



Figure 4: Cooperation running in the 3D Virtual World: Gazebo.

Increasing the number of robots simulated also increases
the processing power required quite significantly. So far,
we have been running Gazebo in a virtualized Ubuntu
20.04 on work use laptops. Just with three robots present
in the simulation, the simulation runs at anything be-
tween 0.4–0.7 times of the ideal normal speed. Evidently
this would indicate a need for a more powerful, possibly
distributed solution, which we are looking into.

Though it can now be said that robot simulation too
certainly has its own set of challenges, getting the Gazebo
setup working has been quite beneficial in the end. The
simulation environment can be edited at will, and reset-
ting the simulation is naturally much simpler. Although,
for reasons yet unclear, we are experiencing bugs with
both to much inconvenience. Particular to our scenario,
the light conditions are no longer an issue when it comes
to QR code detection, and item delivery actions can be
simulated simply by spawning and despawning items.
Currently, Gazebo is our main platform for development,
as seen with our newest demo.

4.5. Ontology Status
In 2D Block World, we have currently implemented a
minimal extension to DUL with concepts related to coop-
eration and planning, i.e. goals, plans, workflows, tasks
and actions, accompanied by a few physical object imita-
tions residing in the environment, such as doors, which
can be manipulated by completing the tasks (using par-
ticular actions).

Although the first simulations in 2D Block World seem
promising, it is still unclear how much work one needs to

do to provide similar functionality in 3D Virtual World or
Real World for the physical objects. Sensing the states of
the objects, e.g. is the door open or closed, may become a
problem especially in Real World if the environment does
not provide any support for it. However, this is not a prob-
lem that is unique to our approach as any autonomous
robot encounters similar hardships in understanding its
current situation.

5. Related work
In this section, we discuss on related research work on
architectures enabling autonomous robot cooperation,
leveraging ontologies for forming an understanding of
the cooperation possibilities and situations, as well as
task planning and decision making in the context of au-
tonomous robot cooperation.

5.1. Architectures for Autonomous Robot
Cooperation

Autonomous robots cooperating in uncertain and con-
stantly changing environments have been studied for
many years. The general interest in the overall topic
has spawned several research subfields, e.g., swarm
robotics [6], collaborative robotics (cf. [7]) and unmanned
autonomous vehicles (UAV) (cf. [8]).

We find that the closest works related to our work
from the architectural perspective are related to tightly
coupled multi-robot cooperation. For example, Chaimow-
icz et al. [9] have studied architecture in which the key



feature is flexibility which enables changes in leadership
and assignment of roles during the execution of a task.
While the approach allows dynamical behavior, the co-
operation is yet tightly coupled. In our approach, each
robot is expected to individually execute their tasks and
then ask for help when needed. Hence the cooperation is
less tightly coupled. In addition, the aim is not to jointly
execute predefined tasks but instead, enable the robots
to learn from their environment and their peers so that
they could independently form new plans and meet their
personal goals.

While Chaimowicz et al. also use the transportation
of objects as an example, the same use case has been
studied many times during the years. Recently, Zhang et
al. [10] as well as Manko et al. [11] have studied control
architecture that is using deep reinforcement learning
in the transportation of large or heavy objects with a
particular focus on decentralized decision making. While
these approaches have similarities to our work, our work
aims more for enabling individual robots to fulfill their
personal goals instead of the group’s goal. Hence our ar-
chitecture would likely not be well-suited for such tightly
coupled cooperation. However, we can learn from their
experiences on how they use deep learning technologies
and Q-learning-based algorithms for training the robots
to execute a tightly coupled task, and in the future, we
could try a similar approach in our 2D Block World.

5.2. Ontologies for Cooperation
Ontologies have been widely used to make agents and
robots understand the structures of the physical and
social world around them (see, e.g., Olivares-Alarcos
et al. [12], Beetz et al. [2]), and initiatives considering
their usage to build robot collectives that can commu-
nicate and cooperate have been suggested before, e.g.,
RoboEarth [13]. In contrast to RoboEarth, cooperation
understanding and planning take place inside the indi-
vidual robots in our architecture. The robots do not share
their world views in general as they are assumed to hold
also information that should not be shared with others,
such as maps of restricted areas or passwords. Instead,
they will only exchange information relevant to the cur-
rent situation and goals directly with each other. That
said, cloud-based solutions, such as RoboEarth, could be
integrated into the architecture as optional components.

Mainly due to the advent of IoT, ontologies prove to
be an exciting starting point for robots to understand
the world as a built environment is getting populated
with intelligent devices capable of communicating with
other computational actors. This means that, e.g., a door
can be opened using software communication alone and
does not have to rely on physical door manipulation, and
that sensors and other IoT devices may send information
of their physical composition, purpose, and capabilities

using ontological representations. This aids cooperation,
especially on low-end robots, as the robot does not need
to perceive these attributes from its raw sensor outputs
such as camera streams.

5.3. Planning for Agents and Robots
Single robot planning may be approached from multiple
perspectives. Two often used ones are heuristic short-
est path search, such as the famous A* algorithm and its
dynamic counterparts, and solutions used for logical opti-
mization problems, e.g. (weighted) maximum satisfiabil-
ity solvers. The shortest path search provides (estimates)
for moving from one node to another in a graph and aims
to find the path of nodes with the shortest length, and
logical optimization aims to find a (maximal or minimal)
set of clauses that satisfy certain conditions. Dynamic
shortest path algorithms fit well in environments where
the robot may not fully understand its situation, e.g., a
complete map and logical optimization excels in cases
where it is crucial to ensure the correctness of the solu-
tion beforehand.

However, our goal is to provide a planner that uses
both logical verifications of the workflows through the
fulfillment of each tasks’ start and end conditions and a
heuristic estimate of its execution resources through peer
models and communication. Our approach differs from
typical multi-robot task planning (see, e.g., Yan et al. [14])
in that one robot initiates the planning of the workflow
phase (task decomposition), and it communicates, based
on its peer models, with other robots to find suitable
members to execute the tasks (task allocation).

6. Discussion
The implementation work has brought us numerous in-
sights into the realities of cooperation in both real and
simulated worlds. We have not yet faced any truly insur-
mountable issues, but many aspects make working with
these environments not entirely straightforward.

In Real World, there are innumerable factors that can
potentially affect the robots’ ability to perform, such as
the lighting as mentioned above conditions and cables
on the floor. Of course, for our project’s purposes, this
would not seem a significant issue, as we can perform our
tests in a carefully designed, controlled environment.3

However, this does not remove the fundamental issue of
unexpected factors. How would this uncertainty be dealt
with within a hypothetical practical environment? One
possible approach would be introducing some degree
of "self-healing" properties in the design, both in terms

3In fact, we have long had plans to set up such an environ-
ment in the university campus, but the ongoing COVID-19 situation
means these plans are still postponed.



of the robots’ performance and the cooperation context.
Currently, extensive work on this aspect is beyond the
scope of this project, however.

In contrast to the unpredictable Real World, the simu-
lated 3D environments are inherently about control and
thus easier to work with. Nevertheless, there can still
be considerable effort to set up a simulation the desired
way, as seen with the difficulties in simulating multiple
robots simultaneously in Gazebo. It also became appar-
ent that multi-robot simulation can involve substantial
hardware requirements. Still, we have found the Gazebo
3D simulation fulfills its purpose satisfactorily as a plat-
form where cooperative actions can be developed for
Real World (ROS2) robots in a more controlled manner.

However, it could also be noted that while the usage
of 3D simulation does simplify some aspects, designing
Actions for the Task Runtime remains an endeavor that
relies on detailed knowledge in leveraging a particular
robot’s inner workings. Contrary to how the primary
interests of this project are in the dynamic and creative
aspects of robot cooperation, there remains a nontrivial
effort necessary in creating the actual units of implemen-
tation, Actions. Future work could explore how to design
the Actions more efficiently.

7. Conclusions
In this paper, we presented a new software architecture
and development approach for diverse multi-robot coop-
eration. The core idea of the new approach is improving
the situational context by developing and training peer
models and an ontology that improves understanding
of the world. The peer models enable the robots to take
their peers’ capabilities and goals into account in their
reasoning, and the ontology can be used as a shared ba-
sis for communication and forming cooperation plans.
The presented work is yet in its early stage, but we have
already provided encouraging results and will continue
the work.
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